International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 3.5, pp. 171-176
https://doi.org/10.1107/97809553602060000589

Chapter 3.5. Preparation of specimens for electron diffraction and electron microscopy

N. J. Tighe,a J. R. Fryerb and H. M. Flowerc

a 42 Lema Lane, Palm Coast, FL 32137-2417, USA,bDepartment of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland, and cDepartment of Metallurgy, Imperial College, London SW7, England

References

First citation Alani, R., Harper, R. G. & Swann, P. R. (1992). Ion thinning of TEM cross sections under beam switching control. Proc. EMSA, pp. 394–395. Baton Rouge: Claitor.Google Scholar
First citation Alani, R. & Swann, P. R. (1990). Workshop on specimen preparation for transmission electron microscopy of materials. Materials Research Society, Vol. 199, p. 85.Google Scholar
First citation Alani, R. & Swann, P. R. (1992). Precision ion polishing system – a new instrument for TEM specimen preparation of materials. Mater. Res. Soc. Symp. 254, 43–63.Google Scholar
First citation Amelinckx, S. (1964). The direct observation of dislocations. New York: Academic Press.Google Scholar
First citation Bach, H. (1964). Elektronenmikroskopische Durchstrahlungsaufnahmen und Feinbereichselektronenbeugung an Al2O3 Keramik. BOSCH Techn. Ber. 1, 10–13.Google Scholar
First citation Bach, H. (1970). Application of ion sputtering in preparing glasses and their surface layers for electron microscope investigations. J. Non-Cryst. Solids, 3, 1–32.Google Scholar
First citation Banerjee, D. & Williams, J. C. (1983). The effect of foil preparation technique on interface phase formation in Ti alloys. Scr. Metall. 17, 1125.Google Scholar
First citation Barber, D. J. (1970). Thin foils of non-metals made for electron microscopy by sputter-etching. J. Mater. Sci. 5, 1–8.Google Scholar
First citation Barber, D. J. & Evans, R. G. (1970). Dislocations, ordering and antiferromagnetic domains in MnO. Proc. EMSA, pp. 522–523. Baton Rouge: Claitor.Google Scholar
First citation Barber, D. J. & Farabaugh, E. N. (1965). Dislocations and stacking faults in rutile crystals grown by flame fusion methods. J. Appl. Phys. 36, 2803–2806.Google Scholar
First citation Barber, D. J. & Tighe, N. J. (1965). Electron microscopy and diffraction of synthetic corundum crystals. I. Pure aluminum oxide grown by the Verneuil process. Philos. Mag. 11, 495–512.Google Scholar
First citation Braillon, P., Mughier, J. & Serughetti, J. (1974). Transmission electron microscope observations of dislocations in calcite single crystals. Cryst. Lattice Defects, 5, 73–78.Google Scholar
First citation Butler, E. P. & Hale, K. F. (1981). Dynamic experiments in the electron microscope. Amsterdam: North-Holland.Google Scholar
First citation Cox, A. R. & Mountfield, M. J. (1967). Specimen temperatures during electropolishing of thin films for electron microscopy. J. Instrum. Methods, 95, 347–349.Google Scholar
First citation Dana, E. S. & Ford, W. E. (1922). A textbook on mineralogy. New York: John Wiley.Google Scholar
First citation Drum, C. M. (1965). Electron microscopy of dislocations and other defects in sapphire and in silicon carbide thinned by sputtering. Phys. Status Solidi, 9, 635–642. Google Scholar
First citation Edington, J. W. (1976). Practical electron microscopy in materials science, Vols. 1–3. London: Macmillan.Google Scholar
First citation Fryer, J. R. (1987). The effect of dose rate on imaging aromatic organic crystals. Ultramicroscopy, 23, 321–328.Google Scholar
First citation Fryer, J. R. (1994). Electron microscopy of polymeric phthalocyanines. MSA Bull. 24, 521–526.Google Scholar
First citation Fryer, J. R. & Ewins, C. (1992). Epitaxial growth of thin films of perylene. Philos. Mag. A66, 889–898.Google Scholar
First citation Fryer, J. R. & Holland, F. M. (1984). High resolution electron microscopy of molecular crystals. III. Radiation damage processes at room temperature. Proc. R. Soc. London Ser. A, 393, 352–369.Google Scholar
First citation Fryer, J. R., McConnell, C. H., Dorset, D. L., Zemlin, F. & Zeitler, E. (1997). High resolution electron microscopy of molecular crystals. IV. Paraffins and their solid solutions. Proc. R. Soc. London, A453, 1929–1946.Google Scholar
First citation Fryer, J. R., McConnell, C. H., Grant, G. A., Hann, R. A., Eyres, B. L. & Gupta, S. K. (1991). The structure of some Langmuir–Blodgett films. II. Aromatic polar molecules. Philos. Mag. B63, 1193–1200.Google Scholar
First citation Fryer, J. R., McConnell, C. H., Hann, R. A., Eyres, B. L. & Gupta, S. K. (1990). The structure of some Langmuir–Blodgett films. I. Substituted phthalocyanines. Philos. Mag. B61, 843–852.Google Scholar
First citation Fryer, J. R., McConnell, C. H., Zemlin, F. & Dorset, D. L. (1992). The effect of temperature on radiation damage to aromatic organic molecules. Ultramicroscopy, 40, 163–169.Google Scholar
First citation Fryer, J. R. & Smith, D. J. (1982). High resolution electron microscopy of molecular crystals. I. Quaterrylene. Proc. R. Soc London Ser. A, 381, 225–240.Google Scholar
