International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 3.4, pp. 166-167

Section 3.4.1.5. Cryogenic studies of biological macromolecules

P. F. Lindleya

a ESRF, Avenue des Martyrs, BP 220, F-38043 Grenoble CEDEX, France

3.4.1.5. Cryogenic studies of biological macromolecules

| top | pdf |

Useful recent reviews on protein crystallography at low temperatures have been written by Hope (1990[link]) and Watenpaugh (1991[link]).

3.4.1.5.1. Radiation damage

| top | pdf |

Crystals of biological macromolecules are very susceptible to radiation damage, and this can severely limit the amount and quality of diffraction data that can be collected per crystal. There have been relatively few systematic studies of this phenomenon (Young, Dewan, Nave & Tilton, 1993[link]; Gonzalez & Nave, 1994[link]; Nave, 1995[link]), but one of the first effects of radiation damage is the deterioration of the high-resolution regions of the pattern, followed by increasing loss of crystallinity. Improvement of crystal lifetime in X-ray beams has been obtained by the addition of free-radical scavengers (Zaloga & Sarma, 1974[link]) and the replacement of the mother liquor with solutions containing 10–20% polyethylene glycol 4000 or 20000 (Cascio, Williams & McPherson, 1984[link]). The use of synchrotron radiation has also led to improved data-per-crystal ratios (Lindley, 1988[link]). The high intensity allows fast collection of data, and the high collimation permits different sections of the same crystal to be used for data collection. This is particularly useful for prismatic crystals, which can be mounted along their largest morphological axis. An alternative method of surmounting this problem, however, is to freeze the protein crystal. As the temperature is decreased, the rate of diffusion of free radicals is reduced, with a corresponding reduction in radiation damage. Appreciable reduction in diffusion rate is achieved even at 250 K, and at 100 K diffusion essentially ceases. Cryogenic measurements not only minimize radiation damage but often lead to improved resolution owing to decrease in thermal motion in the crystal. Increasing the crystal lifetime may be particularly important with respect to multiwavelength anomalous-dispersion measurements in order to derive phase information. Since crystals of biological macromolecules contain substantial amounts of solvent, typically between 35 and 80% by volume, the technical problem is to force the solvent to cool in an amorphous glass-like state, rather than as crystalline ice. The latter normally degrades the crystallinity by expansion and gives rise to powder rings, which complicate data measurement.

3.4.1.5.2. Cryoprotectants

| top | pdf |

Cryoprotectants are normally required to avoid ice formation, and the choice of cryoprotectant will depend on the nature of the mother liquor from which the crystals have been grown. Crystals grown from high salt will usually require high salt concentration in the cryobuffer to avoid dissolution, although the addition of organic solvents may be a useful alternative. Table 3.4.1.3[link] lists commonly used cryoprotectants and their typical concentrations (Gamblin & Rogers, 1993[link]).

Table 3.4.1.3| top | pdf |
Cryoprotectants commonly used for biological macromolecules

ProtectantConcentration (% by volume)
Glycerol13–25
Ethylene glycol11–30
Poly(ethylene glycol) 40025–35
Xylitol22
(2R,3R)-Butane-2,3-diol8
Erythritol11
Glucose25
2,4-Methylpentanediol28–45

The introduction of the cryoprotectant can be achieved through: (a) crystal growth in the cryoprotectant; (b) direct transfer of crystal from mother liquor into cryoprotectant buffer either in a single step or in steps of increasing cryoprotectant concentration; (c) dialysis, either direct or stepwise; or (d) exchange of liquor using a flow cell and a gradient maker.

3.4.1.5.3. Crystal mounting and cooling

| top | pdf |

Experience indicates that small crystals are better for cryogenic purposes, presumably because the rate of diffusion of small molecules and the rate of heat loss during rapid freezing is significantly faster than for large crystals. In most cases, there is an increase in the mosaicity (typically by a factor of 2–3), and in large specimens the increase may render the crystals useless for data collection. Successful freezing is often indicated by the crystal remaining transparent. Opacity usually indicates considerable breakdown in the crystallinity. Three commonly used methods for mounting crystals of biological macromolecules for cryogenic measurements are detailed below.

