International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 4.2, pp. 191-258
https://doi.org/10.1107/97809553602060000592

Chapter 4.2. X-rays

U. W. Arndt,a D. C. Creagh,b R. D. Deslattes,c J. H. Hubbell,d P. Indelicato,e E. G. Kessler Jrf and E. Lindrothg

a MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, England,bDivision of Health, Design, and Science, University of Canberra, Canberra, ACT 2601, Australia,cNational Institute of Standards and Technology, Gaithersburg, MD 20899, USA,dRoom C314, Radiation Physics Building, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA,eLaboratoire Kastler-Brossel, Case 74, Université Pierre et Marie Curie, 4 Place Jussieu, F-75252 Paris CEDEX 05, France,fAtomic Physics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA, and gDepartment of Atomic Physics, Stockholm University, S-104 05 Stockholm, Sweden

References

First citation Agarwal, B. K. (1979). X-ray spectroscopy, p. 215. Berlin: Springer-Verlag.Google Scholar
First citation Akhiezer, A. I. & Berestetsky, V. B. (1957). Quantum electrodynamics. TESE, Oak Ridge, Tennessee, USA.Google Scholar
First citation Aldred, P. J. E. & Hart, M. (1973a). The electron distribution in silicon. I. Experiment. Proc. R. Soc. London Ser. A, 332, 233–238.Google Scholar
First citation Aldred, P. J. E. & Hart, M. (1973b). The electron distribution in silicon. II. Theoretical interpretation. Proc. R. Soc. London Ser. A, 332, 239–254.Google Scholar
First citation Allen, S. J. M. (1935). X-rays in theory and experiment, edited by A. H. Compton & S. K. Allison, pp. 799–806. New York: Van Nostrand.Google Scholar
First citation Allen, S. J. M. (1969). Handbook of chemistry and physics, edited by R. C. Weast, pp. E143–E144. Cleveland: The Chemical Rubber Co.Google Scholar
First citation Alvarez, L. W., Crawford, F. S. & Stevenson, M. L. (1958). Elastic scattering of 1.6 MeV gamma rays from H, Li, C and Al nuclei. Phys. Rev. 112, 1267–1273.Google Scholar
First citation Aristov, V. V., Shmytko, I. M. & Shulakov, E. V. (1977). Dynamical contrast of the topographic image of a crystal with continuous X-radiation. Acta Cryst. A33, 412–418.Google Scholar
First citation Arndt, U. W. (1992). X-ray wavelengths. International Tables for Crystallography, Vol. C, edited by A. J. C. Wilson, pp. 176–182. Dordrecht: Kluwer Academic Publishers.Google Scholar
First citation Azaroff, L. V. & Pease, D. M. (1974). X-ray absorption spectra. X-ray spectroscopy, edited by L. V. Azaroff, Chap. 6, pp. 284–337. New York: McGraw-Hill.Google Scholar
First citation Bailey, R. L. (1978). The design and operation of magnetic liquid shaft seals. In Thermomechanics of magnetic fluids, edited by B. Berkovsky. London: Hemisphere.Google Scholar
First citation Balaic, D. X., Barnea, Z., Nugent, K. A., Garrett, R. F., Varghese, J. N. & Wilkins, S. W. (1996). Protein crystal diffraction patterns using a capillary-focused synchrotron X-ray beam. J. Synchrotron Rad. 3, 289–295.Google Scholar
First citation Balaic, D. X. & Nugent, K. A. (1995). The X-ray optics of tapered capillaries. Appl. Opt. 34, 7263–7272.Google Scholar
First citation Balaic, D. X., Nugent, K. A., Barnea, Z., Garrett, R. & Wilkins, S. W. (1995). Focusing of X-rays by total external reflection from a paraboloidally tapered glass capillary. J. Synchrotron Rad. 2, 296–299.Google Scholar
First citation Band, I. M., Kharitonov, Yu. I. & Trzhaskovskaya, M. B. (1979). Photoionization cross sections and photoelectron angular distributions for X-ray line energies in the range 0.132–4.509 keV. At. Data Nucl. Data Tables, 23, 443–505.Google Scholar
First citation Barreau, G. H., Börner, H. G., Egidy, T. V. & Hoff, R. W. (1982). Precision measurement of X-ray energies, natural widths and intensities in the actinide region. Z. Phys. A308, 209–213.Google Scholar
First citation Basile, G., Bergamin, A., Cavagnero, G., Mana, G., Vittone, E. & Zosi, G. (1994). Measurement of the silicon (220) lattice spacing. Phys. Rev. Lett. 72, 3133–3136.Google Scholar
First citation Basile, G., Bergamin, A., Cavagnero, G., Mana, G., Vittone, E. & Zosi, G. (1995). The (220) lattice spacing of silicon. IEEE Trans. Instrum. Meas. 44, 526–529.Google Scholar
First citation Bearden, J. A. (1960). Lead K absorption edge for μ-meson mass determination. Phys. Rev. Lett. 4, 240–241.Google Scholar
First citation Bearden, J. A. (1965). Selection of W Kα1 as the X-ray wavelength standard. Phys. Rev. B, 137, 455–461.Google Scholar
First citation Bearden, J. A. (1967). X-ray wavelengths. Rev. Mod. Phys. 39, 78–100.Google Scholar
First citation Bearden, J. A., Henins, A., Marzolf, J. G., Sauder, W. C. & Thomsen, J. S. (1964). Precision redetermination of standard reference wavelengths for X-ray spectroscopy. Phys. Rev. A, 135, 899–910.Google Scholar
First citation Bearden, J. A., Thomsen, J. S., Burr, A. F., Yap, F. Y., Huffman, F. N., Henins, A. & Matthews, G. D. (1964). Remeasurement of selected X-ray lines and reevaluation of all published wavelengths on a consistent and absolute scale. Baltimore, Maryland: The Johns Hopkins University.Google Scholar
First citation Beaumont, J. H. & Hart, M. (1973). Multiple-Bragg reflection monochromators for synchrotron radiation. J. Phys. E, 7, 823–829.Google Scholar
First citation Becker, P., Dorenwendt, K., Ebeling, G., Lauer, R., Lucas, W., Probst, R., Rademacher, H.-J., Reim, G., Seyfried, P. & Siegert, H. (1981). Absolute measurement of the (220) lattice plane spacing in a silicon crystal. Phys. Rev. Lett. 46, 1540–1543.Google Scholar
First citation Becker, P., Seyfried, P. & Siegert, H. (1982). The lattice parameter of highly pure silicon single crystals. Z. Phys. B48, 17–21.Google Scholar
First citation Begum, R., Hart, M., Lea, K. R. & Siddons, D. P. (1986). Direct measurements of the complex X-ray atomic scattering factors for elements by X-ray interferometry at the Daresbury synchrotron radiation source. Acta Cryst. A42, 456–463.Google Scholar
First citation Berman, L. E. & Hart, M. (1991). Adaptive crystal optics for high power synchrotron sources. Nucl. Instrum. Methods, A302, 558–562.Google Scholar
First citation Bertin, E. P. (1975). Principles and practice of X-ray spectrometric analysis. New York: Plenum.Google Scholar
First citation Beyer, H., Indelicato, P., Finlayson, H., Liesen, D. & Deslattes, R. D. (1991). Measurement of the 1s Lamb-shift in hydrogenlike nickel. Phys. Rev. A, 43, 223–227.Google Scholar
First citation Bianconi, A., Incoccia, L. & Stipcich, S. (1983). Editors. EXAFS and near edge structure. Berlin: Springer.Google Scholar
First citation Bijvoet, J. M., Peerdeman, A. F. & Van Bommel, A. J. (1951). Determination of the absolute configuration of optically active compounds by means of X-rays. Nature (London), 168, 271.Google Scholar
First citation Bilderback, D. H., Thiel, D. J., Pahl, R. & Brister, K. E. (1994). X-ray applications with glass-capillary optics. J. Synchrotron Rad. 1, 37–42.Google Scholar
First citation Blume, M. (1994). Magnetic effects in anomalous dispersion. Resonant anomalous X-ray scattering, edited by G. Materlik, C. J. Sparks & K. Fischer, pp. 495–512. Amsterdam: North Holland.Google Scholar
First citation Blundell, S. A. (1993a). Ab initio calculations of QED effects of Li-like, Na-like and Cu-like ions. Phys. Scr. T46, 144–149.Google Scholar
First citation Blundell, S. A. (1993b). Calculations of the screened self-energy and vacuum polarization in Li-like, Na-like and Cu-like ions. Phys. Rev. A, 47, 1790–1803.Google Scholar
First citation Blundell, S. A., Johnson, W. R. & Sapirstein, J. (1990). Improved many-body perturbation theory calculations of the n = 2 states of lithiumlike uranium. Phys. Rev. A, 41, 1698–1700.Google Scholar
First citation Blundell, S. A., Mohr, P. J., Johnson, W. R. & Sapirstein, J. (1993). Evaluation of two-photon exchange graphs for highly charged heliumlike ions. Phys. Rev. A, 48, 2615–2626.Google Scholar
First citation Bonse, U. & Hart, M. (1965a). An X-ray interferometer. Appl. Phys. Lett. 6, 155–156.Google Scholar
First citation Bonse, U. & Hart, M. (1965b). Tailless X-ray single-crystal reflection curves obtained by multiple reflection. Appl. Phys. Lett. 7, 238–240.Google Scholar
First citation Bonse, U. & Hart, M. (1966a). A Laue-case X-ray interferometer. Z. Phys. 188, 154–162.Google Scholar
First citation Bonse, U. & Hart, M. (1966b). An X-ray interferometer with Bragg-case beam splitting. Z. Phys. 194, 1–17.Google Scholar
First citation Bonse, U. & Hart, M. (1966c). Moire patterns of atomic planes obtained by X-ray interferometry. Z. Phys. 190, 455–467.Google Scholar
First citation Bonse, U. & Hart, M. (1966d). Small single X-ray scattering by spherical particles. Z. Phys. 189, 151–165.Google Scholar
First citation Bonse, U. & Hart, M. (1970). Interferometry with X-rays. Phys. Today, 23(8), 26–31.Google Scholar
First citation Bonse, U. & Hartmann-Lotsch, I. (1984). Kramers–Kronig correlation of measured f′(E) and f ′′(E) values. Nucl. Instrum. Methods, 222, 185–188.Google Scholar
First citation Bonse, U., Hartmann-Lotsch, I. & Lotsch, H. (1983a). Interferometric measurement of absorption μ(E) and dispersion f′(E) at the K edge of copper. EXAFS and near edge structure, edited by A. Bianconi, I. Incoccia & A. S. Stipcich, pp. 376–377. Berlin: Springer.Google Scholar
First citation Bonse, U., Hartmann-Lotsch, I. & Lotsch, H. (1983b). The X-ray interferometer for high resolution measurement of anomalous dispersion at HASYLAB. Nucl. Instrum. Methods, 208, 603–604.Google Scholar
First citation Bonse, U. & Hellkötter, H. (1969). Interferometrische Messung des Brechungsindex für Röntgenstrahlen. Z. Phys. 223, 345–352.Google Scholar
First citation Bonse, U. & Henning, A. (1986). Measurement of polarization isotropy of the anomalous forward scattering amplitude at the niobium K-edge in LiNbO3. Nucl. Instrum. Methods, A246, 814–816.Google Scholar
