3. PREPARATION AND EXAMINATION OF SPECIMENS

3.2.2.4. Method of Archimedes

The specimen is weighed in air and again in a liquid of accurately known density. From the apparent loss of weight the volume is computed, and thence the density (Reilly & Rae, 1954). The technique requires little special equipment and is capable of great accuracy when used with large, well-formed crystals. The accuracy is maximized by using immersion liquids of density as close to that of the crystals as possible. For precise work, correction must be made for the interfacial tension between the supporting wire and the upper surface of the suspending medium.

A torsion microbalance has been adapted to the determination of crystals as small as 25 mg (Berman, 1939). A probable accuracy of better than 1% may be achieved with this micro-method.

A densitometer based on Archimedes principle with control of the composition of the gas phase and a wide temperature range has been described by Graubner (1986). The method is not suitable for finely divided materials.

3.2.2.5. Immersion microbalance

Some crystals, such as those of globular proteins grown from alcohol–water mixtures, rapidly change their composition, and thus their density, when removed from the mother liquor in which they were grown. The density may then be computed from the weight of the crystal immersed in its mother liquor, the density of the latter, and the volume of the crystal (Low & Richards, 1952b; 1954; Richards, 1954).

A horizontal quartz fibre, free at one end, is mounted in a glass case that can be filled with liquid. After calibration, the deflection of the fibre gives the weight of an immersed crystal suspended on the free end. The volume is computed from the crystal dimensions as determined from two photomicrographs of the immersed crystal taken at right angles to each other. The density of the mother liquor is measured by one of the standard techniques for liquids.

The method is suitable for single, well-formed crystals having a volume of about 0.1 mm³ or greater. The accuracy is related inversely to the difference in density between the crystal and its mother liquor.

3.2.2.6. Volumenometry

This is the only technique not requiring immersion of the sample in a liquid medium. The technique is therefore used in instances where the specimen would be attacked by the customary immersion media, or where one wishes to work over a temperature range where liquid media would be inappropriate.

The gas-pressure change caused by altering the volume of a calibrated vessel by a given amount is determined when the vessel is empty, and again after the weighed specimen has been introduced (Reilly & Rae, 1954).

Any gas inert to the crystal may be used. Powders and crystal fragments may be employed. A probable accuracy as great as 0.1% may be attained. Samples with an aggregate volume as low as 0.01 ml have been measured with a probable accuracy of 1% (Hauptmann & Schulze, 1934).

3.2.2.7. Other procedures

A novel procedure that may be useful in special circumstances is based on measuring the frequency of a vibrating string of the material in question. If the length of the string is fixed and the transverse deformation is small, the various harmonic frequen-