  • (i) Coating methods. Useful accounts of this method are given by Dewan & Tilton (1987[link]) and Hope (1988[link]). The crystal is first transferred to a hydrocarbon environment, mounted on a glass fibre attached to a brass pin on a goniometer head, and then fast cooled by introduction into a nitrogen-gas stream. The crystal adheres to the fibre by surface-tension effects, and the hydrocarbon also prevents loss of solvent during transfer into the gas stream. Paratone-N (Exxon) mixed with mineral oil (25–50% mineral oil) has a suitable viscosity, and excess oil should be removed by draining. This method has been successfully used for a number of biological macromolecules including crambin (Teeter, Roe & Heo, 1993[link]) and the bovine eye lens protein, γB-crystallin (Lindley et al., 1993[link]). In the case of γB-crystallin, it was found that large crystals, 0.5 × 0.5 × 1.0 mm, often became opaque after freezing, indicating gross damage to the crystallinity, or showed appreciable mosaic spread in the subsequent diffraction patterns, rendering them useless for data collection. Smaller crystals, 0.2 × 0.2 × 0.8 mm, gave good diffraction patterns with an increase in the mosaic spread of only a factor of about two, compared with room-temperature measurements, presumably because of smaller angular and size distributions of the mosaic blocks. For γB-crystallin, the effective resolution was extended from 1.5 Å to at least 1.2 Å. A coating and flash-freezing method has been employed to obtain data from physically fragile and very radiation sensitive crystals of 50S ribosomal particles (Hope et al., 1989[link]). The crystals were transferred to an inert hydrocarbon environment, or to solutions similar to the crystallization medium but with higher viscosities, and flash frozen on a thin glass spatula by immersion in liquid propane. They were then transferred to a cold-nitrogen-gas stream for data measurement. The immersion in a slurry of propane near its melting point gives good wetting of the crystal surface and a heat transfer rate appreciably faster than direct introduction into a cold-gas stream. Transfer from the propane to the gas stream has to be achieved rapidly to avoid ice formation on the surface of the protein owing to condensation of moist air.

  • (ii) Loop techniques. Loops (Teng, 1990[link]; Gamblin & Rogers, 1993[link]), made from fine wire, glass, and a range of thin fibres, can provide very useful mounts for cryocrystallography. Typically, the loops are folded and the two ends glued inside a glass capillary mounted on a goniometer head. Rayon and hair fibres give relatively low backgrounds in diffraction patterns and can readily be made into loops with diameters from 200 to 800 µm. Larger-diameter loops tend to fold over, and glass fibres are more appropriate. Wire loops have a distinct disadvantage in that a plane of diffraction data in which the X-rays are blocked by the wire loop is inaccessible. The diameter is chosen so that the crystal just fits inside the loop and is held in place by surface tension with a thin film of the crystallization/cryoprotectant buffer. The loop with the crystal can then be flash frozen by immersing in liquid propane or fast frozen by direct introduction into a cold-gas stream. Hope (1990[link]) describes a device that can rapidly transfer crystals mounted in loops from a liquid-propane bath to the cooled-gas stream. Indeed, once crystals have been frozen in loops they can be transferred to liquid-nitrogen containers and kept almost indefinitely. A typical application of the loop technique is provided by the crystal structure determination of an extracellular fragment of the rat CD4 receptor (Lange et al., 1994[link]).

  • (iii) Liquid-helium cryostat: neutron diffraction. Slow freezing using a liquid-helium cryostat (Archer & Lehmann, 1986[link]), over a period of hours, has been successfully used with crystals of the coenzyme of vitamin B12 to 15 K (Bouquiere, Finney, Lehmann, Lindley & Savage, 1993[link]), where the solvent content is relatively low, 16–17 water molecules per asymmetric unit. Whether biological macromolecular crystals can be annealed to low temperatures with progressive sets of cooling, heating and cooling stages is not well researched.

3.4.1.5.4. Cooling devices

| top | pdf |

Several airstream devices have been described to cool protein crystals to around 250 K [Marsh & Petsko (1973[link]), temperature range 253 to 303 K; Rossi (1989[link]), temperature range 242 to 335 K; Machin, Begg & Isaacs (1984[link]), 258 to 293 K; Fischer, Moras & Thierry (1985[link]), temperature range 263 to 293 K; Fraase Storm & Tuinstra (1986[link]), 250 to 350 K; Arndt & Stubbings (1987[link]), 248 to 353 K]. The devices of Machin, Begg & Isaacs, Fraase Storm & Tuinstra and Arndt & Stubbings involve thermoelectric modules utilizing the Peltier effect. The space available to accommodate the sample is usually very limited and care has to be taken with the length of the capillary and other aspects of crystal mounting. Hovmöller (1981[link]) has designed an extension to the cooling delivery tube that minimizes air turbulence at the sample. Various devices have been described that operate down to near liquid-nitrogen temperature and that can be fitted to a variety of data-collection systems. These include the rotation camera (Bartunik & Schubert, 1982[link]), and a universal cooling device for precession cameras, rotation cameras and diffractometers (Hajdu, McLaughlin, Helliwell, Sheldon & Thompson, 1985[link]). One of the more versatile devices is the cryostream described by Cosier & Glazer (1986[link]), which uses a pump to effectively separate the liquid-nitrogen supply from the gas outflow; this arrangement eliminates instabilities in the cooling-gas stream; the device works in the range 77.4 to 323.0 K and is commercially available (Oxford Cryosystems, England).

