International
Tables for Crystallography Volume C Mathematical, physical and chemical tables Edited by E. Prince © International Union of Crystallography 2006 |
International Tables for Crystallography (2006). Vol. C. ch. 4.2, pp. 201-202
|
Historically, from the first realizations of refined spectroscopy in the X-ray region (ca 1915–1925) up to the period 1975–1985, the best measured X-ray wavelengths had to be expressed in some local unit, most often designated as the xu (x unit) or kxu (kilo x unit). Uncertainty in the conversion factor between the X-ray and optical scales was the dominant contributor to the total uncertainties in the wavelength values of the sharper X-ray emission lines, such as those most frequently used in crystallography. (For a discussion of the present values in relation to previously assigned numerical values on the various scales, see Subsection 4.2.2.14.) This local unit was, for most of the time, `officially' defined by assigning a specific numerical value to the lattice period of a particular reflection from `the purest instance' of a particular crystal. Originally this was rocksalt; later it was calcite. In practice, most work used as de facto standards certain values for Cu
and Mo
whose inconsistency, though noted by some crystallographers earlier, was seriously addressed by Bearden and co-workers only in the 1960's (Bearden, Henins et al., 1964
). This early history was summarized in 1968 (Thomsen & Burr, 1968
). Connection of the X-ray wavelength scale to the primary realizations of the length (wavelength) unit in the `metric system' was primarily (at least after about 1930) through ruled grating measurements of longer-wavelength X-ray lines such as Al
.
The remainder of the X-ray wavelength database was derived from relative measurements using crystal diffraction spectroscopy. Unfortunately, even the most refined among the ruled grating measurements did not give accuracies comparable to the precision accessible by relative wavelength measurements (Henins, 1971). As noted above, in connection with establishing the previous wavelength table, Bearden introduced a new local unit, the Å*, based on an explicit value for the wavelength of W
, chosen to give a conversion factor near unity. This transitional period will not be treated further in the present documentation since, to a substantial extent, developments described in the following paragraphs have effectively eliminated the need for a local scale for X-ray wavelength metrology.
Following the demonstration of crystal lattice interferometry in the X-ray region (Bonse & Hart, 1965a), efforts to combine such an X-ray interferometer with various optical interferometers were undertaken in several (mostly national standards) laboratories. Although the earliest of these, carried out at the National Bureau of Standards (NBS) (now the National Institute of Standards and Technology, NIST) (Deslattes & Henins, 1973
) was, in the end, found to be burdened by a serious systematic error (1.8 × 10−6) in later work at the Physikalisch Technishe Bundesanstalt (PTB) (Becker et al., 1981
; Becker, Seyfried & Siegert, 1982
), it was clear that accuracy limitations associated with ruled grating measurements no longer dominated the metrology of X-ray wavelengths. The origin of the systematic error in the early NBS measurement was subsequently understood (Deslattes, Tanaka, Greene, Henins & Kessler, 1987
), and, more recently, excellent results were obtained in Italy (Basile, Bergamin, Cavagnero, Mana, Vittone & Zosi, 1994
, 1995
) and Japan (Fujimoto, Fujii, Tanaka & Nakayama, 1997
). In all cases, the goal was to obtain an optical measurement of a crystal lattice period (thus far, only Si 220) and to use the calibrated crystals in diffraction spectrometry to establish optically based X-ray wavelengths. Such exercises have been undertaken for several X-ray lines, but the most detailed and well documented results to date were obtained in Jena (Härtwig, Hölzer, Wolf & Förster, 1993
; Hölzer, Fritsch, Deutsch, Härtwig & Förster, 1997
), where the Kα and Kβ spectra of the elements Cr to Cu were evaluated using silicon crystals well connected with the crystal spacings measured at the PTB.
References












