International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 3.4, p. 170

Section 3.4.2.8. Crystal setting and data-collection efficiency

P. F. Lindleya

a ESRF, Avenue des Martyrs, BP 220, F-38043 Grenoble CEDEX, France

3.4.2.8. Crystal setting and data-collection efficiency

| top | pdf |

Although it has become modern practice to determine the orientation of crystals after data collection using auto-indexing procedures, rather than to carry out accurate alignment prior to data collection, such a procedure, as indicated earlier in this section, can lead to inefficient data collection. In the case of anomalous-dispersion measurements, and particularly multiple-wavelength anomalous diffraction (MWAD) for phase determination (e.g. Kahn et al., 1985[link]), it is often very important to orientate the crystal so that Bijvoet pairs of reflections are recorded simultaneously. The use of synchrotron radiation, where access is usually very limited and crystals are highly radiation sensitive, often leads to insufficient care being taken in the data-collection procedure. An efficient data-collection strategy should aim to measure a set of data as complete as possible (preferably [\gt] 90%) in the shortest possible time. Contiguous regions of reciprocal space, such as the `cusp' region for oscillation geometry, and low-resolution shells should not be omitted. In addition, a reasonable number of reflections should be measured more than once to check for internal consistency in the data set. For biological macromolecules, in particular, the temptation to collect data beyond the practical resolution limit should be avoided. Two useful indicators from the outer resolution shell are (a) the proportion of significant data should not fall below 70%, and (b) the internal consistency index for data measured more than once should not rise above 20%. In general, rotation of crystals along the highest rotation symmetry axis (i.e. the fourfold axis for tetragonal systems) will require the least amount of data to be collected, and it is advisable to mount crystals so that this rotation axis is parallel to the fibre or capillary axis, provided that this is sensible in terms of the crystal morphology.

Munshi & Murthy (1986[link]) have discussed strategies of data collection using the screenless oscillation method based on the Laue group and the nature of the crystal axis parallel to the rotation axis. More general strategies for area-detector systems have been reported by Xuong, Nielsen, Hamlin & Anderson (1985[link]) and Zhang & Matthews (1993[link]).

References

First citation Kahn, R., Fourme, R., Bosshard, R., Chaimdi, M., Risler, J. L., Dideberg, O. & Wery, J. P. (1985). Crystal structure study of Opsanus tau parvalbumin by multiwavelength anomalous diffraction. FEBS Lett. 179, 133–137.Google Scholar
First citation Munshi, S. K. & Murthy, M. R. N. (1986). Strategies for collecting screen-less oscillation data. J. Appl. Cryst. 19, 61–62.Google Scholar
First citation Xuong, Ng. H., Nielsen, C., Hamlin, R. & Anderson, D. (1985). Strategy for data collection from protein crystals using a multiwire counter area detector diffractometer. J. Appl. Cryst. 18, 342–350.Google Scholar
First citation Zhang, X.-J. & Matthews, B. W. (1993). STRAT: a program to optimize data collection on an area detector system. J. Appl. Cryst. 26, 457–462.Google Scholar








































to end of page
to top of page