First citation Bonse, U. & Materlik, G. (1972). Dispersionskorrektur für Nickel nahe der K-Absorptionskante. Z. Phys. 253, 232–239.Google Scholar
First citation Bonse, U. & Materlik, G. (1975). Dispersion correction measurements by X-ray interferometry. Anomalous scattering, edited by S. Ramaseshan & S. C. Abrahams, pp. 107–109. Copenhagen: Munksgaard.Google Scholar
First citation Borchert, G. L. (1976). Precise energies of K-Röntgen-lines of Tm, Th, U and Pu. Z. Naturforsch. Teil A, 31, 102–104.Google Scholar
First citation Borchert, G. L., Hansen, P. G., Jonson, B., Ravn, H. L. & Desclaux, J. P. (1980). Comparison of the K X-ray energy ratios of high Z and low Z elements with relativistic SCF DF calculations. Atomic masses and fundamental constants, edited by J. E. Nolen & W. Benenson, Vol. 6, pp. 189–201. New York: Plenum Press.Google Scholar
First citation Bowen, D. K., Stock, S. R., Davies, S. T., Pantos, E., Birnbaum, H. R. & Chen, H. (1984). Topographic EXAFS. Nature (London), 309, 336–338.Google Scholar
First citation Brodsky, A. (1982). Editor. Handbook of radiation measurement and protection, Vols. 1 and 2. Florida: CRC Press.Google Scholar
First citation Brown, G. E., Peierls, R. E. & Woodward, J. B. (1955). The coherent scattering of γ-rays by K electrons in heavy atoms: method. Proc. R. Soc. London Ser. A, 227, 51–63.Google Scholar
First citation Brysk, H. & Zerby, C. D. (1968). Photoelectric cross sections in the keV range. Phys. Rev. 171, 292–298.Google Scholar
First citation Bunker, G., Hasnain, S. S. & Sayers, D. E. (1990). Report of the International Workshops on Standards and Criteria in XAFS. In X-ray absorption spectroscopy, edited by S. S. Hasnain. London: Ellis Horwood.Google Scholar
First citation Buras, B. (1985). The European Synchrotron Radiation Project. Nucl. Sci. Appl. 2, 127–143.Google Scholar
First citation Buras, B. & Marr, G. V. (1979). Editors. European Synchrotron Radiation Facility. Suppl. III: Instrumentation. Strasbourg: ESF.Google Scholar
First citation Buras, B. & Tazzari, S. (1984). Editors. European Synchrotron Radiation Facility. Geneva: ESRP c/o CERN.Google Scholar
First citation Buras, B. & Tazzari, S. (1985). The European Synchrotron Radiation Facility. Report of the ESRP, pp. 6–32. European Synchrotron Radiation Project, CERN, LEP Division, Geneva, Switzerland.Google Scholar
First citation Burr, A. F. (1996). Personal communication.Google Scholar
First citation Byer, R. L., Kuhn, K., Reed, M. & Trail, J. (1983). Progress in high peak and average power lasers for soft X-ray production. Proc. SPIE, 448, 2–7.Google Scholar
First citation Caballero, A., Villain, F., Dexpert, H., Le Peltier, F. & Lynch, J. (1993). Characterization by in situ EXAFS spectroscopy of Pt/Al2O3 and PtRe/Al2O3 catalysts under reaction conditions. Jpn. J. Appl. Phys. 32, Suppl. 32–2, 439–441.Google Scholar
First citation Cardona, M. & Ley, L. (1978). Photoemission in solids I. Top. Appl. Phys. 26, 265–276.Google Scholar
First citation Castaing, R. & Descamps, J. (1955). Sur les bases physiques de l'analyse ponctuelle par spectrographie X. J. Phys. Radium, 16, 304–317.Google Scholar
First citation Cauchois, Y. & Hulubei, H. (1947). Tables de constantes et données numeriques. I. Longueurs d'onde des emissions X et des discontinuités d'absorption X. Paris: Herman.Google Scholar
First citation Cauchois, Y. & Senemaud, C. (1978). Tables internationales de constantes selectionnées. 18. Longeurs d'onde des emissions X et des discontinuités d'absorption X. London: Pergamon Press.Google Scholar
First citation Chantler, C. T. (1994). Towards improved form factor tables. Resonant anomalous X-ray scattering, edited by G. Materlik, C. J. Sparks & K. Fischer, pp. 61–79. Amsterdam: North Holland.Google Scholar
First citation Chantler, C. T. (1995). Theoretical form factor, attenuation and scattering tabulation for Z = 1–92 from 1–10 eV to E = 0.4–1.0 MeV. J. Phys. Chem. Ref. Data, 24, 71–643.Google Scholar
First citation Chapuis, G., Templeton, D. H. & Templeton, L. K. (1985). Solving crystal structures using several wavelengths from conventional sources. Anomalous scattering by holmium. Acta Cryst. A41, 274–278.Google Scholar
First citation Chipman, D. R. (1969). Conversion of relative intensities to an absolute scale. Acta Cryst. A25, 209–214.Google Scholar
First citation Citrin, P. H., Eisenberger, P. & Hewitt, R. (1978). Extended X-ray absorption fine structure of surface atoms on single-crystal substrates: iodine absorbed on Ag(111). Phys. Rev. Lett. 41, 309–312.Google Scholar
First citation Clay, R. E. (1934). A 5 kW X-ray generator with a spinning target. Proc. Phys. Soc. London, 46, 703–712.Google Scholar
First citation Cohen, E. R. & Taylor, B. N. (1973). The 1973 least-squares adjustment of the fundamental constants. J. Phys. Chem. Ref. Data, 2, 663–734.Google Scholar
First citation Cohen, E. R. & Taylor, B. N. (1987). The 1986 adjustment of the fundamental physical constants. Rev. Mod. Phys. 89, 1121–1148.Google Scholar
First citation Cole, H. & Stemple, N. R. (1962). Effect of crystal perfection and polarity on absorption edges seen in Bragg diffraction. J. Appl. Phys. 33, 2227–2233.Google Scholar
First citation Collins, C. B., Davanloo, F. & Bowen, T. S. (1986). Flash X-ray source of intense nanosecond pulses produced at high repetition rates. Rev. Sci. Instrum. 57, 863–865.Google Scholar
First citation Compton, A. H. & Allison, S. K. (1935). X-rays in theory and experiment. New York: Van Nostrand.Google Scholar
First citation Cooper, M. J. (1985). Compton scattering and electron momentum determination. Rep. Prog. Phys. 48, 415–481.Google Scholar
First citation Cosslett, V. E. & Nixon, W. C. (1951). X-ray shadow microscope. Nature (London), 168, 24–25.Google Scholar
First citation Cosslett, V. E. & Nixon, W. C. (1960). X-ray microscopy, pp. 217–222. Cambridge University Press.Google Scholar
First citation Creagh, D. C. (1970). On the measurement of X-ray dispersion corrections using X-ray interferometers. Aust. J. Phys. 23, 99–103.Google Scholar
First citation Creagh, D. C. (1977). Determination of the mass attenuation coefficients and the anomalous dispersion corrections for calcium at X-ray wavelengths from I Kα1 to Cu Kα1. Phys. Status Solidi A, 39, 705–715.Google Scholar
First citation Creagh, D. C. (1978). A new device for the precise measurement of X-ray attenuation coefficients and dispersion corrections. Advances in X-ray analysis, Vol. 21, edited by C. S. Barrett & D. E. Leyden, pp. 149–153. New York: Plenum.Google Scholar
First citation Creagh, D. C. (1980). X-ray interferometer measurements of the anomalous dispersion correction f′(ω, 0) for some low Z elements. Phys. Lett. A, 77, 129–132.Google Scholar
First citation Creagh, D. C. (1982). On the use of photoelectric attenuation coefficients for the determination of the anomalous dispersion coefficient f′ for X-rays. Phys. Lett. A, 103, 52–56.Google Scholar
First citation Creagh, D. C. (1984). The real part of the forward scattering factor for aluminium. Unpublished.Google Scholar
First citation Creagh, D. C. (1985). Theoretical and experimental techniques for the determination of X-ray anomalous dispersion corrections. Aust. J. Phys. 38, 371–404.Google Scholar
First citation Creagh, D. C. (1986). The X-ray anomalous dispersion of materials. In Recent advances in X-ray characterization of materials, edited by P. Krishna, Chap. 7. Oxford: Pergamon Press.Google Scholar
First citation Creagh, D. C. (1987a). The resolution of discrepancies in tables of photon attenuation coefficients. Nucl. Instrum. Methods, A255, 1–16.Google Scholar
First citation Creagh, D. C. (1987b). The X-ray anomalous dispersion corrections and their use for the characterization of materials. In Progress in crystal growth and characterization, Vol. 14, edited by P. Krishna, Chap. 7, pp. 1–46. Oxford: Pergamon Press.Google Scholar
First citation Creagh, D. C. (1990). Tables of X-ray absorption corrections and dispersion corrections: the new versus the old. Nucl. Instrum. Methods, A295, 417–434.Google Scholar
First citation Creagh, D. C. (1993). f′: its present and its future. Ind. J. Phys. 67B, 511–525.Google Scholar
First citation Creagh, D. C. & Cookson, D. J. (1995). Diffraction anomalous fine structure study of basic zinc sulphate and basic zinc sulphonate. In Photon Factory Activity Report 1994, edited by K. Nasu. National Laboratory for High Energy Physics, Tsukuba 93-0305, Japan.Google Scholar
First citation Creagh, D. C. & Garrett, R. F. (1995). Testing of a sagittal focusing monochromator at BL 20B at the Photon Factory. Access to major facilities program, edited by J. W. Boldeman, pp. 251–252. Sydney: ANSTO.Google Scholar
First citation Creagh, D. C. & Hart, M. (1970). X-ray interferometric measurements of the forward scattering amplitude of lithium fluoride. Phys. Status Solidi, 37, 753–758.Google Scholar
First citation Creagh, D. C. & Hubbell, J. H. (1987). Problems associated with the measurement of X-ray attenuation coefficients. I. Silicon. Acta Cryst. A43, 102–112.Google Scholar
First citation Creagh, D. C. & Hubbell, J. H. (1990). Problems associated with the measurement of X-ray attenuation coefficients. II. Carbon. Acta Cryst. A46, 402–408.Google Scholar
First citation Cromer, D. T. (1969). Anomalous dispersion corrections computed from self consistent field relativistic Dirac–Slater wavefunctions. J. Chem. Phys. 50, 4857–4859.Google Scholar
First citation Cromer, D. T. & Liberman, D. (1970). Relativistic calculation of anomalous scattering factors for X-rays. J. Chem. Phys. 53, 1891–1898.Google Scholar
First citation Cromer, D. T. & Liberman, D. A. (1981). Anomalous dispersion calculations near to and on the long-wavelength side of an absorption edge. Acta Cryst. A37, 267–268.Google Scholar
First citation Cromer, D. T. & Liberman, D. A. (1983). Calculation of anomalous scattering factors at arbitrary wavelengths. J. Appl. Cryst. 16, 437.Google Scholar
