International
Tables for Crystallography Volume C Mathematical, physical and chemical tables Edited by E. Prince © International Union of Crystallography 2006 |
International Tables for Crystallography (2006). Vol. C. ch. 3.4, pp. 164-165
|
As in the case of polycrystalline samples, a number of devices have been described to study single crystals at elevated pressures and at a range of temperatures. The mounting of the sample is very dependent on the device and radiation used. In recent years, the field of high-pressure crystallography has expanded significantly, and several sample holders based on the diamond-anvil cell have been reported for pressures up to 10 GPa. Recent papers include those by Alkire, Larson, Vergamini, Schirber & Morosin (1985) for neutron diffraction, and Malinowski (1987
) and Leszczynski, Podlasin & Suski (1993
) for X-ray diffraction.
Various types of furnace have been designed for high-temperature studies of single crystals. These are based either on radiative heat transfer mechanisms [e.g. Swanson & Prewitt (1986); temperatures up to 1400 K], electrically heated gas streams [e.g. Tsukimura, Sato-Sorensen & Ghose (1989
); temperatures up to 1600 K], or flame heaters [e.g. Miyata, Ishizawa, Minato & Iwai (1979
); temperatures up to 2600 K]. Furnaces specific to Weissenberg geometry (Adlhart, Tzafaras, Sueno, Jagodzinski & Huber, 1982
) and Laue diffraction (Bhat, Clark, El Korashy & Roberts, 1990
) have also been reported. There are many techniques available for mounting single crystals for high-temperature diffraction (Hazen & Finger, 1982
), and a detailed account using an MgO-based ceramic cement is given by Swanson & Prewitt (1986
). A recent paper by Peterson (1992
) summarizes previous work in the design of high-temperature furnaces and describes a flame-heated gas-flow furnace operating in the range 373 to 1573 K. For this system, the crystals can be mounted either directly onto the thermocouple bead with a paste of fine platinum particles and oil, particularly useful if the crystal is to be exposed to a gas mixture that controls oxygen fugacity, or sealed under high vacuum in an ampoule made from 0.2 or 0.3 mm diameter silica capillary. In the latter case, the main support for the crystal is a 0.2 mm Pt wire threaded through a 0.3 mm diameter silica glass capillary. A 0.05 mm Pt/13Rh lead is welded to the end of this support to form the thermocouple bead. The wire is then wound around the outside of the capillary. A 0.05 mm Pt lead is welded to the other end of the 0.2 mm Pt wire and is threaded through a hole in the capillary near the base. The whole assembly can be mounted on a goniometer head that has only translational adjustments. For neutron diffraction, Lorenz, Neder, Marxreiter, Frey & Schneider (1993
) have described a mirror furnace operating upto 2300 K. The sample support is normally a thin ceramic tube or rod of Al2O3 or ZrO2 to which the sample may be glued with a ceramic cement. Neder, Frey & Schulz (1990
) have described a versatile holder for high-temperature neutron studies. One part of the crystal is ground away to leave a stem, which is then fixed to an alumina rod with a ceramic glue based on zirconia. The ceramic glue is surrounded by a cylinder of BN to minimize spurious scattering.
A comprehensive account of low-temperature diffraction is given by Rudman (1976). Procedures for the selection and transfer of crystals to diffractometers have been described by Boese & Bläser (1989
) and Kottke & Stalke (1993
). These procedures are applicable down to temperatures of 213 and 193 K, respectively. The latter authors do not recommend the use of capillaries, but describe a device employing the oil-drop mounting technique pioneered by Hope (1987
, 1988
). Lippman & Rudman (1976
) have used a mechanically refrigerated gas stream to achieve temperatures down to approximately 150 K, and the use of liquid nitrogen extends the range to 77 K. Devices such as the Oxford Cryostream can be readily fitted to diffractometers and other types of camera. Closed-cycle refrigerators, liquid-helium-based devices (e.g. Henriksen, Larsen & Rasmussen, 1986
; Argoud & Muller, 1989b
; Zobel & Luger, 1990
; Graafsma, Sagerman & Coppens, 1991
; Toyoshima, Hoya & Ohshima, 1991
) further extend the low-temperature limit to 5 K, but often involve substantial blind regions and collision zones. For sample mounting in these devices, it is essential to have good heat conduction to the crystal. Zobel & Luger (1990
) describe a taper-formed sample holder made of special copper screwed to the cold head. A steel injection needle with a Be wire inside (0.3 mm diameter and exactly 2 mm in length) is fitted into a 0.5 mm bore hole. The crystal is glued with Araldite to the Be needle, which has little X-ray absorption but good heat conduction. In addition to diffractometer-based devices, Moret & Dallé (1994
) have described an adaptation of the closed-cycle refrigerator for a precession goniometer, and various authors have reported systems utilizing Weissenberg geometry for both X-rays and neutrons (e.g. Hohlwein & Wright, 1981
; Adlhart & Huber, 1982
; Allen et al., 1982
). Reference should be made to the individual papers for methods of mounting, including spatial and any other constraints.
References


























