International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 3.4, pp. 162-170
https://doi.org/10.1107/97809553602060000588

Chapter 3.4. Mounting and setting of specimens for X-ray crystallographic studies

P. F. Lindleya

a ESRF, Avenue des Martyrs, BP 220, F-38043 Grenoble CEDEX, France

References

First citation Adlhart, W. & Huber, H. (1982). A low-temperature X-ray Weissenberg goniometer with closed-cycle cooling to about 28 K. J. Appl. Cryst. 15, 241–244.Google Scholar
First citation Adlhart, W., Tzafaras, N., Sueno, S., Jagodzinski, H. & Huber, H. (1982). An X-ray camera for single-crystal studies at high temperatures under controlled atmosphere. J. Appl. Cryst. 15, 236–240.Google Scholar
First citation Alkire, R. W., Larson, A. C., Vergamini, P. J., Schirber, J. E. & Morosin, B. (1985). High-pressure single-crystal neutron diffraction (to 20 kbar) using a pulsed source: preliminary investigation of Tl3PSe4. J. Appl. Cryst. 18, 145–149.Google Scholar
First citation Allen, S., Cosier, J., Glazer, A. M., Hastings, T. J., Smith, D. T. & Wood, I. G. (1982). A microprocessor-controlled continuous-flow cryostat for single-crystal X-ray diffraction in the range 10–300 K. J. Appl. Cryst. 15, 382–387.Google Scholar
First citation Archer, J. M. & Lehmann, M. S. (1986). A simple adjustable mount for a two-stage cryorefrigerator on an Eulerian cradle. J. Appl. Cryst. 19, 456–458.Google Scholar
First citation Argoud, R. & Muller, J. (1989a). Effect of stress from the glue on single-crystal X-ray intensities at high or low temperatures. J. Appl. Cryst. 22, 378–380. Google Scholar
First citation Argoud, R. & Muller, J. (1989b). Magnetically coupled crystal holder and liquid-helium cryostat for X-ray four-circle diffractometer studies between 5 and 300 K. J. Appl. Cryst. 22, 584–591.Google Scholar
First citation Arndt, U. W. & Stubbings, S. J. (1987). A miniature Peltier-effect goniometer-head attachment. J. Appl. Cryst. 20, 445.Google Scholar
First citation Arndt, U. W. & Wonacott, A. J. (1977). The rotation method in crystallography. Amsterdam/New York/Oxford: North-Holland.Google Scholar
First citation Arnold, H., Bartl, H., Fuess, H., Ihringer, J., Kosten, K., Löchner, U., Pennartz, P. U., Prandl, W. & Wroblewski, T. (1989). New powder diffractometer at HASYLAB/DESY. Rev. Sci. Instrum. 60, 2380–2381.Google Scholar
First citation Bartunik, H. D. & Schubert, P. (1982). Crystal cooling for protein crystallography with synchrotron radiation. J. Appl. Cryst. 15, 227–231.Google Scholar
First citation Bhat, H. L., Clark, S. M., El Korashy, A. & Roberts, K. J. (1990). A furnace for in situ synchrotron Laue diffraction and its application to studies of solid-state phase transformations. J. Appl. Cryst. 23, 545–549.Google Scholar
First citation Black, D. R., Burdette, H. E. & Early, J. G. (1986). Diffusion bonding of ductile single crystals for strain-free mounting. J. Appl. Cryst. 19, 279–280.Google Scholar
First citation Boese, R. & Bläser, D. (1989). A procedure for the selection and transferring of crystals at low temperatures to diffractometers. J. Appl. Cryst. 22, 394–395.Google Scholar
First citation Bouquiere, J. P., Finney, J. L., Lehmann, M. S., Lindley, P. F. & Savage, H. F. J. (1993). High-resolution neutron study of vitamin B12 coenzyme at 15 K: structure analysis and comparison with the structure at 279 K. Acta Cryst. B49, 79–89.Google Scholar