First citation Cromer, D. T. & Mann, J. B. (1967). Compton scattering factors for spherically symmetric free atoms. J. Chem. Phys. 47, 1892–1893.Google Scholar
First citation Cromer, D. T. & Waber, J. T. (1974). Atomic scattering factors for X-rays. International tables for X-ray crystallography, Vol. IV, edited by J. A. Ibers & W. C. Hamilton, Chap. 2.2, pp. 71–147. Birmingham: Kynoch Press.Google Scholar
First citation Crozier, E. D. & Seary, A. J. (1980). Asymmetric effects in the extended X-ray absorption fine structure. Analysis of solid and liquid zinc. Can. J. Phys. 58, 1388–1399.Google Scholar
First citation Cusatis, C. & Hart, M. (1975). Dispersion correction measurements by X-ray interferometry. Anomalous scattering, edited by S. Ramaseshan & S. C. Abrahams, pp. 57–68. Copenhagen: Munksgaard.Google Scholar
First citation Cusatis, C. & Hart, M. (1977). The anomalous dispersion corrections for zirconium. Proc. R. Soc. London Ser. A, 354, 291–302.Google Scholar
First citation De Marco, J. J. & Suortti, P. (1971). Effect of scattering on the attenuation of X-rays. Phys. Rev. B, 4, 1028–1033.Google Scholar
First citation Delf, B. W. (1961). The effect of absorption in the β-filter on the mean wavelength of X-ray emission lines. Proc. Phys. Soc. London, 78, 305–306.Google Scholar
First citation Desclaux, J. P. (1975). A multiconfiguration relativistic Dirac–Fock program. Comput. Phys. Commun. 9, 31–45.Google Scholar
First citation Desclaux, J. P. (1993). Relativistic multiconfiguration Dirac–Fock package. Methods and techniques in computational chemistry - 94, Vol. A, edited by E. Clementi. Cagliary: STEF.Google Scholar
First citation Deslattes, R. D. & Henins, A. (1973). X-ray to visible wavelength ratios. Phys. Rev. Lett. 31, 972–975.Google Scholar
First citation Deslattes, R. D. & Kessler, E. G. Jr (1985). Experimental evaluation of inner-vacancy level energies for comparison with theory. Atomic inner-shell physics, edited by B. Crasemann, pp. 181–235. New York: Plenum.Google Scholar
First citation Deslattes, R. D., Tanaka, M., Greene, G. L., Henins, A. & Kessler, E. G. (1987). Remeasurement of a silicon lattice period. IEEE Trans. Instrum. Meas. IM-36, 166.Google Scholar
First citation Deutsch, M. & Hart, M. (1982). Wavelength energy shape and structure of the Cu Kα1 X-ray emission line. Phys. Rev. B, 26, 5550–5567.Google Scholar
First citation Deutsch, M. & Hart, M. (1984a). Noninterferometric measurement of the X-ray refractive index of beryllium. Phys. Rev. B, 30, 643–646.Google Scholar
First citation Deutsch, M. & Hart, M. (1984b). X-ray refractive-index measurement in silicon and lithium fluoride. Phys. Rev. B, 30, 640–642.Google Scholar
First citation Deutsch, M. & Hart, M. (1985). A new approach to the measurement of X-ray structure amplitudes determined by the Pendellösung method. Acta Cryst. A41, 48–55.Google Scholar
First citation Doyle, P. A. & Turner, P. S. (1968). Relativistic Hartree–Fock X-ray and electron scattering factors. Acta Cryst. A24, 390–397.Google Scholar
First citation Dreier, P., Rabe, P., Malzfeldt, W. & Niemann, W. (1984). Anomalous X-ray scattering factors calculated from experimental absorption factor. J. Phys. C, 17, 3123–3136.Google Scholar
First citation Durham, P. J. (1983). Multiple scattering calculations of XANES. EXAFS and near edge structure, edited by A. Bianconi, L. Incoccia & S. Stipcich, pp. 37–43. Berlin: Springer.Google Scholar
First citation Dyson, N. A. (1973). X-rays in atomic and nuclear physics. London: Longman.Google Scholar
First citation Ehrenberg, W. & Spear, W. E. (1951). An electrostatic focusing system and its application to a fine focus X-ray tube. Proc. Phys. Soc. London Sect. B, 64, 67–75.Google Scholar
First citation Engel, D. H. & Sturm, M. (1975). Experimental determination of f′′ for heavy atoms. Anomalous scattering, edited by S. Ramaseshan & S. C. Abrahams, pp. 93–100. Copenhagen: Munksgaard.Google Scholar
First citation Engström, P., Rindby, A. & Vincze, L. (1996). Capillary optics. ESRF Newsletter, 26, 30–31.Google Scholar
First citation Farge, Y. & Duke, P. J. (1979). Editors. European Synchrotron Radiation Facility. Suppl. 1: The scientific case. Strasbourg: ESF.Google Scholar
First citation Fermi, E. (1928). Eine statistiche Methode zur Bestimmung einiger geschaften des Atoms und ihre Anwendung auf die Theorie des periodische Systems der Elemente. Z. Phys. 48, 73–79.Google Scholar
First citation Fiorito, R. B., Rule, D. W., Piestrup, M. A., Li, Q., Ho, A. H. & Maruyama, X. K. (1993). Parametric X-ray generation from moderate-energy electron beams. Nucl. Instrum. Methods, B79, 758–761.Google Scholar
First citation Fock, V. (1930). Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Z. Phys. 61, 126–148.Google Scholar
First citation Forsyth, J. M. & Frankel, R. D. (1980). Flash X-ray diffraction from biological specimens using a laser-produced plasma source. Report No. 106. Laboratory for Laser Energetics, University of Rochester, USA.Google Scholar
First citation Forsyth, J. M. & Frankel, R. D. (1984). Experimental facility for nanosecond time-resolved low-angle X-ray diffraction experiments using a laser-produced plasma source. Rev. Sci. Instrum. 55, 1235–1242.Google Scholar
First citation Fourme, R. (1992). Sources X intenses et cristallographie biologique. Ann. Phys. (Leipzig), 17, 247–255.Google Scholar
First citation Frankel, R. D. & Forsyth, J. M. (1979). Nanosecond exposure X-ray diffraction patterns from biological specimens using a laser plasma source. Science, 204, 622–624.Google Scholar
First citation Frankel, R. D. & Forsyth, J. M. (1985). Time-resolved X-ray diffraction study of photo stimulated purple membrane. Biophys. J. 47, 387–393.Google Scholar
First citation Freund, A. (1975). Anomalous scattering of X-rays in copper. Anomalous scattering, edited by S. Ramaseshan & S. C. Abrahams, pp. 69–86. Copenhagen: Munksgaard.Google Scholar
First citation Freund, A. K. (1993). Thin is beautiful. ESRF Newsletter, 19, 11–13.Google Scholar
First citation Fricke, H. (1920). The K-characteristic absorption frequencies for the chemical elements magnesium to chromium. Phys. Rev. 16, 202–212.Google Scholar
First citation Fuggle, J. C., Burr, A. F., Watson, L. M., Fabian, D. J. & Lang, W. (1974). X-ray photoelectron studies of thorium and uranium. J. Phys. F, 4, 335–342.Google Scholar
First citation Fujimoto, Z., Fujii, K., Tanaka, M. & Nakayama, K. (1997). Lattice measurement in silicon. IEEE Trans. Instrum. Meas. 50, 123–124.Google Scholar
First citation Fukumachi, T., Nakano, Y. & Kawamura, T. (1986). Energy dependence of X-ray reflectivity from multi-layer mirrors. X-ray instrumentation for the Photon Factory: dynamic analyses of micro-structures in matter, edited by S. Hosoya, Y. Iitaka & H. Hashizume, pp. 25–34. Japan: Photon Factory.Google Scholar
First citation Fuoss, P. H. & Bienenstock, A. (1981). X-ray anomalous scattering factors – measurements and applications. Inner-shell and X-ray physics of atoms and solids, edited by D. J. Fabian, A. Kleinpoppen & L. M. Watson, pp. 875–884. New York: Plenum.Google Scholar
First citation Fuoss, P. H., Eisenberger, P., Warburton, W. K. & Bienenstock, A. (1981). Application of differential anomalous X-ray scattering to structural studies of amorphous materials. Phys. Rev. Lett. 46, 1537–1540.Google Scholar
First citation Gavrila, M. (1981). Photon atom elastic scattering in inner-shell and X-ray physics of atoms and solids, edited by B. Crasemann. New York: Plenum.Google Scholar
First citation Gerstenberg, H. & Hubbell, J. H. (1982). Comparison of experimental with theoretical photon attenuation cross sections between 10 eV and 100 GeV. Nuclear data for science and technology, edited by K. H. Bockhoff, pp. 1007–1009. Amsterdam: North-Holland.Google Scholar
First citation Gerward, L. (1981). X-ray attenuation coefficients and atomic photoelectric absorption cross sections of silicon. J. Phys. B, 14, 3389–3395.Google Scholar
First citation Gerward, L. (1982). X-ray attenuation coefficients of copper in the energy range 5 to 50 keV. Z. Naturforsch. Teil A, 37, 451–459.Google Scholar
First citation Gerward, L. (1983). X-ray attenuation coefficients of carbon in the energy range 5 to 20 keV. Acta Cryst. A39, 322–325.Google Scholar
First citation Gerward, L. (1986). Empirical absorption equations for use in X-ray spectrometric analysis. X-ray Spectrom. 15, 29–33.Google Scholar
First citation Gerward, L., Thuesen, G., Stibius-Jensen, M. & Alstrup, I. (1979). X-ray anomalous scattering factors for silicon and germanium. Acta Cryst. A35, 852–857.Google Scholar
First citation Giles, C., Vettier, C., de Bergevin, F., Grubel, G., Goulon, J. & Grossi, F. (1994). X-ray polarimetry with phase plates. ESRF Newsletter, 21, 16–17.Google Scholar
First citation Godwin, R. P. (1968). Synchrotron radiation light source. Springer Tracts Mod. Phys. 51, 1–69.Google Scholar
First citation Goldberg, M. (1961). Intensités relatives des raies X du spectre L excité par bombardement électronique des éléments lourds. J. Phys. Radium, 22, 743–748.Google Scholar
First citation Goldsztaub, S. (1947). Tube à rayons X de grande brilliance à foyer ponctuel. C. R. Acad. Sci. 224, 458–459.Google Scholar
First citation Green, M. (1963). The target absorption correction in X-ray microanalysis. X-ray optics and X-ray microanalysis, edited by H. Pattee, V. E. Cosslett & A. Engstrom, pp. 361–377. London: Academic Press.Google Scholar
First citation Green, M. & Cosslett, V. E. (1968). Measurement of K, L and M shell X-ray production efficiencies. Br. J. Appl. Phys. Ser. 2, 1, 425–436.Google Scholar
First citation Grey, D. (1996). Instrumentation developments and observations in hard X-ray astronomy. PhD thesis. The University of New South Wales, Australia.Google Scholar
First citation Grimvall, G. & Persson, E. (1969). Absorption of X-rays in germanium. Acta Cryst. A25, 417–422.Google Scholar
