International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 3.4, p. 169

Section 3.4.2.5.2. `Still' images – monochromatic radiation

P. F. Lindleya

a ESRF, Avenue des Martyrs, BP 220, F-38043 Grenoble CEDEX, France

3.4.2.5.2. `Still' images – monochromatic radiation

| top | pdf |

More recently, the azimuthal method has proved of great value in the rapid alignment of crystals with large unit cells prior to data collection on devices using rotation geometry. After optical alignment, a `still' photograph taken with monochromatic radiation (or a very small angle rotation photograph, typically 0.05–0.20°), is used to locate a zero-layer reciprocal-lattice plane (Fig. 3.4.2.1[link] ). Such a plane will record on a flat detector placed at a distance D mm from the crystal, C, as an ellipsoidal trace of maximum dimension S mm from the direct-beam position, O′. In order to make the plane perpendicular to the X-ray beam (i.e. the real axis parallel to the X-ray beam), it must be rotated through an angle [\theta ] such that [\tan2\theta=S/D].

[Figure 3.4.2.1]

Figure 3.4.2.1| top | pdf |

A zero-layer reciprocal-lattice plane will record on a flat-plate detector placed at a distance D from the crystal C as an ellipsoid of maximum dimension S from the direct-beam position O′.

If the vector OP makes an angle α with the rotation axis, the angle [\theta] can be resolved into a vertical component, [\theta \sin \alpha ], corresponding to a rotation of the spindle axis, and a horizontal component, [\theta \cos \alpha ], corresponding to a rotation of the goniometer arc whose axis is perpendicular to the X-ray beam (assuming a perpendicular and parallel setting of the goniometer head). Rotation of the reciprocal-lattice plane within its own plane can then be achieved with the goniometer arc whose axis is parallel to the beam. This technique is also applicable to preliminary setting on a precession camera.

However, with very radiation sensitive crystals, it is inadvisable to waste time accurately setting the crystal prior to data collection, since the crystal is subject to continuous radiation damage from the beginning of the first exposure (Rossmann & Erickson, 1983[link]). In this case, two `still' images are collected, preferably separated by a 90° rotation, after data collection but before the crystal is irretrievably damaged. In principle, the orientation can be determined from a single still, but the precise crystal orientation is better determined by identifying and measuring the orientations of two real axes relative to the camera axes, from the sets of ellipses on two stills. The orientation of the reciprocal axis, perpendicular to these two real axes, can then be calculated, and, provided that the unit-cell dimensions are known, the orientation of the third real axis readily determined. Given the directions of the three real axes, the direction cosines of the reciprocal axes can be computed and a matrix determined that specifies the crystal orientation with respect to the camera axes. This method obviates the need to index the `partial' reflections on still images (Jones, Bartels & Schwager, 1977[link]).

References

First citation Jones, A., Bartels, K. & Schwager, P. (1977). Refinement of crystal orientation parameters. The rotation method, edited by U. W. Arndt & A. Wonacott, pp. 105–117. Amsterdam/New York/Oxford: North-Holland. Google Scholar
First citation Rossmann, M. G. & Erickson, J. W. (1983). Oscillation photography of radiation-sensitive crystals using a synchrotron source. J. Appl. Cryst. 16, 629–636.Google Scholar








































to end of page
to top of page