First citation Bretherton, L. & Kennard, C. H. L. (1976). Crystal mounter. J. Appl. Cryst. 9, 416.Google Scholar
First citation Brown, N. E., Swapp, S. M., Bennett, C. L. & Navrotsky, A. (1993). High-temperature X-ray diffraction: solutions to uncertainties in temperature and sample position. J. Appl. Cryst. 26, 77–81.Google Scholar
First citation Buerger, M. J. (1964). The precession method in X-ray crystallography. New York: John Wiley. Google Scholar
First citation Busing, W. R. & Levy, H. A. (1967). Angle calculations for 3- and 4-circle X-ray and neutron diffractometers. Acta Cryst. 22, 457–464.Google Scholar
First citation CAD4 Manual (1989). Enraf–Nonius, Scientific Instruments Division, PB 483, NL-2600 AL, Delft, The Netherlands. Google Scholar
First citation Campos, C., Cardoso, L. P. & Caticha-Ellis, S. (1983). A simple method to cut a single crystal in any desired direction. J. Appl. Cryst. 16, 360.Google Scholar
First citation Carr, P. D., Cruickshank, D. W. J. & Harding, M. M. (1992). The determination of unit-cell parameters from Laue diffraction patterns using their gnomonic projections. J. Appl. Cryst. 25, 294–308.Google Scholar
First citation Cascio, D., Williams, R. & McPherson, A. (1984). The reduction of radiation damage in protein crystals by polyethylene glycol. J. Appl. Cryst. 17, 209–210.Google Scholar
First citation Clegg, W. (1984). Enhancements of the `auto-indexing' method for cell determination in four-circle diffractometry. J. Appl. Cryst. 17, 334–336.Google Scholar
First citation Clifton, I. J., Elder, M. & Hajdu, J. (1991). Experimental strategies in Laue crystallography. J. Appl. Cryst. 24, 267–277.Google Scholar
First citation Cosier, J. & Glazer, A. M. (1986). A nitrogen-gas-stream cryostat for general X-ray diffraction studies. J. Appl. Cryst. 19, 105–107.Google Scholar
First citation D'Aprile, F. & Moretto, R. (1975). Two simple devices for sealing wet single crystals in capillary tubes. J. Appl. Cryst. 8, 696.Google Scholar
First citation Denne, W. A. (1971a). A new concept in goniometer head design. J. Appl. Cryst. 4, 60–66.Google Scholar
First citation Denne, W. A. (1971b). A technique for the rigid mounting of crystals in X-ray diffractometry. J. Appl. Cryst. 4, 400.Google Scholar
First citation Dent Glasser, L. S. (1977). Crystallography and its applications, Chap. 6, pp. 125–155. New York/Cincinnati/Toronto/London/Melbourne: Van Nostrand Reinhold. Google Scholar
First citation Desai, C. F. & Bhatt, V. P. (1984). A sample holder for cutting single crystals along any desired X-ray orientated plane. J. Appl. Cryst. 17, 369–370. Google Scholar
First citation Dewan, J. C. & Tilton, R. F. (1987). Greatly reduced radiation damage in ribonuclease crystals mounted on glass fibres. J. Appl. Cryst. 20, 130–132.Google Scholar
First citation D'Eye, R. W. M. & Wait, E. (1960). X-ray powder photography. London: Butterworth. Google Scholar
First citation Duisenberg, A. J. M. (1992). Indexing in single-crystal diffractometry with an obstinate list of reflections. J. Appl. Cryst. 25, 92–96.Google Scholar
First citation Dumas, P. & Ripp, R. (1986). A real-time interactive graphics program to determine crystal orientation for the analysis of oscillation diffraction photographs. J. Appl. Cryst. 19, 28–33.Google Scholar
First citation Edwards, S. L. (1993). Yokeless flow cell for Laue crystallography. J. Appl. Cryst. 26, 305–306.Google Scholar