First citation Guo, C.-L. & Wu, Y.-Q. (1985). Empirical relationship between the characteristic X-ray intensity and the incident electron energy. Kexue Tongbao, 30, 1621–1627.Google Scholar
First citation Gurman, S. J. (1988). The small atom approximation in EXAFS and surface EXAFS. J. Phys. C, 21, 3699–3717.Google Scholar
First citation Gurman, S. J. (1995). Interpretation of EXAFS data. J. Synchrotron Rad. 2, 56–63.Google Scholar
First citation Hanfland, M., Häusermann, D., Snigirev, A., Snigireva, I., Ahahama, Y. & McMahon, M. (1994). Bragg–Fresnel lens for high pressure studies. ESRF Newsletter, 22, 8–9.Google Scholar
First citation Hart, M. (1968). An ångström ruler. J. Phys. D, 1, 1405–1408.Google Scholar
First citation Hart, M. (1971). Bragg reflection X-ray optics. Rep. Prog. Phys. 34, 435–490.Google Scholar
First citation Hart, M. (1985). Private communication.Google Scholar
First citation Hart, M. (1994). Polarizing X-ray optics and anomalous dispersion in chiral systems. Resonant anomalous X-ray scattering, edited by G. Materlik, C. J. Sparks & K. Fischer, pp. 103–118. Amsterdam: North Holland.Google Scholar
First citation Hart, M. & Rodrigues, A. R. D. (1978). Harmonic-free single-crystal monochromators for neutrons and X-rays. J. Appl. Cryst. 11, 248–253.Google Scholar
First citation Hart, M. & Siddons, D. P. (1981). Measurements of anomalous dispersion corrections made from X-ray interferometers. Proc. R. Soc. London Ser. A, 376, 465–482.Google Scholar
First citation Hartree, D. R. (1928). The wavemechanics of an atom with a non-Coulomb central field. Proc. Cambridge Philos. Soc. 24, 89–132.Google Scholar
First citation Härtwig, J., Hölzer, G., Wolf, J. & Förster, E. (1993). Remeasurement of the profile of the characteristic Cu Kα emission line with high precision and accuracy. J. Appl. Cryst. 26, 539–548.Google Scholar
First citation Hashimoto, H., Kozaki, S. & Ohkawa, T. (1965). Observations of Pendellösung fringes and images of dislocations by X-ray shadow micrographs of silicon crystals. Appl. Phys. Lett. 6, 16–17.Google Scholar
First citation Hashizume, H. (1983). Asymmetrically grooved monolithic crystal monochromators for suppression of harmonics in synchrotron X-radiation. J. Appl. Cryst. 16, 420–427.Google Scholar
First citation Hasnain, S. S. (1990). X-ray absorption fine structure. London: Ellis Horwood.Google Scholar
First citation Hastings, J. B., Eisenberger, P., Lengeler, B. & Perlman, M. L. (1975). Local structure determination at high dilution: internal oxidation at 75 ppm Fe in Cu. Phys. Rev. Lett. 43, 1807–1810.Google Scholar
First citation Heinrich, K. F. J. (1966). X-ray absorption uncertainty. The electron microprobe, edited by T. D. McKinley, K. F. J. Heinrich & D. B. Wittrey, pp. 296–377. New York: John Wiley.Google Scholar
First citation Helliwell, J. R. (1984). Synchrotron X-radiation protein crystallography. Rep. Prog. Phys. 47, 1403–1497.Google Scholar
First citation Hendrickson, W. A. (1994). MAD phasing for macromolecular structures. Resonant anomalous X-ray scattering, edited by G. Materlik, C. J. Sparks & K. Fischer, pp. 159–173. Amsterdam: North Holland.Google Scholar
First citation Henins, A. (1971). Ruled grating measurements of the Al Kα1,2 wavelength. Precision measurements and fundamental constants, edited by D. N. Langenberg & B. N. Taylor, pp. 255–258. Natl Bur. Stand. (US) Spec. Publ. No. 343. Gaithersburg, Maryland: National Bureau of Standards.Google Scholar
First citation Henke, B. L., Lee, P., Tanaka, T. J., Shimambukuro, R. L. & Fujikawa, B. K. (1982). Low-energy X-ray interaction coefficients: photoabsorption, scattering and reflection. At. Data Nucl. Data Tables, 27, 1–144.Google Scholar
First citation Hertz, G. (1920). Über die Absorptionsgrenzen in den L-Serie. Z. Phys. 3, 19–27.Google Scholar
First citation Hida, M., Wada, N., Maeda, H., Hikaru, T., Tsu, Y. & Kamino, N. (1985). An EXAFS investigation on the lattice relaxation of Ni fine particles prepared by gas evaporation. Jpn. J. Appl. Phys. 24, L3–L5.Google Scholar
First citation Hofmann, A. (1978). Quasi-monochromatic synchrotron radiation from undulators. Nucl. Instrum. Methods, 152, 17–21.Google Scholar
First citation Holt, S. A., Brown, A. S., Creagh, D. C. & Leon, R. (1997). The application of grazing incidence X-ray diffraction and specular reflectivity to the structural investigation of multiple quantum well and quantum dot semiconductor devices. J. Synchrotron Rad. 4, 169–174.Google Scholar
First citation Hölzer, G., Fritsch, M., Deutsch, M., Härtwig, J. & Förster, E. (1997). 1,2 and Kβ1,3 X-ray emission lines of the 3d transition metals. Phys. Rev. A, 56, 4554–4568.Google Scholar
First citation Honkimaki, V., Sleight, J. & Suortti, P. (1990). Characteristic X-ray flux from sealed Cr, Cu, Mo, Ag and W tubes. J. Appl. Cryst. 23, 412–417.Google Scholar
First citation Hönl, H. (1933a). Zur Dispersions theorie der Röntgenstrahlen. Z. Phys. 84, 1–16.Google Scholar
First citation Hönl, H. (1933b). Atomfactor für Röntgenstrahlen als Problem der Dispersionstheorie (K-Schale). Ann. Phys. (Leipzig), 18, 625–657.Google Scholar
First citation Hosoya, S. (1975). Anomalous scattering measurements and amplitude and phase determinations with continuous X-rays. Anomalous scattering, edited by S. Ramaseshan & S. C. Abrahams, pp. 275–287. Copenhagen: Munksgaard.Google Scholar
First citation Hubbell, J. H. (1969). Phonon cross sections, attenuation coefficients, and energy absorption coefficients from 10 keV to 100 GeV. Report NRDS-NBS29. National Institute of Standards and Technology, Gaithersburg, MD, USA.Google Scholar
First citation Hubbell, J. H., Gerstenberg, H. M. & Saloman, E. B. (1986). Bibliography of photon total cross section (attenuation coefficient) measurements 10 eV to 13.5 GeV. Report NBSIR 86-3461. National Institute of Standards and Technology, Gaithersburg, MD, USA.Google Scholar
First citation Hubbell, J. H., McMaster, W. H., Del Grande, N. K. & Mallett, J. H. (1974). X-ray cross sections and attenuation coefficients. International tables for X-ray crystallography, Vol. IV, edited by J. A. Ibers & W. C. Hamilton, pp. 47–70. Birmingham: Kynoch Press.Google Scholar
First citation Hubbell, J. H. & Øverbø, I. (1979). Relativistic atomic form factors and photon coherent scattering cross sections. J. Phys. Chem. Ref. Data, 8, 69–105.Google Scholar
First citation Hubbell, J. H., Veigele, W. J., Briggs, E. A., Brown, R. T., Cromer, D. T. & Howerton, R. J. (1975). Atomic form factors, incoherent scattering functions and photon scattering cross sections. J. Phys. Chem. Ref. Data, 4, 471–538.Google Scholar
First citation Huke, K. & Kobayakawa, M. (1989). World-wide census of SR facilities. Rev. Sci. Instrum. 60, 2548–2561.Google Scholar
First citation Indelicato, P. (1990). Kα transitions in few-electron ions and in atoms. X-ray and inner-shell processes, edited by T. A. Carlson, M. O. Krause & S. T. Manson, pp. 591–601. New York: American Institute of Physics.Google Scholar
First citation Indelicato, P. & Desclaux, J. P. (1990). Multiconfiguration Dirac–Fock calculations of transition energies with QED corrections in three-electron ions. Phys. Rev. A, 42, 5139–5149.Google Scholar
First citation Indelicato, P., Gorceix, O. & Desclaux, J. P. (1987). MCDF studies of two electron ions II: radiative corrections and comparison with experiment. J. Phys. B, 20, 651.Google Scholar
First citation Indelicato, P. & Lindroth, E. (1992). Relativistic effects, correlation, and QED corrections on Kα transitions in medium to very heavy atoms. Phys. Rev. A, 46, 2426–2436.Google Scholar
First citation Indelicato, P. & Lindroth, E. (1996). Current status of the relativistic theory of inner hole states in heavy atoms. Comments At. Mol. Phys. 32, 197–208.Google Scholar
First citation Indelicato, P. & Mohr, P. J. (1990). Electron screening correction to the self energy in high-Z atoms. 12th International Conference on Atomic Physics, Ann Arbor, Michigan, USA.Google Scholar
First citation Indelicato, P. & Mohr, P. J. (1991). Quantum electrodynamic effects in atomic structure. Theor. Chim. Acta, 80, 207–214.Google Scholar
First citation International Tables for Crystallography (2001). Vol. B. Dordrecht: Kluwer Academic Publishers.Google Scholar
First citation International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.Google Scholar
First citation Ishida, K. & Katoh, H. (1982). Use of multiple reflection diffraction to measure X-ray refractive index. Jpn. J. Appl. Phys. 21, 1109.Google Scholar
First citation Ishimura, T., Shiraiwa, Y. & Sawada, M. (1957). The input power limit of the cylindrical rotating anode of an X-ray tube. J. Phys. Soc. Jpn, 12, 1064–1070.Google Scholar
First citation Jackson, D. F. & Hawkes, D. J. (1981). X-ray attenuation coefficients of elements and mixtures. Phys. Rep. 70, 169–233.Google Scholar
First citation James, R. W. (1955). The optical principles of the diffraction of X-rays. Ithaca: Cornell University Press.Google Scholar
First citation Jenkins, R., Manne, R., Robin, J. & Senemaud, C. (1991). Nomenclature, symbols, units and their usage in spectrochemical analysis. VIII. Nomenclature system for X-ray spectroscopy. Pure Appl. Chem. 63, 735–746.Google Scholar
First citation Jennings, L. D. (1981). Extinction, polarization and crystal monochromators. Acta Cryst. A37, 584–593.Google Scholar
First citation Jennings, L. D. (1984). The polarization ratio of crystal monochromators. Acta Cryst. A40, 12–16.Google Scholar
First citation Johnson, W. R. & Soff, G. (1985). The Lamb shift in hydrogenlike atoms, 1 ≤ Z ≤ 110. At. Data Nucl. Data Tables, 33, 405.Google Scholar
First citation Joy, D. C. & Maher, D. (1985). Quantitative electron energy loss spectroscopy: an introduction to the power of Kevex Elstar software. Kevex Analyst, 10, 6–9.Google Scholar
First citation Kane, P. P., Kissel, L., Pratt, R. H. & Roy, S. C. (1986). Elastic scattering of γ-rays and X-rays by atoms. Phys. Rep. 150, 75–159.Google Scholar