First citation Goodhew, P. J. (1972). Specimen preparation in materials science. Practical methods in electron microscopy, edited by A. M. Glauert, pp. 3–180. Amsterdam: North-Holland. Google Scholar
First citation Goodhew, P. J. (1975). Specimen preparation in materials science. In Electron microscopy and analysis. Vol. 1, Part 1. London: Wykeham Publications; New York: Springer Verlag. Google Scholar
First citation Goodhew, P. J. (1984). Specimen preparation for transmission electron microscopy of materials. Royal Microscopy Society Handbook. Oxford: Royal Microscopy Society.Google Scholar
First citation Goodhew, P. J. (1993). Preparation of plan view and cross-sectional specimens for TEM. Proc. EMSA, edited by G. W. Bailey & C. L. Rieder. San Francisco Press.Google Scholar
First citation Hirsch, P. B., Howie, A., Nicholson, R. B., Pashley, D. W. & Whelan, M. J. (1965). Electron microscopy of thin crystals. London: Butterworth.Google Scholar
First citation Hobbs, L. W. (1970). Preparation of thin films of moisture sensitive crystals for transmission electron microscopy. J. Phys. E, 3, 85–89.Google Scholar
First citation Honess, A. P. (1927). The nature, origin and interpretation of the etch figures on crystals. New York: John Wiley.Google Scholar
First citation Jansen, J. & Zeedijk, H. B. (1972). Deformation layers in spark-machined and mechanically sectioned specimens of 0.2% mild steel. J. Phys. E, 5, 973–975.Google Scholar
First citation Keast, D. J. (1967). A chemical thinning technique for the simultaneous preparation of foils for transmission electron microscopy. Application to yttrium aluminum garnet (YAG). J. Sci. Instrum. 44, 862–863.Google Scholar
First citation Kirkpatrick, H. B. & Amelinckx, S. (1962). Device for chemically thinning crystals for transmission electron microscopy. Rev. Sci. Instrum. 33, 488–489.Google Scholar
First citation Lewis, M. H. (1966). Defects in spinel crystals grown by the Verneuil process. Philos. Mag. 14, 1003–1008.Google Scholar
First citation Metals Handbook (1985). Metals Park, Ohio. American Society for Metals.Google Scholar
First citation Morris, P. L., Davies, N. C. & Treverton, J. A. (1978). Effects of a surface film upon thin foil microanalysis. In Developments in electron microscopy and analysis 1977, edited by D. L. Misell. Inst. Phys. Conf. Ser. No. 36, pp. 377–380.Google Scholar
First citation Paulus, M. & Reverchon, F. (1961). Dispositif de bombardement inonique pour préparations micrographiques. J. Phys. Radium, 22, 103A–107A.Google Scholar
First citation Penneycook, S. J. (1981). Quantitative microanalysis with high spatial resolution. Book 277. London: The Metals Society. Google Scholar
First citation Penneycook, S. J. (1982). High resolution electron microscopy and microanalysis. Contemp. Phys. 23, 371.Google Scholar
First citation Pennock, G. M., Flower, H. M. & West, D. R. F. (1977). The thinning transformation in Ti–Mo alloys. Metallography, 10, 43.Google Scholar
First citation Porat, Z., Fryer, J. R., Huxham, M. & Rubinstein, I. (1995). Electron microscope investigation of the microstructure of Nafion films. J. Phys. Chem. 99, 4667–4671.Google Scholar
First citation Remaut, G., Lagasse, A. & Amelinckx, S. (1964). Electron microscope study of the domain structure in anti-ferromagnetic cobalteous oxide. Phys. Status Solidi, 5, 497–510. Google Scholar
First citation Thomas, G. (1962). Transmission electron microscopy of metals. New York: John Wiley.Google Scholar
First citation Tighe, N. J. (1964). Jet thinning device for preparation of Al2O3 electron microscopy specimens. Rev. Sci. Instrum. 35, 520–521.Google Scholar
First citation Tighe, N. J. (1976). Experimental techniques. Electron microscopy in mineralogy, pp. 144–174. New York: Springer Verlag.Google Scholar
First citation Tighe, N. J. (1983). Analysis of oxide and oxide/matrix interfaces in silicon nitride. Adv. Ceram. 6, 151–162.Google Scholar
First citation Tighe, N. J. & Hyman, A. (1968). Transmission electron microscopy of alumina ceramics. In Anisotropy in single crystal refractory compounds, Vol. 2, edited by E. W. Vahldick & S. A. Mersol. New York: Plenum.Google Scholar
First citation Washburn, J., Groves, G. W., Kelly, A. & Williamson, G. K. (1960). Electron microscope observations of deformed magnesium oxide. Philos. Mag. 5, 991–999.Google Scholar
First citation West, J. M. (1970). Application of potentiostats in corrosion science. Br. Corros. J. 5, 65–71.Google Scholar
First citation Wicks, B. J. & Lewis, M. H. (1968). Direct observations of ferroelectric domains in lithium niobate. Phys. Status Solidi, 26, 571–576.Google Scholar
First citation Wittmann, J. C. & Lotz, B. (1990). Epitaxial crystal growth on organic and polymeric substrates. Electron Crystallography of Organic Molecules, edited by J. R. Fryer & D. L. Dorset, pp. 241–254. Dordrecht: Kluwer Academic Publishers. Google Scholar
First citation Zvyagin, B. B. (1967). Electron diffraction analysis of clay mineral structures. New York: Plenum.Google Scholar