First citation Fischer, J., Moras, D. & Thierry, J. C. (1985). Single crystal diffractometry: strategy for rapidly decaying poorly diffracting crystals. J. Appl. Cryst. 18, 20–26.Google Scholar
First citation Foit, F. F. Jr (1982). A technique for loading glass capillaries used in X-ray powder diffraction. J. Appl. Cryst. 15, 357.Google Scholar
First citation Fraase Storm, G. M. & Tuinstra, F. (1986). A thermoelectric device for temperature-controlled single-crystal diffractometry. J. Appl. Cryst. 19, 372–373.Google Scholar
First citation Frauenfelder, H., Hartmann, H., Karplus, M., Kuntz, I. D. Jr, Kuriyan, J., Parak, F., Petsko, G. A., Ringe, D., Tilton, R. F. Jr, Conolly, M. L. & Max, N. (1987). Thermal expansion of a protein. Biochemistry, 26, 254–261.Google Scholar
First citation Frauenfelder, H., Petsko, G. A. & Tsernoglou, D. (1979). Temperature-dependent X-ray diffraction as a probe of protein structure dynamics. Nature (London), 280, 558.Google Scholar
First citation Gamblin, S. J. & Rogers, D. W. (1993). Some practical details of data collection at 100 K. In Data collection and processing. Proceedings of the CCP4 Study Weekend, edited by L. Sawyer, N. Isaacs & S. Bailey. Report DL/SCI/R34. SERC Daresbury Laboratory, Cheshire WA4 4AD, England. Google Scholar
First citation Gonzalez, A. & Nave, C. (1994). Radiation damage in protein crystals at low temperature. Acta Cryst. D50, 874–877.Google Scholar
First citation Graafsma, H., Sagerman, G. & Coppens, P. (1991). Closed-cycle helium cryostat for the Huber 511.1 diffractometer circle. J. Appl. Cryst. 24, 961–962.Google Scholar
First citation Hajdu, J., McLaughlin, P. J., Helliwell, J. R., Sheldon, J. & Thompson, A. W. (1985). Universal cooling device for precession cameras, rotation cameras and diffractometers. J. Appl. Cryst. 18, 528–532.Google Scholar
First citation Hanson, I. R. (1981). A rapid and accurate method of aligning a crystal on a Weissenberg goniometer. J. Appl. Cryst. 14, 353. Google Scholar
First citation Hartmann, H., Parak, F., Steigemann, W., Petsko, G. A., Ringe-Ponzi, D. & Frauenfelder, H. (1982). Conformational substrates in a protein: structure and dynamics of metmyoglobin at 80 K. Proc. Natl Acad. Sci. USA, 79, 4967–4971. Google Scholar
First citation Hazen, R. M. & Finger, L. W. (1982). Comparative crystal chemistry, pp. 5–16. New York: Wiley. Google Scholar
First citation Helliwell, J. R., Habash, J., Cruickshank, D. W. J., Harding, M. M., Greenhough, T. J., Campbell, J. E., Clifton, I. J., Elder, M., Machin, P. A., Papiz, M. Z. & Zurek, S. (1989). The recording and analysis of synchrotron X-radiation Laue diffraction photographs. J. Appl. Cryst. 22, 483–497.Google Scholar
First citation Henriksen, K., Larsen, F. K. & Rasmussen, S. E. (1986). Mounting a 10 K cooling device without rotating seals on a four-circle diffractometer. J. Appl. Cryst. 19, 390–394.Google Scholar
First citation Higashi, T. (1989). The processing of diffraction data taken on a screenless Weissenberg camera for macromolecular crystallography. J. Appl. Cryst. 22, 9–18.Google Scholar
First citation Higashi, T. (1990). Auto-indexing of oscillation images. J. Appl. Cryst. 23, 253–257.Google Scholar
First citation Hohlwein, D. & Wright, A. F. (1981). A low-temperature Weissenberg camera for neutrons. J. Appl. Cryst. 14, 82–84. Google Scholar