First citation Karle, J. (1980). Anomalous dispersion and the use of triplet phase invariants. Int. J. Quantum Chem. 7, 357–367.Google Scholar
First citation Karle, J. (1984a). Rules for evaluating triplet phase invariants by use of anomalous dispersion data. Acta Cryst. A40, 366–379.Google Scholar
First citation Karle, J. (1984b). The relative scaling of multiple wavelength anomalous dispersion data. Acta Cryst. A40, 1–4.Google Scholar
First citation Karle, J. (1984c). Triplet phase invariants from an exact algebraic analysis of anomalous dispersion. Acta Cryst. A40, 526–532.Google Scholar
First citation Karle, J. (1985). Many algebraic formulas for the evaluation of triplet phase invariants from isomorphous replacement and anomalous dispersion data. Acta Cryst. A41, 182–189.Google Scholar
First citation Katoh, H., Shimakura, H., Ogawa, T., Hattori, S., Kobayashi, Y., Umezawa, K., Ishikawa, T. & Ishida, K. (1985a). Measurement of X-ray refractive index by multiple reflection diffractometer. Activity Report, KEK, Tsukuba, Japan.Google Scholar
First citation Katoh, H., Shimakura, H., Ogawa, T., Hattori, S., Kobayashi, Y., Umezawa, K., Ishikawa, T. & Ishida, K. (1985b). Measurement of the X-ray anomalous scattering of the germanium K-edge with synchrotron radiation. J. Phys. Soc. Jpn, 54, 881–884.Google Scholar
First citation Kessler, E. G. Jr, Deslattes, R. D. & Henins, A. (1979). Wavelength of the W Kα1 X-ray line. Phys. Rev. A, 19, 215–218.Google Scholar
First citation Kikuta, S. (1971). X-ray crystal monochromators using successive asymmetric diffractions and their applications to measurements of diffraction curves. II. Type 1 collimator. J. Phys. Soc. Jpn, 30, 222–227.Google Scholar
First citation Kikuta, S. & Kohra, K. (1970). X-ray crystal collimators using successive asymmetric diffractions and their applications to measurements of diffraction curves. I. General considerations on collimators. J. Phys. Soc. Jpn, 29, 1322–1328.Google Scholar
First citation Kim, Y. K., Baik, D. H., Indelicato, P. & Desclaux, J. P. (1991). Resonance transition energies of Li-, Na-, and Cu-like ions. Phys. Rev. A, 44, 148–166.Google Scholar
First citation Kirfel, A. (1994). Anisotropy of anomalous scattering in single crystals. Resonant anomalous X-ray scattering, edited by G. Materlik, C. J. Sparks & K. Fischer, pp. 231–256. Amsterdam: North Holland.Google Scholar
First citation Kirkpatrick, P. & Wiedmann, L. (1945). Theoretical continuous X-ray energy and polarization. Phys. Rev. 67, 321–339.Google Scholar
First citation Kissel, L. (1977). Rayleigh scattering: elastic scattering by bound electrons. PhD thesis, University of Pittsburgh, PA, USA.Google Scholar
First citation Kissel, L. & Pratt, R. H. (1985). Rayleigh scattering: elastic photon scattering by bound electrons. In Atomic inner-shell physics, edited by B. Crasemann. New York: Plenum.Google Scholar
First citation Kissel, L., Pratt, R. H., Kane, P. P. & Roy, S. C. (1985). Elastic scattering of X-rays and γ-rays by atoms. Sandia Report SANDE5-0501J. Sandia, Albuquerque, NM, USA.Google Scholar
First citation Kissel, L., Pratt, R. H. & Roy, S. C. (1980). Rayleigh scattering by neutral atoms, 100 eV to 10 MeV. Phys. Rev. A, 22, 1970–2004.Google Scholar
First citation Koch, B., MacGillavry, C. H. & Milledge, H. J. (1962). Absorption. International tables for X-ray crystallography, Vol. III, Section 2.2, pp. 157–192. Birmingham: Kynoch Press.Google Scholar
First citation Koch, E. E. (1983). Editor. Handbook on synchrotron radiation. Amsterdam: North-Holland.Google Scholar
First citation Kohn, W. & Sham, L. S. (1965). Self consistent equations including exchange and correlation effects. Phys. Rev. A, 140, 1133–1138.Google Scholar
First citation Kostarev, A. L. (1941). Theory of the fine structure of X-ray absorption spectra in solids. Zh. Eksper. Teor. Fiz. 11, 60–73.Google Scholar
First citation Kostarev, A. L. (1949). Elucidation of the super-fine structure of X-ray absorption spectra in solids. Zh. Eksper. Teor. Fiz. 19, 413–420.Google Scholar
First citation Kraft, S., Stümpel, J., Becker, P. & Kuetgens, U. (1996). High resolution X-ray absorption spectroscopy with absolute energy calibration for the determination of absorption edge energies. Rev. Sci. Instrum. 67, 681–687.Google Scholar
First citation Kramers, H. A. (1923). On the theory of X-ray absorption and of the continuous X-ray spectrum. Philos. Mag. 46, 836–871.Google Scholar
First citation Kronig, R. de L. (1932a). Zur Theorie der Feinstruktur in den Röntgenabsorptionspecktren II. Z. Phys. 75, 191–210.Google Scholar
First citation Kronig, R. de L. (1932b). Zur Theorie der Feinstruktur in den Röntgenabsorptionspecktren III. Z. Phys. 75, 468–475.Google Scholar
First citation Kulenkampff, H. & Schmidt, L. (1943). Die Energieverteilung im Spektrum der Röntgen Bremsstrahlung. Ann. Phys. (Leipzig), 43, 494–512.Google Scholar
First citation Kulipanov, G. N. & Skrinskii, A. N. (1977). Utilization of synchrotron radiation: current status and prospects. Usp. Fiz. Nauk, 122, 369–418. English translation: Sov. Phys. Usp. 20, 559–586.Google Scholar
First citation Kumakhov, M. A. & Komarov, F. F. (1990). Multiple reflection from surface X-ray optics. Phys. Rep. 191(5), 289–350.Google Scholar
First citation Kunz, C. (1979). Editor. Synchrotron radiation. Berlin: Springer.Google Scholar
First citation Kuroda, H., Ohta, T., Murata, T., Udagawa, Y. & Nomura, M. (1992). XAFS VII: Proceedings of the Seventh Conference on X-ray Absorption Fine Structure. Jpn. J. Appl. Phys. 32, Suppl. 32-2.Google Scholar
First citation Kusev, S. V., Raiko, V. I. & Skuratowski, I. Ya. (1992). The status of beam lines for macromolecular crystallography at the Siberia-2 storage ring. Rev. Sci. Instrum. 63, 1055–1057.Google Scholar
First citation Kutzler, F. W., Natoli, C. R., Misemer, D. K., Doniach, S. & Hodgson, K. O. (1981). Use of one electron theory for the interpretation of near edge structure in K-shell X-ray absorption spectra of transition metal complexes. J. Chem. Phys. 73, 3274–3288.Google Scholar
First citation Laclare, J. L. (1994). Target specifications and performance of the ESRF source. J. Synchrotron Rad. 1, 12–18.Google Scholar
First citation Lea, K. (1978). Highlights of synchrotron radiation. Phys. Rep. 43, 337–375.Google Scholar
First citation Leapman, R. D. & Cosslett, V. E. (1976). Extended fine structure above the X-ray edge in electron energy loss spectra. J. Phys. D, 9, L29–L31.Google Scholar
First citation Lebugle, A., Axelsson, U., Nyholm, R. & Mårtensson, N. (1981). Experimental L and M core level binding energies for the metals 22Ti to 30Zn. Phys Scr. 23, 825–827.Google Scholar
First citation Lee, P. A. (1981). Theory of extended X-ray absorption fine structure. EXAFS spectroscopy: techniques and applications, edited by B. K. Teo & D. C. Joy, Chap. 2, pp. 5–13. New York: Plenum.Google Scholar
First citation Lee, P. A. & Beni, G. (1977). New method for the calculation of atomic phase shifts: application to extended X-ray absorption fine structure (EXAFS) in molecules and crystals. Phys. Rev. B, 15, 2862–2883.Google Scholar
First citation Lee, P. A., Citrin, P. H., Eisenberger, P. & Kincaid, B. M. (1981). Extended X-ray absorption fine structure – its strengths and limitations as a structural tool. Rev. Mod. Phys. 53, 769–787.Google Scholar
First citation Lengeler, B. (1994). Experimental determination of the dispersion correction f′(E) to the atomic scattering factor. Resonant anomalous X-ray scattering, edited by G. Materlik, C. J. Sparks & K. Fischer, pp. 35–69. Amsterdam: North Holland.Google Scholar
First citation Lengeler, B., Materlik, G. & Müller, J. E. (1983). Near edge structure in cerium and cerium compounds. EXAFS and near edge structure, edited by A. Bianconi, L. Incoccia & S. Stipcich, pp. 150–153. Berlin: Springer.Google Scholar
First citation Lereboures, B., Dürr, J., d'Huysser, A., Bonelle, J. P. & Lenglet, M. (1980). Phys. Status Solidi, 62, K175.Google Scholar
First citation Leroux, J. & Thinh, T. P. (1977). Revised tables of X-ray mass attenuation coefficients. Quebec: Corporation Scientifique Claisse, Inc.Google Scholar
First citation Levinger, J. S. (1952). Small angle coherent scattering of gammas by bound electrons. Phys. Rev. 87, 656–662.Google Scholar
First citation Liberman, D., Waber, J. T. & Cromer, D. T. (1965). Self-consistent field Dirac–Slater wavefunctions for atoms and ions. I. Comparison with previous calculations. Phys. Rev. A, 137, 27–34.Google Scholar
First citation Liebhafsky, H. A., Pfeiffer, H. G., Winslow, E. H. & Zemany, P. D. (1960). X-ray absorption and emission analytical chemistry, pp. 313–317. New York: John Wiley.Google Scholar
First citation Lindgren, I., Persson, H., Salomonson, S. & Labzowsky, L. (1995). Full QED calculations of two-photon exchange for heliumlike systems: analysis in the Coulomb and Feynman gauge. Phys. Rev. A, 51, 1167–1195.Google Scholar
First citation Lindroth, E. & Indelicato, P. (1993). Inner shell transitions in heavy atoms. Phys. Scr. T46, 139–143.Google Scholar
First citation Lindroth, E. & Indelicato, P. (1994). High precision calculations of inner shell transitions in heavy elements. Nucl. Instrum. Methods, B87, 222–226.Google Scholar
First citation Lum, G. K., Wiegand, C. E., Kessler, E. G. Jr, Deslattes, R. D., Jacobs, L., Schwitz, W. & Seki, R. (1981). Kaonic mass by critical absorption of kaonic atom X-rays. Phys. Rev. D, 23, 2522–2532.Google Scholar
First citation Lytle, F. W., Sayers, D. E. & Stern, E. A. (1989). Report of the International Workshops on Standards and Criteria in XAFS. In X-ray absorption spectroscopy. Physica (Utrecht), B158, 701–722.Google Scholar
First citation Lytle, F. W., Stern, E. A. & Sayers, D. E. (1975). Extended X-ray-absorption fine-structure technique II. Experimental practice and selected results. Phys. Rev. B, 11, 4825–4835.Google Scholar
