International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 3.4, p. 162

Section 3.4.1.2.1. General

P. F. Lindleya

a ESRF, Avenue des Martyrs, BP 220, F-38043 Grenoble CEDEX, France

3.4.1.2.1. General

| top | pdf |

Informative accounts of the powder method of recording diffraction patterns have been given by Klug & Alexander (1954[link]), D'Eye & Wait (1960[link]) and Dent Glasser (1977[link]). There are three principal methods of preparing polycrystalline specimens for mounting in powder cameras:

  • (1) encased;

  • (2) bonded;

  • (3) fibre supported.

The most common method of preparing samples of polycrystalline materials is to encase them in thin-walled capillary tubes, for Debye–Scherrer camera work, or into sample holders, for Guinier camera and diffractometer measurements. This technique has the advantage that the sample can be readily protected from attack by oxygen, carbon dioxide and water vapour, and, if necessary, the sample preparation can be undertaken in an inert atmosphere (Lange & Haendler, 1972[link]; D'Eye & Wait, 1960[link]). The precise details of sample preparation and mounting will be dependent on the type of camera or diffractometer used, but the particle size should be generally less than 10 µm for stationary samples and diffractometer work. A slightly larger particle size, 45 µm, can be used for Debye–Scherrer camera work if the specimen is rotated. Foit (1982[link]) has described a simple method of filling thin-walled capillaries using an ultrasonic vibrator. A frequent problem affecting intensity measurements from powder specimens is caused by preferred orientation when powder samples are packed or pressed. McMurdie, Morris, Evans, Paretzkin & Wong-Ng (1986[link]) have described a method of sample preparation suitable for a diffractometer that minimizes this problem.

Capillaries made from lithium beryllium borate (Lindemann glass), borosilicate (e.g. Pyrex glass), or fused silica are commercially available in a variety of internal diameters. For very high temperatures, thin-walled ceramic or metal capillaries can be used. The diffraction pattern of the metal can be used as an internal standard. Capillaries that are suitable for materials that react with glass can be made from various organic polymers. Table 3.4.1.1[link] lists details of capillaries and other containers suitable for encasing powder specimens.

Table 3.4.1.1| top | pdf |
Single-crystal and powder mounting, capillary tubes and other containers

MaterialTemperature range (K)Comments
(A) Capillary tubes
Glass< 773Lindemann glass scatters less, but is moisture sensitive
Thinner walled tubes that are less sensitive to atmospheric influences can be obtained using other types of glass
Lindemann glass< 773
Vitreous silica< 1373
Collodion93 to 343These capillaries can be made by coating a copper wire with a solution of the polymer in an appropriate organic solvent. When dry, the metal core may be removed by stretching, to reduce its diameter
Polyvinyl methylal resin (e.g. Formvar)< 323
Cellulose acetate < 373
Polyethylene< 373Tubes may be drawn from the molten polymer using a glass tube and a slow stream of air. The polymer gives a distinct diffraction pattern
(B) Other containers
Gelatin capsules< 303Vessels with very thin, 20 µm, windows can be made
Methyl methacrylate resin (e.g. Perspex)< 338 
Mica< 1073Mica windows useful in vessels for small-angle scattering, but the wall size is generally thicker, ∼0.3 mm, and there are discrete lines at 10.00, 3.34 and 2.60 Å in the diffraction pattern
Regenerated cellulose film (e.g. cellophane) Ambient 

For optimum results, tube diameters should be between 0.3 and 0.5 mm with wall thicknesses of 0.02 to 0.05 mm. The materials listed above, except where stated, give diffuse diffraction patterns. If necessary, control diffraction patterns, recorded only from the capillary or other container, should be taken.

In the bonded method, the polycrystalline material is mixed with an adhesive such as gum tragacanth or ethyl cellulose, and the mixture is wetted with water or aqueous alcohol to form a viscous paste. The paste is then rolled between two glass slides or extruded through a glass capillary, using a glass or metal piston, to form a cylindrical sample. This can be cut to length and either glued, fixed with plasticine, or cemented (for high-temperature work) to the camera mounting pin. Alternatively, the sample can be compressed and compacted in a die to form a solid rod, or, for diffractometers, into a disc. In the case of very small quantities of material, the powder can be smeared with silicone vacuum grease over the surface of a disc-shaped silica crystal. The silica can then be used as an internal standard.

In the fibre-supported method, a silica, Lindemann, or borosilicate glass fibre moistened with adhesive (Canada balsam diluted with xylene, collodion, gum tragacanth and water, dilute fish glue) is dipped into the powder. Experience has shown that powder adhesion to the fibre is often improved if non-drying glues or viscous oils are employed. Hairs of fine organic filaments have been used in place of glass fibres, and for high temperature above 1270° C metal wires are useful. Once again, the metal diffraction patterns can act as internal standards. For extruded metal wires, the wire itself acts as the specimen, and the diameter can be reduced by etching if it is too large, or a glancing-angle diffraction technique can be employed. Various specialized holders for diffraction studies of polycrystalline samples can be found in annual conference proceedings such as EPDIC (European Powder Diffraction Conference, Switzerland: Trans Tech Publications) and Advances in X-ray Analysis (Proceedings of the Annual Conference on the Applications of X-ray Diffraction, New York/London: Plenum). The journals Reviews of Scientific Instruments (American Institute of Physics) and Nuclear Instruments and Methods (Elsevier, North-Holland) also provide useful sources of information.

References

First citation Dent Glasser, L. S. (1977). Crystallography and its applications, Chap. 6, pp. 125–155. New York/Cincinnati/Toronto/London/Melbourne: Van Nostrand Reinhold. Google Scholar
First citation D'Eye, R. W. M. & Wait, E. (1960). X-ray powder photography. London: Butterworth. Google Scholar
First citation Foit, F. F. Jr (1982). A technique for loading glass capillaries used in X-ray powder diffraction. J. Appl. Cryst. 15, 357.Google Scholar
First citation Klug, H. P. & Alexander, L. E. (1954). X-ray diffractometer procedures for polycrystalline and amorphous materials. New York: John Wiley. Google Scholar
First citation Lange, B. A. & Haendler, H. M. (1972). A capillary support apparatus for use in glove bags and dry boxes. J. Appl. Cryst. 5, 310. Google Scholar
First citation McMurdie, H. F., Morris, M. C., Evans, E. H., Paretzkin, B. & Wong-Ng, W. (1986). Methods of producing standard X-ray diffraction powder patterns. Powder Diffr. 1, 40–43.Google Scholar








































to end of page
to top of page