First citation Holmes, K. C. & Blow, D. M. (1966). The use of diffraction in the study of protein and nucleic acid structure. New York: John Wiley. Google Scholar
First citation Hope, H. (1987). Experimental organometallic chemistry. Am. Chem. Soc. Symp. Ser., No. 357. Washington, DC: American Chemical Society.Google Scholar
First citation Hope, H. (1988). Cryocrystallography of biological macromolecules: a generally applicable method. Acta Cryst. B44, 22–26.Google Scholar
First citation Hope, H. (1990). Crystallography of biological macromolecules at ultra-low temperatures. Ann. Rev. Biophys. Biophys. Chem. 19, 107–126.Google Scholar
First citation Hope, H., Frolow, F., van Böhlen, K., Makowski, I., Kratky, C., Halfon, Y., Danz, H., Bartels, K. S., Wittmann, H. G. & Yonath, A. (1989). Crystallography of ribosomal particles. Acta Cryst. B45, 190–199.Google Scholar
First citation Hornstra, J. & Vossers, H. (1974). Philips Tech. Rundsch. 33, 65–78.Google Scholar
First citation Hovmöller, S. (1981). A device which improves the cooling of protein crystals during X-ray data collection. J. Appl. Cryst. 14, 75.Google Scholar
First citation Ihringer, J. & Küster, A. (1993). Cryostat for synchrotron powder diffraction with sample rotation and controlled gas atmosphere in the sample chamber. J. Appl. Cryst. 26, 135–137.Google Scholar
First citation Jacobson, R. A. (1976). A single-crystal automatic indexing procedure. J. Appl. Cryst. 9, 115–118.Google Scholar
First citation Jacobson, R. A. (1986). An orientation-matrix approach to Laue indexing. J. Appl. Cryst. 19, 283–286.Google Scholar
First citation Jeffery, J. W. (1971). Methods in X-ray crystallography, pp. 149–169, 441–444. London/New York: Academic Press. Google Scholar
First citation Jones, A., Bartels, K. & Schwager, P. (1977). Refinement of crystal orientation parameters. The rotation method, edited by U. W. Arndt & A. Wonacott, pp. 105–117. Amsterdam/New York/Oxford: North-Holland. Google Scholar
First citation Kabsch, W. (1988a). Automatic indexing of rotation diffraction patterns. J. Appl. Cryst. 21, 67–71.Google Scholar
First citation Kabsch, W. (1988b). Evaluation of single-crystal X-ray diffraction data from a position-sensitive detector. J. Appl. Cryst. 21, 916–924.Google Scholar
First citation Kabsch, W. (1993). Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 26, 795–800.Google Scholar
First citation Kahn, R., Fourme, R., Bosshard, R., Chaimdi, M., Risler, J. L., Dideberg, O. & Wery, J. P. (1985). Crystal structure study of Opsanus tau parvalbumin by multiwavelength anomalous diffraction. FEBS Lett. 179, 133–137.Google Scholar
First citation Kennard, C. H. L. (1994). Direct observation of a crystal during X-ray data collection using a macroscope. J. Appl. Cryst. 27, 668–669.Google Scholar
First citation Kim, S. (1989). Auto-indexing oscillation photographs. J. Appl. Cryst. 22, 53–60.Google Scholar
First citation King, M. V. (1954). An efficient method for mounting wet protein crystals for X-ray studies. Acta Cryst. 7, 601–602.Google Scholar
First citation Klug, H. P. & Alexander, L. E. (1954). X-ray diffractometer procedures for polycrystalline and amorphous materials. New York: John Wiley. Google Scholar
First citation Kottke, T. & Stalke, D. (1993). Crystal handling at low temperatures. J. Appl. Cryst. 26, 616–619.Google Scholar
First citation Kroeger, K. S. & Kundrot, C. E. (1994). A gas cell for collecting X-ray diffraction data from proteins. J. Appl. Cryst. 27, 609–612.Google Scholar
