International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 4.2, p. 239

Section 4.2.5.4.2. Laboratory monochromator systems

D. C. Creaghb

4.2.5.4.2. Laboratory monochromator systems

| top | pdf |

Many laboratories use powder diffractometers using the Bragg–Brentano configuration. For these, a sufficient degree of monochromatization is achieved through the use of a diffracted-beam monochromator consisting of a curved-graphite monochromator and a detector, both mounted on the 2θ arm of the diffractometer. Such a device rejects the unwanted Kβ radiation and fluorescence from the sample with little change in the magnitude of the Kα lines. Incident-beam monochromators are also used to produce closely monochromatic beams of the desired energy. Single-reflection monochromators used for the reduction of spectral energy spread are described in Subsections 2.2.7.2[link] and 2.3.5.4[link] .

For most applications, this simple means of monochromatization is adequate. Increasingly, however, more versatility and accuracy are being demanded of laboratory diffractometer systems. Increased angular accuracy in both the θ and 2θ axes, excellent monochromatization, and parallel-beam geometry are all demands of a user community using improved techniques of data collection and data analysis. The necessity to study thin films has generated a need for accurately collimated beams of small cross section, and there is a need to have well collimated and monochromatic beams for the study of rough surfaces. This, coupled with the need to analyse data using the Rietveld method (Young, 1993[link]), has caused a revolution in the design of commercial diffractometers, with the use of principles long since used in synchrotron-radiation research for the design of laboratory instruments. Monochromators of this type are briefly discussed in §4.2.5.4.3[link].

References

First citation Young, R. A. (1993). The Rietveld method. Oxford University Press.Google Scholar








































to end of page
to top of page