International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 4.1, p. 189

Section 4.1.4.1. X-rays, synchrotron radiation, and γ-rays

V. Valvodaa

a Department of Physics of Semiconductors, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Praha 2, Czech Republic

4.1.4.1. X-rays, synchrotron radiation, and γ-rays

| top | pdf |

X-ray beams from rotating-anode tubes are approximately one hundred times more intensive than those from normal X-ray tubes. Laser plasma X-ray sources yield intensive nanosecond pulses of the line spectrum of nearly electron-free ions in the X-ray region with a spectral breadth of [\Delta\lambda/\lambda\approx10^{-3}.] Several such pulses may be repeated per hour (Frankel & Forsyth, 1979[link]). Synchrotron radiation is characterized by a continuous spectrum of wavelengths, high spectral flux, high intensity, high brightness, extreme collimation, sharp time structure (pulses with 30–200 ps length emitted in ns intervals), and nearly 100% polarization in the orbital plane (Kunz, 1979[link]; Bonse, 1980[link]). Some of these properties are utilized in ordinary structure analysis: for example, fine tuning of the wavelength of synchrotron radiation for the solution of the phase problem by resonant scattering on chosen atomic species constituting the material under study. But these radiations also offer new advantages in other fields of crystallography, as, for example, in X-ray topography (Tanner & Bowen, 1980[link]), in time-resolving studies (Bordas, 1980[link]), in X-ray microscopy (Parsons, 1980[link]), in studies of local atomic arrangements by extended X-ray absorption fine structure (XAFS) investigations (Lee, Citrin, Eisenberger & Kincaid, 1981[link]) or studies of surface structures by X-ray photoemission spectroscopy (XPS) (Plummer & Eberhardt, 1982[link]), etc. γ-rays emitted by radioactive sources such as 198Au (t1/2 = 2.7 d), 153Sm (t1/2 = 46.8 h), 192Ir (t1/2 = 74.2 d) or 137Cs (t1/2 = 29.9 a) are characterized by short wavelengths (typically hundreds of Å), by narrow spectral breadth [(\Delta E\approx10^{-8}\ {\rm eV},\Delta\lambda/\lambda\approx10^{-6})] and by relatively low beam intensity (∼108–109 m−2 s−1). They are mainly used for studies of the mosaic structure of single crystals (Schneider, 1983[link]) or for the determination of charge density distribution (Hansen & Schneider, 1984[link]). The typical absorption length of ∼1–4 cm and the increase of the extinction length by a factor of about 50 compared with ordinary X-rays are advantages utilized in these experiments. γ-rays also find applications in magnetic structure studies and in the determination of gradients of electric fields by Mössbauer diffraction and spectroscopy (Kuz'min, Kolpakov & Zhdanov, 1966[link]).

For Compton scattering, see Sections 6.1.1[link] and 7.4.3[link] .

References

First citation Bonse, U. (1980). X-ray sources. Characterization of crystal growth defects by X-ray methods, edited by B. K. Tanner & D. K. Bowen, Chap. 11, pp. 298–319. New York: Plenum. [NATO Advanced Study Institute Series B63.]Google Scholar
First citation Bordas, J. (1980). A synchrotron radiation camera and data acquisition system for time resolved X-ray scattering studies. J. Phys. E, 13, 938–944.Google Scholar
First citation Frankel, R. D. & Forsyth, J. M. (1979). Nanosecond X-ray diffraction from biological samples with a laser-produced plasma source. Science, 204, 622–624.Google Scholar
First citation Hansen, N. K. & Schneider, J. R. (1984). Charge-density distribution of Be metal studied by γ-ray diffractometry. Phys. Rev. B, 29, 917–926.Google Scholar
First citation Kunz, C. (1979). Editor. Topics in current physics, Vol. 10. Synchrotron radiation, techniques and applications. Berlin: Springer Verlag.Google Scholar
First citation Kuz'min, R. N., Kolpakov, A. V. & Zhdanov, G. S. (1966). Rassejanie messbauerovskovo izlutschenija kristallami. Kristallografiya, 11, 511–519. [English translation: Sov. Phys. Crystallogr. (1967), 11, 457–465.]Google Scholar
First citation Lee, P. A., Citrin, P. H., Eisenberger, P. & Kincaid, B. M. (1981). Extended X-ray absorption fine structure – its strengths and limitations as a structural tool. Rev. Mod. Phys. 53, 769–806.Google Scholar
First citation Parsons, D. F. (1980). Editor. Ultrasoft X-ray microscopy: its application to biological and physical sciences. New York: New York Academy of Sciences.Google Scholar
First citation Plummer, E. W. & Eberhardt, W. (1982). Advances in chemical physics, Vol. XLIX. Angle-resolved photoemission as a tool for the study of surfaces, edited by I. Prigogine & S. I. Rice. New York: John Wiley.Google Scholar
First citation Schneider, J. R. (1983). Characterization of crystals by γ-ray and neutron diffraction methods. J. Cryst. Growth, 65, 660–671.Google Scholar
First citation Tanner, B. K. & Bowen, D. K. (1980). Editors. Characterization of crystal growth defects by X-ray methods. NATO Advanced Study Institute Series B63. New York: Plenum.Google Scholar








































to end of page
to top of page