First citation Kulpe, S. (1963). Instrument for setting single crystals from X-ray oscillation photographs. Acta Cryst. 16, 837–838. Google Scholar
First citation Kulpe, S. & Dornberger-Schiff, K. (1965). A special application of the crystal setter. Acta Cryst. 18, 812–813. Google Scholar
First citation Kundrot, C. E. & Richards, F. M. (1986). Collection and processing of X-ray diffraction data from protein crystals at high pressure. J. Appl. Cryst. 19, 208–213.Google Scholar
First citation Lange, B. A. & Haendler, H. M. (1972). A capillary support apparatus for use in glove bags and dry boxes. J. Appl. Cryst. 5, 310. Google Scholar
First citation Lange, G., Lewis, S. J., Murshudov, G. N., Dodson, G. G., Moody, P. C. E., Turkenburg, J. P., Barclay, A. N. & Brady, R. L. (1994). Crystal structure of an extracellular fragment of the rat CD4 receptor containing domains 3 and 4. Structure, 2, 469–481. Google Scholar
First citation Laugier, J. & Filhol, A. (1983). An interactive program for the interpretation and simulation of Laue patterns. J. Appl. Cryst. 16, 281–283.Google Scholar
First citation Leszczynski, M., Podlasin, S. & Suski, T. (1993). A 109 Pa high-pressure cell for X-ray and optical measurements. J. Appl. Cryst. 26, 1–4.Google Scholar
First citation Lindley, P., Najmudin, S., Bateman, O., Slingsby, S., Myles, D., Kumaraswamy, S. & Glover, I. (1993). Structure of bovine γB-crystallin at 150 K. J. Chem. Soc. Faraday Trans. 89, 2677–2682.Google Scholar
First citation Lindley, P. F. (1988). Crystallographic studies of biological macromolecules using synchrotron radiation. Chemical crystallography with pulsed neutrons and synchrotron X-rays, edited by M. A. Carrondo & G. A. Jeffrey, pp. 509–536. Dordrecht: Reidel. Google Scholar
First citation Lippman, R. & Rudman, R. (1976). A mechanically refrigerated gas stream (to −120°C) and some useful accessories. J. Appl. Cryst. 9, 220–222.Google Scholar
First citation Lorenz, G., Neder, R. B., Marxreiter, J., Frey, F. & Schneider, J. (1993). A mirror furnace for neutron diffraction up to 2300 K. J. Appl. Cryst. 26, 632–635.Google Scholar
First citation Machin, K. J., Begg, G. S. & Isaacs, N. W. (1984). A low-temperature cooler for protein crystallography. J. Appl. Cryst. 17, 358–359.Google Scholar
First citation McKinstry, H. A. (1970). Low thermal gradient high-temperature furnace for X-ray diffraction. J. Appl. Phys. 41, 5074–5079.Google Scholar
First citation McMurdie, H. F., Morris, M. C., Evans, E. H., Paretzkin, B. & Wong-Ng, W. (1986). Methods of producing standard X-ray diffraction powder patterns. Powder Diffr. 1, 40–43.Google Scholar
First citation Malinowski, M. (1987). A diamond high-pressure cell for X-ray diffraction on a single crystal. J. Appl. Cryst. 20, 379–382.Google Scholar
First citation Marsh, D. J. & Petsko, G. A. (1973). A low-temperature device for protein crystallography. J. Appl. Cryst. 6, 76–80. Google Scholar
First citation Messerschmidt, A. & Pflugrath, J. (1987). Crystal orientation and X-ray pattern prediction routines for area-detector diffractometer systems in macromolecular crystallography. J. Appl. Cryst. 20, 306–315.Google Scholar
First citation Miyata, T., Ishizawa, N., Minato, I. & Iwai, S. (1979). Gas-flame heating equipment providing temperatures up to 2600 K for the four-circle diffractometer. J. Appl. Cryst. 12, 303–305.Google Scholar