First citation McMaster, W. H., Del Grande, N. K., Mallett, J. H. & Hubbell, J. H. (1969/1970). Compilation of X-ray cross sections. Report UCRL-50174. (Section I, 1970; Section II, 1969; Section III, 1969; Section IV, 1969.) Lawrence Livermore National Laboratory, Livermore, CA, USA.Google Scholar
First citation Marcus, M., Powers, L. S., Storm, A. R., Kincaid, B. M. & Chance, B. (1980). Curved-crystal (LiF) X-ray focusing array for fluorescence EXAFS in dilute samples. Rev. Sci. Instrum. 51, 1023–1029.Google Scholar
First citation Martens, G. & Rabe, P. (1980). EXAFS studies on superficial regions by means of total reflection. Phys. Status Solidi A, 58, 415–425.Google Scholar
First citation Maruyama, X. K., Di Nova, K., Snyder, D., Piestrup, M. A., Li, Q., Fiorito, R. B. & Rule, D. W. (1993). A compact tunable X-ray source based on parametric X-ray generation by moderate-energy linacs. Proc. 1993 Particle Accelerator Conference. IEEE, 2, 1620–1622.Google Scholar
First citation Materlik, G., Bedzyk, M. J. & Frahm, A. (1984). Report SR-84-07. DESY, Hamburg, Germany.Google Scholar
First citation Matsushita, T., Ishikawa, T. & Oyanagi, H. (1986). Sagitally focusing double-crystal monochromator with constant exit height at the Photon Factory. Nucl. Instrum. Methods, A246, 377–379.Google Scholar
First citation Matsushita, T., Kikuta, S. & Kohra, K. (1971). X-ray crystal monochromators using successive asymmetric diffractions and their applications to measurements of diffraction curves. III. Type I1 collimators. J. Phys. Soc. Jpn, 30, 1136–1144.Google Scholar
First citation Metchnik, V. & Tomlin, S. G. (1963). On the absolute intensity of emission of characteristic X radiation. Proc. Phys. Soc. London, 81, 956–964.Google Scholar
First citation Mohr, P. J. (1974a). Numerical evaluation of the 1S1/2 state radiative level shift. Ann. Phys. (Leipzig), 88, 52–87.Google Scholar
First citation Mohr, P. J. (1974b). Self-energy radiative corrections in hydrogen-like systems. Ann. Phys. (Leipzig), 88, 26–51.Google Scholar
First citation Mohr, P. J. (1975). Lamb shift in a strong Coulomb potential. Phys. Rev. Lett. 34, 1050–1052.Google Scholar
First citation Mohr, P. J. (1982). Self-energy of the n = 2 states in a strong Coulomb field. Phys. Rev. A, 26, 2338–2354.Google Scholar
First citation Mohr, P. J. (1992). Self-energy correction to one-electron energy levels in a strong Coulomb field. Phys. Rev. A, 46, 4421–4424.Google Scholar
First citation Mohr, P. J. & Soff, G. (1993). Nuclear size correction to the electron self-energy. Phys. Rev. Lett. 70, 158–161.Google Scholar
First citation Mohr, P. J. & Taylor, B. N. (2000). CODATA recommended values of the fundamental physical constants: 1998. Rev. Mod. Phys. 72, 351–495.Google Scholar
First citation Montenegro, E. C., Baptista, G. B. & Duarte, P. W. E. P. (1978). K and L X-rays mass attenuation coefficients for low-Z materials. At. Data Nucl. Data Tables, 22, 131–177.Google Scholar
First citation Mooney, T., Lindroth, E., Indelicato, P., Kessler, E. & Deslattes, R. D. (1992). Precision measurements of K and L transitions in xenon: experiment and theory for the K, L and M levels. Phys. Rev. A, 45, 1531–1543.Google Scholar
First citation Mooney, T. M. (1996). Personal communication.Google Scholar
First citation Morgenroth, W., Kirfel, A. & Fischer, K. (1994). Computing kinematic diffraction intensities with anomalous scatterers – `forbidden' axial reflections in space groups up to orthorhombic symmetry. Resonant anomalous X-ray scattering, edited by G. Materlik, C. J. Sparks & K. Fischer, pp. 257–264. Amsterdam: North Holland.Google Scholar
First citation Müller, A. (1927). Input limits of X-ray generators. Proc. R. Soc. London Ser. A, 117, 30–42.Google Scholar
First citation Müller, A. (1929). A spinning-target X-ray generator and its input limit. Proc. R. Soc. London Ser. A, 125, 507–516.Google Scholar
First citation Müller, A. (1931). Further estimates of the input limits of X-ray generators. Proc. R. Soc. London Ser. A, 132, 646–649.Google Scholar
First citation Mustre de Leon, J., Stern, E. A., Sayers, D. E., Ma, Y. & Rehr, J. J. (1988). XAFS V: Proceedings of the Fifth International Conference on X-ray Absorption Fine Structure. Amsterdam: North-Holland.Google Scholar
First citation Nagel, D. J. (1980). Comparison of X-ray sources for exposure of photo resists. Ann. NY Acad. Sci. 342, 235–247.Google Scholar
First citation Natoli, C. R. (1990). Multichannel multiple scattering theory with general potentials. Phys. Rev. B, 42, 1944–1968.Google Scholar
First citation Natoli, C. R., Misemer, D. K., Doniach, S. & Kutzler, F. W. (1980). First principles calculation of X-ray absorption edge structure in molecular clusters. Phys. Rev. A, 22, 1104–1108.Google Scholar
First citation Nelms, A. T. & Oppenheimer, I. (1955). J. Res. Natl Bur. Stand. 55, 53–62.Google Scholar
First citation Nordfors, B. (1960). The statistical error in X-ray absorption measurements. Ark. Fys. 18, 37–47.Google Scholar
First citation Norman, D., Durham, P. J. & Pendry, J. B. (1983). The absorption of oxygen on nickel (001) studied by XANES. EXAFS and near edge structure, edited by A. Bianconi, L. Incoccia & S. Stipcich, pp. 144–146. Berlin: Springer.Google Scholar
First citation Nyholm, R., Berndtsson, A. & Mårtensson, N. (1980). Core level binding energies for the elements Hf to Bi (Z = 72–83). J. Phys. C, 13, L1091–L1096.Google Scholar
First citation Nyholm, R. & Mårtensson, N. (1980). Core level binding energies for the elements Zr–Te (Z = 40–52). J. Phys. C, 13, L279-L284.Google Scholar
First citation Oosterkamp, W. J. (1948a). The heat dissipation in the anode of an X-ray tube. Philips Res. 3, 49–59.Google Scholar
First citation Oosterkamp, W. J. (1948b). The heat dissipation in the anode of an X-ray tube. Philips Res. 3, 161–173.Google Scholar
First citation Oosterkamp, W. J. (1948c). The heat dissipation in the anode of an X-ray tube. Philips Res. 3, 303–317.Google Scholar
First citation Oshima, K., Harada, J. & Sakabe, N. (1986). Curved crystal monochromator. X-ray instrumentation for the Photon Factory: dynamic analyses of micro-structures in matter, edited by S. Hosoya, Y. Iitaka & H. Hashizume, pp. 35–41. Japan: Photon Factory.Google Scholar
First citation OSMIC (1996). Catalogue. A new family of collimating and focusing optics for X-ray analysis. OSMIC, Michigan, USA.Google Scholar
First citation Øverbø, I. (1977). The Coulomb correction to electron pair production by intermediate-energy photons. Phys. Lett. B, 71, 412–414.Google Scholar
First citation Øverbø, I. (1978). Large-q form factors for light atoms. Phys. Scr. 17, 547–549.Google Scholar
First citation Oyanagi, H., Ihara, H., Matsushita, T., Hirabayashi, M., Terada, N., Tokumoto, M., Senzaki, K., Kimura, T. & Yao, T. (1987). Short range order in high Tc superconductors BaxY1−xCuO3−y and SrxLa2−xCuO4–7. Jpn. J. Appl. Phys. 26, L828–L831.Google Scholar
First citation Oyanagi, H., Martini, M., Saito, M. & Haga, K. (1995). Nineteen element high purity Ge solid state detector array for fluorescence X-ray absorption fine structure studies. Submitted to Rev. Sci. Instrum.Google Scholar
First citation Oyanagi, H., Matsushita, T., Tanoue, H., Ishiguro, T. & Kohra, K. (1985). Fluorescence-detected X-ray absorption spectroscopy applied to structural characterization of very thin films: ion-beam-induced modification of thin Ni layers on Si (100). Jpn. J. Appl. Phys. 24, 610–619.Google Scholar
First citation Oyanagi, H., Takeda, T., Matsushita, T., Ishiguro, T. & Sasaki, A. (1986). Local structure in InGaAsP I quaternary alloys. J. Phys. (Paris), 28, Suppl. 12, C8, 423–426.Google Scholar
First citation Pantos, E. (1982). The SRS program library documentation. Daresbury: SRC.Google Scholar
First citation Papatzacos, P. & Mort, K. (1975). Delbrück scattering calculations. Phys. Rev. D, 12, 206–221.Google Scholar
First citation Parratt, L. G. (1959). Electronic band structure of solids by X-ray spectroscopy. Rev. Mod. Phys. 31, 616–645.Google Scholar
First citation Parratt, L. G., Porteus, I. O., Schnopper, H. W. & Watanabe, T. (1959). X-ray absorption coefficients and geometrical collimation of the beam. Rev. Sci. Instrum. 30, 344–347.Google Scholar
First citation Peele, A. G., Nugent, K. A., Rode, A. V., Gabel, K., Richardson, M. C. M., Strack, R. & Siegmund, W. (1996). X-ray focusing with lobster-eye optics: a comparison of theory with experiment. Appl. Opt. 35, 4420–4425.Google Scholar
First citation Pendry, J. B. (1983). The transition region between XANES and EXAFS. EXAFS and near edge structure, edited by A. Bianconi, L. Incoccia & S. Stipcich, pp. 4–10. Berlin: Springer.Google Scholar
First citation Petiau, J. & Calas, G. (1983). EXAFS for inorganic systems, pp. 127–129. Daresbury: SRC.Google Scholar
First citation Philips, J. C. & Hodgson, K. O. (1985). Single-crystal X-ray diffraction and anomalous scattering using synchrotron radiation. Synchrotron radiation research, edited by H. Winick & S. Doniach, pp. 565–604. New York: Plenum.Google Scholar
First citation Philips, J. C., Templeton, D. H., Templeton, L. K. & Hodgson, K. O. (1978). L-III edge anomalous X-ray scattering by cesium measured with synchrotron radiation. Science, 201, 257–259.Google Scholar
First citation Phillips, W. C. (1985). X-ray sources. Methods Enzymol. 114, 300–316.Google Scholar
First citation Piestrup, M. A., Boyers, D. G., Pincus, C. I., Harris, J. L., Maruyama, X. K., Bergstrom, J. C., Caplan, H. S., Silzer, R. M. & Skopik, D. M. (1991). Quasimonochromatic X-ray source using photoabsorption-edge transition radiation. Phys. Rev. A, 43, 3653–3661.Google Scholar
First citation Piestrup, M. A., Moran, M. J., Boyers, D. G., Pincus, C. I., Kephart, J. O., Gearhart, R. A. & Maruyama, X. K. (1991). Generation of hard X-rays from transition radiation using high-density foils and moderate-energy electrons. Phys. Rev. A, 43, 2387–2396.Google Scholar
