International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 2.4, pp. 80-83
https://doi.org/10.1107/97809553602060000579

Chapter 2.4. Powder and related techniques: electron and neutron techniques

J. M. Cowleya and A. W. Hewatb

a Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504, USA, and bInstitut Laue–Langevin, Avenue des Martyrs, BP 156X, F-38042 Grenoble CEDEX, France

References

First citation Allemand, R., Bordet, J., Roudaut, E., Convert, P., Ibel, K., Jacobe, J., Cotton, J. P. & Farnoux, B. (1975). Position sensitive detectors for neutron diffraction. Nucl. Instrum. Methods, 126, 29–42.Google Scholar
First citation Anderson, R. & Johnson, G. G. Jr (1979). The MAX-d alphabetical index to the JCPDS data base: a new tool for electron diffraction analysis. 37th Annu. Proc. Electron Microsc. Soc. Am., edited by G. W. Bailey, pp. 444–445. Baton Rouge: Claitors.Google Scholar
First citation Avilov, A. S., Parmon, V. S., Semiletov, S. A. & Sirota, M. I. (1984). Intensity calculations for many-wave diffraction of fast electrons in polycrystal specimens. Kristallografiya, 29, 11–15. [In Russian.]Google Scholar
First citation Bethe, H. A. (1928). Theorie der Beugung von Elektronen an Kristallen. Ann. Phys. (Leipzig), 87, 55–129.Google Scholar
First citation Blackman, M. (1939). On the intensities of electron diffraction rings. Proc. R. Soc. London, 173, 68–82.Google Scholar
First citation Caglioti, G., Paoletti, A. & Ricci, F. P. (1958). Choice of collimators for a crystal spectrometer for neutron diffraction. Nucl. Instrum. Methods, 3, 223–228.Google Scholar
First citation Carlile, C. J., Hey, P. D. & Mack, B. (1977). High efficiency Soller slit collimators for thermal neutrons. J. Phys. E, 10, 543–546.Google Scholar
First citation Carr, M. J., Chambers, W. F., Melgaard, D. K., Himes, V. L., Stalick, J. K. & Mighell, A. D. (1987). NBS/Sandia/ICDD Electron Diffraction Data Base. Report SAND87-1992-UC-13. Sandia National Laboratories, Albuquerque, NM 87185, USA.Google Scholar
First citation Cowley, J. M. & Rees, A. L. G. (1947). Refraction effects in electron diffraction. Proc. Phys. Soc. 59, 287–302.Google Scholar
First citation Dvoryankina, G. G. & Pinsker, Z. G. (1958). The structural study of Fe4N. Kristallografiya, 3, 438–445. [In Russian.]Google Scholar
First citation Goodman, P. (1963). Investigation of arsenic trisulphide by the electron diffraction radial distribution method. Acta Cryst. 16, A130.Google Scholar
First citation Grigson, C. W. B. (1962). On scanning electron diffraction. J. Electron. Control, 12, 209–232.Google Scholar
First citation Hewat, A. W. (1975). Design for a conventional high resolution neutron powder diffractometer. Nucl. Instrum. Methods, 127, 361–370.Google Scholar
First citation Hewat, A. W. (1986a). D2B, a new high resolution neutron powder diffractometer at ILL Grenoble. Mater. Sci. Forum, 9, 69–79.Google Scholar
First citation Hewat, A. W. (1986b). High resolution neutron and synchrotron powder diffraction. Chem. Scr. 26A, 119–130.Google Scholar
First citation Hewat, A. W. & Bailey, I. (1976). D1A, a high resolution neutron powder diffractometer with a bank of Mylar collimators. Nucl. Instrum. Methods, 137, 463–471.Google Scholar
First citation Honjo, G. & Mihama, K. (1954). Fine structure due to refraction effect in electron diffraction pattern of powder sample. J. Phys. Soc. Jpn, 9, 184–198.Google Scholar
First citation Horstmann, M. & Meyer, G. (1962). Messung der elastischen Electronenbeugungsintensitaten polykristalliner Aluminium-Schichten. Acta Cryst. 15, 271–281.Google Scholar
First citation Howard, C. J. (1982). The approximation of asymmetric neutron powder diffraction peaks by sums of Gaussians. J. Appl. Cryst. 15, 615–620.Google Scholar
First citation Imamov, R. M., Pannhorst, V., Avilov, A. S. & Pinsker, Z. G. (1976). Experimental study of dynamic effects associated with electron diffraction in partly oriented films. Kristallografiya, 21, 364–369.Google Scholar
First citation International Tables for Crystallography (2001). Vol. B, Reciprocal space, edited by U. Shmueli. Dordrecht: Kluwer Academic Publishers.Google Scholar
First citation Loopstra, B. O. (1966). Neutron powder diffractometry using a wavelength of 2.6 Å. Nucl. Instrum. Methods, 44, 181–187.Google Scholar
First citation Mighell, A. D., Himes, V. L., Anderson, R. & Carr, M. J. (1988). d-spacing and formula index for compound identification using electron diffraction. 46th Annu. Proc. Electron Microsc. Soc. Am., edited by G. W. Bailey, pp. 912–913. San Francisco Press.Google Scholar
First citation Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65–71.Google Scholar
First citation Sturkey, L. & Frevel, L. K. (1945). Refraction effects in electron diffraction. Phys. Rev. 68, 56–57.Google Scholar
First citation Tsypursky, S. I. & Drits, V. A. (1977). The efficiency of the electronometric measurement of intensities in electron diffraction structural studies. Izv. Akad. Nauk SSSR Ser. Phys. 41, 2263–2271. [In Russian.]Google Scholar
First citation Turner, P. S. & Cowley, J. M. (1969). The effect of n-beam dynamical diffraction in electron diffraction intensities from polycrystalline materials. Acta Cryst. A25, 475–481.Google Scholar
First citation Vainshtein, B. K. (1964). Structure analysis by electron diffraction. Oxford: Pergamon Press. [Translated from the Russian: Strukturnaya Electronografiya.]Google Scholar
First citation Wilson, A. J. C. (1963). Mathematical theory of X-ray powder diffractometry. Eindhoven: Centrex.Google Scholar