First citation Moews, P. C., Sakamaki, T. & Knox, J. R. (1986). Interactive graphics for rapid indexing of oscillation films from large unit cells. J. Appl. Cryst. 19, 101–104.Google Scholar
First citation Moret, R. & Dallé, D. (1994). A novel X-ray precession goniometer for use with stationary single crystals in special environments. Adaptation of a closed-cycle refrigerator. J. Appl. Cryst. 27, 637–646.Google Scholar
First citation Munshi, S. K. & Murthy, M. R. N. (1986). Strategies for collecting screen-less oscillation data. J. Appl. Cryst. 19, 61–62.Google Scholar
First citation Narayana, S. V. L., Weininger, M. S., Heuss, K. L. & Argos, P. (1982). A method to increase protein-crystal lifetime during X-ray exposure. J. Appl. Cryst. 15, 571–573.Google Scholar
First citation Nave, C. (1995). Radiation damage in protein crystallography. In Radiation physics & chemistry, edited by P. Barnes. Oxford: Pergamon.Google Scholar
First citation Neder, R. B., Frey, F. & Schulz, H. (1990). Defect structure of zirconia (Zr0.85Ca0.15O1.85) at 290 and 1550 K. Acta Cryst. A46, 799–809.Google Scholar
First citation Nieman, H. F., Evans, J. C., Heal, K. M. & Powell, B. M. (1984). A technique for the preparation of low-temperature powder samples of noxious materials. J. Appl. Cryst. 17, 372.Google Scholar
First citation North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). A semi-empirical method of absorption correction. Acta Cryst. A24, 351–359.Google Scholar
First citation Okazaki, A. & Soejima, Y. (1986). Goniometer-head attachments for crystal characterization in Weissenberg or precession geometry. J. Appl. Cryst. 19, 412–413.Google Scholar
First citation Peterson, R. C. (1992). A flame-heated gas-flow furnace for single-crystal X-ray diffraction. J. Appl. Cryst. 25, 545–548.Google Scholar
First citation Petsko, G. A. (1985). Flow cell construction and use. Methods in enzymology, Vol. 114, pp. 141–145. New York: Academic Press.Google Scholar
First citation Phillips, G. N. Jr (1985). Crystallisation in capillary tubes. Methods in enzymology, Vol. 114, pp. 128–131. New York: Academic Press.Google Scholar
First citation Pickford, M. G., Garman, E. F., Jones, E. Y. & Stuart, D. I. (1993). A design of crystal mounting cell that allows the controlled variation of humidity at the protein crystal during X-ray diffraction. J. Appl. Cryst. 26, 465–466.Google Scholar
First citation Przybylska, M. (1988). A novel method of mounting a protein crystal on a surface perpendicular to the X-ray capillary. J. Appl. Cryst. 21, 272–273.Google Scholar
First citation Puxley, D. C., Squire, G. D. & Bates, D. R. (1994). A new cell for in situ X-ray diffraction studies of catalysts and other materials under reactive gas atmospheres. J. Appl. Cryst. 27, 585–594.Google Scholar
First citation Rao, Ch. P. (1989). Easy and economic ways of handling air-sensitive crystals for X-ray diffraction studies. J. Appl. Cryst. 22, 182–183.Google Scholar
First citation Rasmussen, B. F., Stock, A. M., Ringe, D. & Petsko, G. A. (1992). Crystalline ribonuclease A loses function below the dynamical transition at 220 K. Nature (London), 357, 423–424.Google Scholar
First citation Rayment, I. (1985). Treatment and manipulation of crystals. Methods in enzymology, Vol. 114, pp. 136–140. New York: Academic Press.Google Scholar