First citation Pirenne, M. H. (1946). The diffraction of X-rays and electrons by free molecules. Cambridge University Press.Google Scholar
First citation Plechaty, E. F., Cullen, E. E. & Howerton, R. J. (1981). Tables and graphs of photon-interaction cross sections from 0.1 keV to 100 MeV. Derived from the LLL Evaluated-Nuclear-Data Library. Report UCRL-50400, Vol. 6, Rev. 3. Lawrence Livermore National Laboratory, Livermore, CA, USA.Google Scholar
First citation Powell, C. J. (1995). Elemental binding energies for X-ray photoelectron spectroscopy. Appl. Surf. Sci. 89, 141–149.Google Scholar
First citation Pratt, R. H., Kissel, L. & Bergstrom, P. M. Jr (1994). New relativistic S-matrix results for scattering – beyond the anomalous factors/beyond impulse approximation. Resonant anomalous X-ray scattering, edited by G. Materlik, C. J. Sparks & K. Fischer, pp. 9–34. Amsterdam: North Holland.Google Scholar
First citation Price, P. F., Maslen, E. N. & Mair, S. L. (1978). Electron-density studies. III. A re-evaluation of the electron distribution in crystalline silicon. Acta Cryst. A34, 183–193.Google Scholar
First citation Ramaseshan, S. & Abrahams, S. C. (1975). Anomalous scattering. Copenhagen: Munksgaard.Google Scholar
First citation Reed, S. J. B. (1975). Electron microprobe analysis. Cambridge University Press.Google Scholar
First citation Rehr, J. J. & Albers, R. C. (1990). Phys. Rev. B, 41, 8139–8144.Google Scholar
First citation Rieck, C. D. (1962). Tables relating to the production, wavelengths, and intensities of X-rays. International tables for X-ray crystallography, Vol. III, edited by C. H. MacGillavry & G. D. Rieck, pp. 59–72. Birmingham: Kynoch Press.Google Scholar
First citation Riggs, P. J., Mei, R., Yocum, C. F. & Penner-Hahn, J. E. (1993). The characterization of the Mn site in the photosynthetic oxygen evolving complexes: the effect of hydroxylamine and hydroquinone on the XAFS. Jpn. J. Appl. Phys. 32, Suppl. 32–2, 527–529.Google Scholar
First citation Roy, S. C., Kissel, L. & Pratt, R. H. (1983). Elastic photon scattering at small momentum transfer and validity of form-factor theories. Phys. Rev. A, 27, 285–290.Google Scholar
First citation Roy, S. C. & Pratt, R. H. (1982). Validity of non relativistic dipole approximation for forward Rayleigh scattering. Phys. Rev. A, 26, 651–653.Google Scholar
First citation Rudakov, L. I., Baigarin, K. A., Kalinin, Y. G., Korolev, V. D. & Kumachov, M. A. (1991). Pulsed-plasma-based X-ray source and new X-ray optics. Phys. Fluids B (Plasma Phys.), 3, 2414–2419.Google Scholar
First citation Sakurai, K. (1993). High-intensity X-ray line-focal spot for laboratory EXAFS measurements. Rev. Sci. Instrum. 64, 267–268.Google Scholar
First citation Sakurai, K. & Sakurai, H. (1994). Comment on high intensity low tube-voltage X-ray source for laboratory EXAFS measurements. Rev. Sci. Instrum. 65, 2417–2418.Google Scholar
First citation Saloman, E. B. & Hubbell, J. H. (1986). X-ray attenuation coefficients (total cross sections): comparison of the experimental data base with the recommended values of Henke and the theoretical values of Scofield for energies between 0.1–100 keV. Report NBSIR 86-3431. National Institute of Standards and Technology, Gaithersburg, MD, USA.Google Scholar
First citation Saloman, E. B. & Hubbell, J. H. (1987). Critical analysis of soft X-ray cross section data. Nucl. Instrum. Methods, A255, 38–42.Google Scholar
First citation Saloman, E. B., Hubbell, J. H. & Scofield, J. H. (1988). At. Data Nucl. Data Tables, 38, 1–197.Google Scholar
First citation Sano, H., Ohtaka, K. & Ohtsuki, Y. H. (1969). Normal and abnormal absorption coefficients of X-rays. J. Phys. Soc. Jpn, 27, 1254–1261.Google Scholar
First citation Sawada, M., Tsutsumi, K., Shiraiwa, T., Ishimura, T. & Obashi, M. (1959). Some contributions to the X-ray spectroscopy of solid state. Annu. Rep. Sci. Works Osaka Univ. 7, R–87.Google Scholar
First citation Sayers, D. E., Lytle, F. W. & Stern, E. A. (1970). Point scattering theory of X-ray K absorption fine structure. Adv. X-ray Anal. 13, 248–256.Google Scholar
First citation Schaupp, D., Schumacher, M., Smend, F., Rullhusen, P. & Hubbell, J. H. (1983). Small-angle Rayleigh scattering of photons at high energies: tabulations of relativistic HFS modified atomic form factors. J. Phys. Chem. Ref. Data, 12, 467–512.Google Scholar
First citation Schmidt, V. V. (1961a). Contribution to the theory of the temperature dependence of the fine structure of X-ray absorption spectra. Bull. Acad. Sci. USSR Phys. Ser. 25, 988–993.Google Scholar
First citation Schmidt, V. V. (1961b). On the effect of the temperature dependence of the fine structure of X-ray absorption spectra. J. Exp. Theor. Phys. 12, 886–890.Google Scholar
First citation Schmidt, V. V. (1963). Contributions to the theory of the dependence of the fine structure of X-ray absorption spectra II. Case of high temperatures. Bull. Acad. Sci. USSR Phys. Ser. 27, 392–397.Google Scholar
First citation Schwarzenbach, D., Abrahams, S. C., Flack, H. D., Prince, E. & Wilson, A. J. C. (1995). Statistical descriptors in crystallography. II. Report of a Working Group on Expression of Uncertainty in Measurement. Acta Cryst. A51, 565–569.Google Scholar
First citation Schweppe, J., Deslattes, R. D., Mooney, T. & Powell, C. J. (1994). Accurate measurement of Mg and Al Kα1,2 X-ray energy profiles. J. Electron Spectrosc. Relat. Phenom. 67, 463–478.Google Scholar
First citation Schweppe, J. E. (1995). Personal communication.Google Scholar
First citation Schwinger, J. (1949). On the classical radiation of accelerated electrons. Phys. Rev. 75, 1912–1925.Google Scholar
First citation Scofield, J. H. (1973). Theoretical photoionization cross sections from 1 to 1500 keV. Report UCRL-51326. Lawrence Livermore National Laboratory, Livermore, CA, USA.Google Scholar
First citation Scofield, J. H. (1986). Personal communication to E. B. Saloman & J. H. Hubbell. Calculated photoeffect values 0.1 to 1.0 keV. [Presented in Saloman & Hubbell (1986)[link] and Saloman et al. (1988)[link].]Google Scholar
First citation Scott, V. D. & Love, G. (1983). Quantitative electron microprobe analysis. Cambridge University Press.Google Scholar
First citation Sears, V. F. (1983). Optimum sample thickness for total cross section measurements. Nucl. Instrum. Methods, 213, 561–562.Google Scholar
First citation Seka, W., Soures, J. M., Lewis, O., Bunkenburg, J., Brown, D., Jacobs, S., Mourou, X. & Zimmermann, J. (1980). High-power phosphate-glass laser system: design and performance characteristics. Appl. Opt. 19, 409–419.Google Scholar
First citation Seka, W., Soures, J. M., Lund, L. & Craxton, R. S. (1981). GDL: a high-power 0.35 µm laser irradiation facility. IEEE J. Quantum Electron. QE-17, 1689–1693.Google Scholar
First citation Sevillano, E., Meuth, H. & Rehr, J. J. (1978). Extended X-ray absorption fine structure Debye-Waller factors. I. Monatomic crystals. Phys. Rev. B, 20, 4908–4911.Google Scholar
First citation Shulman, R. G., Weisenberger, P., Teo, B. K., Kincaid, B. M. & Brown, G. S. (1978). Fluorescence X-ray absorption studies of rubendoxin and its compounds. J. Mol. Biol. 124, 305–315.Google Scholar
First citation Siddons, P. & Hart, M. (1983). Simultaneous measurements of the real and imaginary parts of the X-ray anomalous dispersion using X-ray interferometers. EXAFS and near edge structure, edited by A. Branconi, L. Incoccia & S. Stipcich, pp. 373–375. Berlin: Springer.Google Scholar
First citation Siegbahn, M. (1925). The spectroscopy of X-rays. Oxford University Press.Google Scholar
First citation Siemens (1996a). Parallel beam optics for measurements of samples with irregularly shaped surfaces. Laboratory Report X-ray Analysis, DXRD, 13. Karlsruhe: Siemens.Google Scholar
First citation Siemens (1996b). Goebel mirrors for X-ray reflectometry investigations. Laboratory Report X-ray Analysis, DXRD, 14. Karlsruhe: Siemens.Google Scholar
First citation Siemens (1996c) Grazing incidence diffraction with Goebel mirrors. Laboratory Report X-ray Analysis, DXRD, 15. Karlsruhe: Siemens.Google Scholar
First citation Sinfelt, J. H., Via, G. H. & Lytle, F. W. (1980). Structures of biometallic clusters. Extended X-ray absorption fine structure (EXAFS) studies of Ru–Cu clusters. J. Chem. Phys. 72, 4832–4843.Google Scholar
First citation Smith, D. Y. (1987). Anomalous X-ray scattering: relativistic effects in X-ray dispersion analysis. Phys. Rev. A, 35, 3381–3387.Google Scholar
First citation Snigirev, A. (1994). Bragg–Fresnel optics: new fields of applications. ESRF Newsletter, 22, 20–21.Google Scholar
First citation Soff, G. & Mohr, P. J. (1988). Vacuum polarization in a strong external field. Phys. Rev. A, 38, 5066–5075.Google Scholar
First citation Sorenson, L. B., Cross, J. O., Newville, M., Ravel, B., Rehr, J. J., Stragier, H., Bouldin, C. E. & Woicik, J. C. (1994). Diffraction anomalous fine structure: unifying X-ray diffraction and X-ray absorption with DAFS. In Resonant anomalous X-ray scattering, edited by G. Materlik, C. J. Sparks & K. Fischer, pp. 389–420. Amsterdam: North Holland.Google Scholar
First citation Stanglmeier, F., Lengeler, B., Weber, W., Gobel, H. & Schuster, M. (1992). Determination of the dispersive correction f′(E) to the atomic form factor from X-ray reflection. Acta Cryst. A48, 626–639.Google Scholar
First citation Stearns, D. G. (1984). Broadening of extended X-ray absorption fine structure ensuing from the finite lifetime of the K hole. Philos. Mag. 49, 541–558.Google Scholar
First citation Stephens, P. W., Eng, P. J. & Tse, T. (1992). Construction and performance of a bent crystal X-ray monochromator. Rev. Sci. Instrum. 64, 374–378.Google Scholar
First citation Stephenson, S. T. (1957). The continuous X-ray spectrum. Handbuch der Physik. XXX: X-rays, edited by S. Flügge, pp. 337–370. Berlin: Springer.Google Scholar
First citation Stern, E. A. (1980). Editor. Laboratory EXAFS facilities 1980. AIP Conf. Proc. No. 64.Google Scholar
