International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 3.4, p. 169

Section 3.4.2.5.1. Laue images – white radiation

P. F. Lindleya

a ESRF, Avenue des Martyrs, BP 220, F-38043 Grenoble CEDEX, France

3.4.2.5.1. Laue images – white radiation

| top | pdf |

The azimuthal and back-reflection Laue methods for setting crystals with relatively small unit cells have been described by Jeffery (1971[link]). The former is capable of achieving an accuracy of setting of ±0.05°, whereas the latter is important in metallurgy, where the Laue method is often the only possibility because of the large size of the specimens. Schiller (1985[link]) has emphasized the importance of the back-reflection Laue technique for setting specimens with a precision of 0.1° needed in semiconductor surface preparation.

In recent years, there has been a resurgence of the Laue technique, in conjunction with synchrotron radiation, to record intensity data from biological macromolecules in very short time scales. The overall experimental strategies involved are described by Helliwell et al. (1989[link]) and Clifton, Elder & Hajdu (1991[link]). Crystals are not usually set in a precise orientation for these types of experiment prior to data acquisition because of radiation damage. The post-determination of the precise crystal orientation with respect to the instrument axes from the recorded Laue pattern therefore forms an essential part of the data processing. Most methods are based on the indexing procedure of Riquet & Bonnet (1979[link]), and an interactive computer program for the interpretation and simulation of Laue patterns has been written by Laugier & Filhol (1983[link]). An orientation-matrix approach has been reported by Jacobson (1986[link]), and the work of Helliwell et al. (1989[link]) has led to a comprehensive set of Laue processing programs. In addition to enabling trial-and-error visual matching of images, this program suite includes an autoindexing procedure based on a known unit cell, and refinement of the orientational parameters. More recently, Carr, Cruickshank & Harding (1992[link]) have developed a method whereby a gnomonic projection of the Laue diffraction pattern can be used to determine the cell dimensions and orientation of a crystal. The axial ratios and interaxial angles can be determined precisely, but the absolute scaling of the cell is dependent on the accuracy with which the minimum wavelength used in the experiment is known.

References

First citation Carr, P. D., Cruickshank, D. W. J. & Harding, M. M. (1992). The determination of unit-cell parameters from Laue diffraction patterns using their gnomonic projections. J. Appl. Cryst. 25, 294–308.Google Scholar
First citation Clifton, I. J., Elder, M. & Hajdu, J. (1991). Experimental strategies in Laue crystallography. J. Appl. Cryst. 24, 267–277.Google Scholar
First citation Helliwell, J. R., Habash, J., Cruickshank, D. W. J., Harding, M. M., Greenhough, T. J., Campbell, J. E., Clifton, I. J., Elder, M., Machin, P. A., Papiz, M. Z. & Zurek, S. (1989). The recording and analysis of synchrotron X-radiation Laue diffraction photographs. J. Appl. Cryst. 22, 483–497.Google Scholar
First citation Jacobson, R. A. (1986). An orientation-matrix approach to Laue indexing. J. Appl. Cryst. 19, 283–286.Google Scholar
First citation Jeffery, J. W. (1971). Methods in X-ray crystallography, pp. 149–169, 441–444. London/New York: Academic Press. Google Scholar
First citation Laugier, J. & Filhol, A. (1983). An interactive program for the interpretation and simulation of Laue patterns. J. Appl. Cryst. 16, 281–283.Google Scholar
First citation Riquet, J. P. & Bonnet, R. (1979). Dépouillement par ordinator des clichés de diffraction obtenus par la méthode de Laue. J. Appl. Cryst. 12, 39–41.Google Scholar
First citation Schiller, C. (1985). Precise orientation of semiconductor surfaces by the back-reflection Laue technique. J. Appl. Cryst. 18, 373.Google Scholar








































to end of page
to top of page