First citation Rayment, I., Johnson, J. E. & Suck, D. (1977). A method of preventing crystal slippage in macromolecular crystallography. J. Appl. Cryst. 10, 365.Google Scholar
First citation Reider, M. (1975). Precession photography: orientating crystals by means of the stereographic projection. J. Appl. Cryst. 8, 388–389.Google Scholar
First citation Rink, W. J., Mathias, H. G. & Schlenoff, J. B. (1994). Hermetic sample housing for X-ray diffraction studies. J. Appl. Cryst. 27, 666–668. Google Scholar
First citation Riquet, J. P. & Bonnet, R. (1979). Dépouillement par ordinator des clichés de diffraction obtenus par la méthode de Laue. J. Appl. Cryst. 12, 39–41.Google Scholar
First citation Rossi, F. A. (1989). Permanent cooling of protein crystals by a collinear air flow. J. Appl. Cryst. 22, 620–622. Google Scholar
First citation Rossmann, M. G. & Erickson, J. W. (1983). Oscillation photography of radiation-sensitive crystals using a synchrotron source. J. Appl. Cryst. 16, 629–636.Google Scholar
First citation Rudman, R. (1976). Low-temperature X-ray diffraction: apparatus and techniques, Chap. 6, pp. 161–179. New York/London: Plenum.Google Scholar
First citation Sarma, R., McKeever, B., Gallo, R. & Scuderi, J. (1986). A new method for determination of the crystal setting matrix for interpreting oscillation photographs. J. Appl. Cryst. 19, 482–484.Google Scholar
First citation Sato, M., Yamamoto, M., Imada, K., Katsube, Y., Tanaka, N. & Higashi, T. (1992). A high-speed data-collection system for large-unit-cell crystals using an Imaging Plate as a detector. J. Appl. Cryst. 25, 348–357.Google Scholar
First citation Schiller, C. (1985). Precise orientation of semiconductor surfaces by the back-reflection Laue technique. J. Appl. Cryst. 18, 373.Google Scholar
First citation Shaham, H. (1982). A goniometer for large single crystals. J. Appl. Cryst. 15, 469.Google Scholar
First citation Sparks, R. A. (1976). Crystallographic computing techniques, edited by F. R. Ahmed, K. Huml & B. Sedláček, pp. 452–467. Copenhagen: Munksgaard.Google Scholar
First citation Sparks, R. A. (1982). Computational crystallography, edited by D. Sayre, pp. 1–18. Oxford University Press.Google Scholar
First citation Stout, G. H. & Jensen, L. H. (1968). X-ray structure determination: a practical guide, Chap. 4, pp. 71–79. London: Macmillan. Google Scholar
First citation Suh, I.-H., Suh, J.-M., Ko, T.-S., Aoki, K. & Yamazaki, H. (1988). Rationale of a quick adjustment method for crystal orientation in oscillation photography. J. Appl. Cryst. 21, 521–523.Google Scholar
First citation Swanson, D. K. & Prewitt, C. T. (1986). A new radiative single-crystal diffractometer microfurnace incorporating MgO as a high-temperature cement and internal temperature calibrant. J. Appl. Cryst. 19, 1–6.Google Scholar
First citation Tarling, S. E., Barnes, P. & Mackay, A. L. (1984). Simulation of industrial furnacing with powder X-ray diffraction. J. Appl. Cryst. 17, 96–99.Google Scholar
First citation Teeter, M. M., Roe, S. M. & Heo, N. H. (1993). Atomic resolution (0.83 Å) crystal structure of the hydrophobic protein crambin at 130 K. J. Mol. Biol. 230, 292–311.Google Scholar
First citation Teng, T. Y. (1990). Mounting of crystals for macromolecular crystallography in a free-standing thin film. J. Appl. Cryst. 23, 387–391. Google Scholar