First citation Stern, E. A., Bunker, B. & Heald, A. (1981). Understanding the causes of non-transferability of EXAFS amplitude. EXAFS spectroscopy: techniques and applications, edited by B. K. Teo & D. C. Joy, pp. 59–79. New York: Plenum.Google Scholar
First citation Stern, E. A., Sayers, D. E. & Lytle, F. W. (1975). Extended X-ray absorption fine structure technique. III. Determination of physical parameters. Phys. Rev. B, 11, 4836–4846.Google Scholar
First citation Stibius-Jensen, M. (1979). Some remarks on the anomalous scattering factors for X-rays. Phys. Lett. A, 74, 41–44.Google Scholar
First citation Stibius-Jensen, M. (1980). Atomic X-ray scattering factors for forward scattering beyond the dipole approximation. Personal communication.Google Scholar
First citation Stohr, J., Denley, D. & Perfettii, P. (1978). Surface extended X-ray absorption fine structure in the soft X-ray region: study of an oxidized Al surface. Phys. Rev. B, 18, 4132–4135.Google Scholar
First citation Storm, E. & Israel, H. I. (1970). Photon cross sections from 0.001 to 100 MeV for elements 1 through 100. Nucl. Data Tables, A7, 565–681.Google Scholar
First citation Stuhrmann, H. (1982). Editor. Uses of synchrotron radiation in biology. Esp. Properties of synchrotron radiation, Chap. 1, by G. Materlik. London: Academic Press.Google Scholar
First citation Suller, V. P. (1992). Review of the status of synchrotron radiation storage rings. Third European Particle Accelerator Conference. Editions Frontières, 1, 77–81.Google Scholar
First citation Suortti, P., Hastings, J. B. & Cox, D. E. (1985). Powder diffraction with synchrotron radiation. II. Dispersion factors of Ni. Acta Cryst. A41, 417–420.Google Scholar
First citation Sussini, J. & Labergerie, D. (1995). Bi-morph piezo-electric mirror: a novel active mirror. Synchrotron Rad. News, 8, 21–26.Google Scholar
First citation Takama, T., Iwasaki, N. & Sato, S. (1980). Measurement of X-ray Pendellösung intensity beats in diffracted white radiation from silicon wafers. Acta Cryst. A36, 1025–1030.Google Scholar
First citation Takama, T., Kobayashi, K. & Sato, S. (1982). Determination of the atomic scattering factor of aluminium by the Pendellösung beat measurement using white radiation. Trans. Jpn. Inst. Met. 23, 153–160.Google Scholar
First citation Takama, T. & Sato, S. (1982). Atomic scattering factors of copper determined by Pendellösung beat measurements using white radiation. Philos. Mag. 45, 615–626.Google Scholar
First citation Takama, T. & Sato, S. (1984). Determination of the atomic scattering factors of germanium by means of the Pendellösung beat measurement using white radiation. Jpn. J. Appl. Phys. 20, 1183–1190.Google Scholar
First citation Taylor, A. (1949). A 5 kW crystallographic X-ray tube with a rotating anode. J. Sci. Instrum. 26, 225–229.Google Scholar
First citation Taylor, A. (1956). Improved demountable crystallographic rotating anode X-ray tube. Rev. Sci. Instrum. 27, 757–759.Google Scholar
First citation Taylor, B. N. & Kuyatt, C. E. (1994). Guidelines for evaluating and expressing the uncertainty of NIST measurement results. NIST Technical Note No. 1297. Gaithersburg, MD: National Institute of Standards and Technology.Google Scholar
First citation Templeton, D. H. (1994). X-ray resonance, then and now. In Resonant anomalous X-ray scattering: theory and applications, edited by G. Materlik, C. J. Sparks & K. Fischer, pp. 1–7. Amsterdam: North Holland.Google Scholar
First citation Templeton, D. H. & Templeton, L. K. (1982). X-ray dichroism and polarized anomalous scattering of the uranyl ion. Acta Cryst. A38, 62–67.Google Scholar
First citation Templeton, D. H. & Templeton, L. K. (1985a). X-ray dichroism and anomalous scattering of potassium tetrachloroplatinate(II). Acta Cryst. A41, 356–371.Google Scholar
First citation Templeton, D. H. & Templeton, L. K. (1985b). Tensor X-ray optical properties of the bromate ion. Acta Cryst. A41, 133–142.Google Scholar
First citation Templeton, D. H. & Templeton, L. K. (1986). X-ray birefringence and forbidden reflections in sodium bromate. Acta Cryst. A42, 478–481.Google Scholar
First citation Templeton, D. H., Templeton, L. K., Philips, J. C. & Hodgson, K. O. (1980). Anomalous scattering of X-rays by cesium and cobalt measured with synchrotron radiation. Acta Cryst. A36, 436–442.Google Scholar
First citation Templeton, L. K. & Templeton, D. H. (1978). Cesium hydrogen tartrate and anomalous dispersion of cesium. Acta Cryst. A34, 368–373.Google Scholar
First citation Teo, B. K. (1981). EXAFS spectroscopy: techniques and applications, edited by B. K. Teo and D. C. Joy, Chap. 3, pp. 13–59. New York: Plenum.Google Scholar
First citation Teo, B. K. & Joy, D. C. (1981). Editors. EXAFS spectroscopy: techniques and applications. New York: Plenum.Google Scholar
First citation Teo, B. K. & Lee, P. A. (1979). Ab initio calculations of amplitude and phase functions for extended X-ray absorption fine structure spectroscopy. J. Am. Chem. Soc. 101, 2815–2832.Google Scholar
First citation Teo, B. K., Lee, P. A., Simons, A. L., Eisenberger, P. & Kincaid, B. M. (1977). EXAFS. Approximation, parameterization and chemical transferability of amplitude function. J. Am. Chem. Soc. 99, 3854–3856.Google Scholar
First citation Theisen, R. & Vollath, D. (1967). Tables of X-ray mass attenuation coefficients. Düsseldorf: Verlag Stahleisen.Google Scholar
First citation Thomas, L. H. (1927). The calculation of atomic fields. Proc. Cambridge Philos. Soc. 23, 542–548.Google Scholar
First citation Thompson, D. J. & Poole, M. W. (1979). Editors. European Synchrotron Radiation Facility. Suppl. II: The machine. Strasbourg: ESF.Google Scholar
First citation Thomsen, J. S. & Burr, A. F. (1968). Biography of the x-unit – the X-ray wavelength scale. Am. J. Phys. 36, 803–810.Google Scholar
First citation Tohji, K., Udagawa, Y., Kawasaki, T. & Masuda, K. (1983). Laboratory EXAFS spectrometer with a bent-crystal, a solid-state detector, and a fast detection system. Rev. Sci. Instrum. 54, 1482–1487.Google Scholar
First citation Uehling, E. A. (1935). Polarization effects in the positron theory. Phys. Rev. 48, 55–63.Google Scholar
First citation Veigele, W. J. (1973). Photon cross sections from 0.1 keV to 1 MeV for elements Z = 1 to Z = 94. At. Data, 5, 51–111.Google Scholar
First citation Victoreen, J. A. (1949). The calculation of X-ray mass absorption coefficients. J. Appl. Phys. 20, 1141–1147.Google Scholar
First citation Wagenfeld, H. (1975). Theoretical computations of X-ray dispersion corrections. Anomalous scattering, edited by S. Ramaseshan & S. C. Abrahams, pp. 12–23. Copenhagen: Munksgaard.Google Scholar
First citation Waller, I. (1928). Über eine verallgemeinerte Streuungsformel. Z. Phys. 51, 213–231.Google Scholar
First citation Wang, M. S. (1986). Relativistic dispersion relation for X-ray anomalous scattering factor. Phys. Rev. A, 34, 636–637.Google Scholar
First citation Wang, M. S. & Pratt, R. H. (1983). Importance of bound–bound transitions in the dispersion relation for calculation of soft-X-ray forward Rayleigh scattering from light elements. Phys. Rev. A, 28, 3115–3116.Google Scholar
First citation Warren, B. E. (1968). X-ray diffraction. New York: Addison-Wesley.Google Scholar
First citation Wichmann, E. H. & Kroll, N. M. (1956). Vacuum polarization in a strong Coulomb field. Phys. Rev. 101, 843–859.Google Scholar
First citation Wilson, R. R. (1941). A vacuum-tight sliding seal. Rev. Sci. Instrum. 12, 91–93.Google Scholar
First citation Winick, H. (1980). Properties of synchrotron radiation. In Synchrotron radiation research, edited by H. Winick & S. Doniach. New York: Plenum.Google Scholar
First citation Winick, H. & Bienenstock, A. (1978). Synchrotron radiation research. Ann. Rev. Nucl. Sci. 28, 33–113.Google Scholar
First citation Winick, H. & Doniach, S. (1980). Editors. Synchrotron radiation research. New York: Plenum.Google Scholar
First citation Woodruff, D. P. (1986). Fine structure in ionization cross sections and applications to surface science. Rep. Prog. Phys. 49, 683–723.Google Scholar
First citation Yaakobi, B., Boehli, T., Bourke, P., Conturie, Y., Craxton, R. S., Delettrez, J., Forsyth, J. M., Frankel, R. D., Goldman, L. M., McCrory, L. R., Richardson, M. C., Seka, W., Shvarts, D. & Soures, J. M. (1981). Characteristics of target interaction with high-power UV laser radiation. Opt. Commun. 39, 175–179.Google Scholar
First citation Yaakobi, B., Bourke, P., Conturie, Y., Delettrez, J., Forsyth, J. M., Frankel, R. D., Goldman, L. M., McCrory, L. R., Seka, W., Soures, J. M., Burek, A. J. & Deslattes, R. D. (1981). High X-ray conversion efficiency with target irradiation by a frequency-tripled Nd:glass laser. Opt. Commun. 38, 196–200.Google Scholar
First citation Yamaguchi, T., Mitsunaga, T., Yoshida, N., Wakita, H., Fujiwara, M., Matsushita, T., Ikeda, S. & Nomura, M. (1993). XAFS study with an in situ electrochemical cell on manganese Schiff base complexes as a model of a photosystem. Jpn. J. Appl. Phys. 32, Suppl. 32-2, 533–535.Google Scholar
First citation Yao, T. (1992). Lanthanum hexaboride filament in an X-ray generator of a laboratory EXAFS facility. Rev. Sci. Instrum. 63, 2103–2104.Google Scholar
First citation Yeh, J. J. & Lindau, I. (1985). Atomic subshell photoionization cross sections and asymmetry parameters: 1 ≤ Z ≤ 103. At. Data Nucl. Data Tables, 32, 1–156.Google Scholar
First citation Yoshimatsu, M. & Kozaki, S. (1977). High-brilliance X-ray sources. X-ray optics, edited by H.-J. Queisser, Chap. 2. Berlin: Springer.Google Scholar
First citation Young, R. A. (1963). Balanced filters for X-ray diffractometry. Z. Kristallogr. 118, 233–247.Google Scholar
First citation Young, R. A. (1993). The Rietveld method. Oxford University Press.Google Scholar
First citation Zachariasen, W. H. (1945). Theory of X-ray diffraction in crystals. New York: Dover.Google Scholar