3.4.1.5.5. General

| top | pdf |

Cryocrystallography not only minimizes the effects of radiation damage but also often allows the collection of high-quality, high-resolution data from a single specimen. In the case of very labile systems such as ribosomal particles, it is sometimes the only means of obtaining useful diffraction data. Further, cryocrystallography permits the study of temperature effects on the structure and dynamics of biological macromolecules. In this latter regard, examples include multiple-temperature crystallographic studies on sperm whale myoglobin (Frauenfelder, Petsko & Tsernoglou, 1979[link]; Hartmann et al., 1982[link]; Frauenfelder et al., 1987[link]) and, more recently, ribonuclease-A (Tilton, Dewan & Petsko, 1992[link]; Rasmussen, Stock, Ringe & Petsko, 1992[link]). The future will no doubt see the routine emergence of cryogenic techniques for data collection, using both conventional and synchrotron X-ray sources, from biological macromolecules, with consequent improvement in structure quality and detail.

References

First citation Archer, J. M. & Lehmann, M. S. (1986). A simple adjustable mount for a two-stage cryorefrigerator on an Eulerian cradle. J. Appl. Cryst. 19, 456–458.Google Scholar
First citation Arndt, U. W. & Stubbings, S. J. (1987). A miniature Peltier-effect goniometer-head attachment. J. Appl. Cryst. 20, 445.Google Scholar
First citation Bartunik, H. D. & Schubert, P. (1982). Crystal cooling for protein crystallography with synchrotron radiation. J. Appl. Cryst. 15, 227–231.Google Scholar
First citation Bouquiere, J. P., Finney, J. L., Lehmann, M. S., Lindley, P. F. & Savage, H. F. J. (1993). High-resolution neutron study of vitamin B12 coenzyme at 15 K: structure analysis and comparison with the structure at 279 K. Acta Cryst. B49, 79–89.Google Scholar
First citation Cascio, D., Williams, R. & McPherson, A. (1984). The reduction of radiation damage in protein crystals by polyethylene glycol. J. Appl. Cryst. 17, 209–210.Google Scholar
First citation Cosier, J. & Glazer, A. M. (1986). A nitrogen-gas-stream cryostat for general X-ray diffraction studies. J. Appl. Cryst. 19, 105–107.Google Scholar
First citation Dewan, J. C. & Tilton, R. F. (1987). Greatly reduced radiation damage in ribonuclease crystals mounted on glass fibres. J. Appl. Cryst. 20, 130–132.Google Scholar
First citation Fischer, J., Moras, D. & Thierry, J. C. (1985). Single crystal diffractometry: strategy for rapidly decaying poorly diffracting crystals. J. Appl. Cryst. 18, 20–26.Google Scholar
First citation Fraase Storm, G. M. & Tuinstra, F. (1986). A thermoelectric device for temperature-controlled single-crystal diffractometry. J. Appl. Cryst. 19, 372–373.Google Scholar
First citation Frauenfelder, H., Hartmann, H., Karplus, M., Kuntz, I. D. Jr, Kuriyan, J., Parak, F., Petsko, G. A., Ringe, D., Tilton, R. F. Jr, Conolly, M. L. & Max, N. (1987). Thermal expansion of a protein. Biochemistry, 26, 254–261.Google Scholar
First citation Frauenfelder, H., Petsko, G. A. & Tsernoglou, D. (1979). Temperature-dependent X-ray diffraction as a probe of protein structure dynamics. Nature (London), 280, 558.Google Scholar
First citation Gamblin, S. J. & Rogers, D. W. (1993). Some practical details of data collection at 100 K. In Data collection and processing. Proceedings of the CCP4 Study Weekend, edited by L. Sawyer, N. Isaacs & S. Bailey. Report DL/SCI/R34. SERC Daresbury Laboratory, Cheshire WA4 4AD, England. Google Scholar
First citation Gonzalez, A. & Nave, C. (1994). Radiation damage in protein crystals at low temperature. Acta Cryst. D50, 874–877.Google Scholar
First citation Hajdu, J., McLaughlin, P. J., Helliwell, J. R., Sheldon, J. & Thompson, A. W. (1985). Universal cooling device for precession cameras, rotation cameras and diffractometers. J. Appl. Cryst. 18, 528–532.Google Scholar