First citation Tilton, R. F. Jr (1988). A fixture for X-ray crystallographic studies of biomolecules under high gas pressure. J. Appl. Cryst. 21, 4–9. Google Scholar
First citation Tilton, R. F. Jr, Dewan, J. C. & Petsko, G. A. (1992). Effects of temperature on protein structure and dynamics: X-ray crystallographic studies of the protein ribonuclease-A at nine different temperatures from 98 to 320 K. Biochemistry, 31, 2469–2481. Google Scholar
First citation Toyoshima, N., Hoya, H. & Ohshima, K.-I. (1991). A simple device for mounting a vacuum chamber on a four-circle diffractometer with central χ circle. J. Appl. Cryst. 24, 1074–1075.Google Scholar
First citation Tsukimura, K., Sato-Sorensen, Y. & Ghose, S. (1989). A gas-flow furnace for X-ray crystallography. J. Appl. Cryst. 22, 401–405.Google Scholar
First citation Usha, R., Johnson, J. E., Moras, D., Thierry, J. C., Fourme, R. & Kahn, R. (1984). Macromolecular crystallography with synchrotron radiation: collection and processing of data from crystals with a very large unit cell. J. Appl. Cryst. 17, 147–153.Google Scholar
First citation Vriend, G. & Rossmann, M. G. (1987). Determination of the orientation of a randomly placed crystal from a single oscillation photograph. J. Appl. Cryst. 20, 338–343.Google Scholar
First citation Vriend, G., Rossmann, M. G., Arnold, E., Luo, M., Griffith, J. P. & Moffat, K. (1986). Post-refinement of oscillation diffraction data collected at a synchrotron radiation source. J. Appl. Cryst. 19, 134–139.Google Scholar
First citation Watenpaugh, K. D. (1991). Macromolecular crystallography at cryogenic temperatures. Curr. Opin. Struct. Biol. 1, 1012–1015.Google Scholar
First citation Wood, R. A., Tode, G. E. & Welberry, T. R. (1985). A lathe-like crystal grinder for grinding pre-aligned crystals into cylindrical cross section. J. Appl. Cryst. 18, 371–372.Google Scholar
First citation Wyckoff, H. W., Doscher, M. S., Tsernoglou, D., Inagami, T., Johnson, L. N., Hardman, K. D., Allewell, N. M., Kelley, D. M. & Richards, F. M. (1967). Design of a diffractometer and flowcell system for X-ray analysis of crystalline proteins with applications to the crystal chemistry of ribonuclease-S. J. Mol. Biol. 27, 563–578.Google Scholar
First citation Xuong, Ng. H., Nielsen, C., Hamlin, R. & Anderson, D. (1985). Strategy for data collection from protein crystals using a multiwire counter area detector diffractometer. J. Appl. Cryst. 18, 342–350.Google Scholar
First citation Young, A. C. M., Dewan, J. C., Nave, C. & Tilton, R. F. (1993). Comparison of radiation-induced decay and structure refinement from X-ray data collected from lysozyme crystals at low and ambient temperatures. J. Appl. Cryst. 26, 309–319.Google Scholar
First citation Zaloga, G. & Sarma, R. (1974). New method for extending the diffraction patterns from protein crystals and preventing their radiation damage. Nature (London), 251, 551–552.Google Scholar
First citation Zeppezauer, M., Eklund, H. & Zeppezauer, E. S. (1968). Micro diffusion cells for the growth of single protein crystals by means of equilibrium dialysis. Arch. Biochem. Biophys. 126, 564–573.Google Scholar
First citation Zhang, X.-J. & Matthews, B. W. (1993). STRAT: a program to optimize data collection on an area detector system. J. Appl. Cryst. 26, 457–462.Google Scholar
First citation Zobel, D. & Luger, P. (1990). A small 50 K device for a quarter-circle Eulerian cradle diffractometer. J. Appl. Cryst. 23, 175–179.Google Scholar