International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 4.2, p. 201

Section 4.2.2.2. Known problems

R. D. Deslattes,c E. G. Kessler Jr,f P. Indelicatoe and E. Lindrothg

4.2.2.2. Known problems

| top | pdf |

Aside from the particular issues noted above, all previous wavelength tables had certain limitations arising from the procedures used in their generation. In particular, except for a small group of five [K\alpha ] spectra (Bearden, Thomsen et al., 1964[link]), the Bearden tables relied entirely on data previously reported in the literature. Both of the other tabulations also proceeded using only reported experimental values (Cauchois & Hulubei, 1947[link]; Cauchois & Senemaud, 1978[link]). In the Bearden compilation process, available data for each emission line were weighted according to claimed uncertainties, modified in certain cases by Bearden's detailed knowledge of the measurement practices of the major sources of experimental wavelength values. The complete documentation of this remarkable undertaking is, unfortunately, not widely accessible. Our evident need to understand the origin of the `recommended' values has been greatly aided by the availability of a copy of the full documentation (Bearden, Thomsen et al., 1964[link]).

The actual experimental data array from which the previous tables emerged is not complete, even for the prominent (`diagram') lines. In the cases where experimental data were not available [as can be seen only in the source documentation (Bearden, Thomsen et al., 1964[link])], the gaps were filled by interpolated values based on measurements available from nearby elements, plotted on a modified Moseley diagram in which the [Z^{2}] term dependence is taken into account (Burr, 1996[link]). In the end, such a smooth scaling with respect to nuclear charge suppresses the effects of the atomic shell structure, a practice that must be avoided in order to obtain the significant improvement in the database that we hope to provide. Also obscured in smooth Z scaling are detectable contributions arising from the fact that nuclear sizes do not change smoothly as a function of the nuclear charge, Z.

References

First citation Bearden, J. A., Thomsen, J. S., Burr, A. F., Yap, F. Y., Huffman, F. N., Henins, A. & Matthews, G. D. (1964). Remeasurement of selected X-ray lines and reevaluation of all published wavelengths on a consistent and absolute scale. Baltimore, Maryland: The Johns Hopkins University.Google Scholar
First citation Burr, A. F. (1996). Personal communication.Google Scholar
First citation Cauchois, Y. & Hulubei, H. (1947). Tables de constantes et données numeriques. I. Longueurs d'onde des emissions X et des discontinuités d'absorption X. Paris: Herman.Google Scholar
First citation Cauchois, Y. & Senemaud, C. (1978). Tables internationales de constantes selectionnées. 18. Longeurs d'onde des emissions X et des discontinuités d'absorption X. London: Pergamon Press.Google Scholar








































to end of page
to top of page