First citation Hartmann, H., Parak, F., Steigemann, W., Petsko, G. A., Ringe-Ponzi, D. & Frauenfelder, H. (1982). Conformational substrates in a protein: structure and dynamics of metmyoglobin at 80 K. Proc. Natl Acad. Sci. USA, 79, 4967–4971. Google Scholar
First citation Hope, H. (1988). Cryocrystallography of biological macromolecules: a generally applicable method. Acta Cryst. B44, 22–26.Google Scholar
First citation Hope, H. (1990). Crystallography of biological macromolecules at ultra-low temperatures. Ann. Rev. Biophys. Biophys. Chem. 19, 107–126.Google Scholar
First citation Hope, H., Frolow, F., van Böhlen, K., Makowski, I., Kratky, C., Halfon, Y., Danz, H., Bartels, K. S., Wittmann, H. G. & Yonath, A. (1989). Crystallography of ribosomal particles. Acta Cryst. B45, 190–199.Google Scholar
First citation Hovmöller, S. (1981). A device which improves the cooling of protein crystals during X-ray data collection. J. Appl. Cryst. 14, 75.Google Scholar
First citation Lange, G., Lewis, S. J., Murshudov, G. N., Dodson, G. G., Moody, P. C. E., Turkenburg, J. P., Barclay, A. N. & Brady, R. L. (1994). Crystal structure of an extracellular fragment of the rat CD4 receptor containing domains 3 and 4. Structure, 2, 469–481. Google Scholar
First citation Lindley, P., Najmudin, S., Bateman, O., Slingsby, S., Myles, D., Kumaraswamy, S. & Glover, I. (1993). Structure of bovine γB-crystallin at 150 K. J. Chem. Soc. Faraday Trans. 89, 2677–2682.Google Scholar
First citation Lindley, P. F. (1988). Crystallographic studies of biological macromolecules using synchrotron radiation. Chemical crystallography with pulsed neutrons and synchrotron X-rays, edited by M. A. Carrondo & G. A. Jeffrey, pp. 509–536. Dordrecht: Reidel. Google Scholar
First citation Machin, K. J., Begg, G. S. & Isaacs, N. W. (1984). A low-temperature cooler for protein crystallography. J. Appl. Cryst. 17, 358–359.Google Scholar
First citation Marsh, D. J. & Petsko, G. A. (1973). A low-temperature device for protein crystallography. J. Appl. Cryst. 6, 76–80. Google Scholar
First citation Nave, C. (1995). Radiation damage in protein crystallography. In Radiation physics & chemistry, edited by P. Barnes. Oxford: Pergamon.Google Scholar
First citation Rasmussen, B. F., Stock, A. M., Ringe, D. & Petsko, G. A. (1992). Crystalline ribonuclease A loses function below the dynamical transition at 220 K. Nature (London), 357, 423–424.Google Scholar
First citation Rossi, F. A. (1989). Permanent cooling of protein crystals by a collinear air flow. J. Appl. Cryst. 22, 620–622. Google Scholar
First citation Teeter, M. M., Roe, S. M. & Heo, N. H. (1993). Atomic resolution (0.83 Å) crystal structure of the hydrophobic protein crambin at 130 K. J. Mol. Biol. 230, 292–311.Google Scholar
First citation Teng, T. Y. (1990). Mounting of crystals for macromolecular crystallography in a free-standing thin film. J. Appl. Cryst. 23, 387–391. Google Scholar
First citation Tilton, R. F. Jr, Dewan, J. C. & Petsko, G. A. (1992). Effects of temperature on protein structure and dynamics: X-ray crystallographic studies of the protein ribonuclease-A at nine different temperatures from 98 to 320 K. Biochemistry, 31, 2469–2481. Google Scholar
First citation Watenpaugh, K. D. (1991). Macromolecular crystallography at cryogenic temperatures. Curr. Opin. Struct. Biol. 1, 1012–1015.Google Scholar
First citation Young, A. C. M., Dewan, J. C., Nave, C. & Tilton, R. F. (1993). Comparison of radiation-induced decay and structure refinement from X-ray data collected from lysozyme crystals at low and ambient temperatures. J. Appl. Cryst. 26, 309–319.Google Scholar
First citation Zaloga, G. & Sarma, R. (1974). New method for extending the diffraction patterns from protein crystals and preventing their radiation damage. Nature (London), 251, 551–552.Google Scholar








































to end of page
to top of page