International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 5.2, pp. 498-499

Section 5.2.10. Powder-diffraction standards

W. Parrish,a A. J. C. Wilsonb and J. I. Langfordc

a IBM Almaden Research Center, San Jose, CA, USA,bSt John's College, Cambridge CB2 1TP, England, and cSchool of Physics & Astronomy, University of Birmingham, Birmingham B15 2TT, England

5.2.10. Powder-diffraction standards

| top | pdf |

The use of properly characterized materials is an important step in determining the performance characteristics of instruments and methods. The best documented and most widely used standards for powder diffraction are those from the [US] National Institute of Standards and Technology2 (Dragoo, 1986[link]).

Such standards are used as specimens in diffractometers and cameras for angular calibration to determine systematic errors in the observed 2θ's for profile shapes and in intensities for quantitative analysis and for determining instrumental line profiles. The standard may be used separately as an independent specimen (`external standard'), or mixed with the powder to be investigated (`internal standard'). Some examples of the use of standards are given by Hubbard (1983[link]) and Wong-Ng & Hubbard (1987[link]).

The current silicon-powder standard for 2θ calibration is Standard Reference Material (hereinafter abbreviated SRM) 640c; SRM 640, SRM 640a and SRM 640b are no longer available, but data for all four are listed in Table 5.2.10.1[link] for the use of workers who may still have stocks of the earlier standards. The median particle size (mass-weighted distribution) is about 5 µm, and 95% of the particles are < 10 µm. There is a wide range of particle sizes in SRM 640, and sieving is necessary to remove the larger particles. The agreement between SRM's 640 and 640a and between 640 and 640b is one part in 10−5, and between 640a and 640b is two parts in 10−5. The accuracy is given as [3.5\times10^{-5}] for each. All were calculated by the use of the Deslattes & Henins (1973[link]) Cu [K\alpha_1] wavelength of 1.5405981 Å, without refraction correction, and corrected to 298 K. Because this wavelength was later found to have a systematic error (see Section 4.2.2[link] ), and a more accurate value, 1.5405929 (5) Å (see Table 4.2.2.1[link] ), is now available, this wavelength was used for SRM 640c, with the temperature adjusted to 295.6 K. The data for the earlier SRMs have also been adjusted to reflect this more accurate wavelength.

Table 5.2.10.1| top | pdf |
NIST values for silicon standards (λ = 1.5405929 Å, T = 298 K for 640, 640a and 640b, T = 295.6 K for 640c, a0 ± 0.000035 Å, no refraction correction)

StandardYear issueda0 (Å)Cu Kα1
111 (°2θ)444 (°2θ)
64019745.4308628.4427158.6382
640a19825.43080628.4430158.6443
640b19875.43092228.4424158.6315
640c20005.431194628.4410158.6031
Hubbard, Swanson & Mauer (1975[link]).
Hubbard (1983[link]).

Table 5.2.10.2[link] lists the reflection angles for silicon 640c, silver and tungsten calculated from the adjusted NIST lattice parameters and the Table 4.2.2.1[link] value for the Cu [K\alpha _{1}] wavelength. Table 5.2.10.3[link] lists the reflection angles of silicon 640c calculated from the Table 4.2.2.1[link] wavelengths for Mo [K\alpha _{1}], Cr [K\alpha_{1}] and other wavelengths selected for synchrotron radiation users. The high-angle reflections of silicon for Mo [K\alpha _{1}] are listed in Table 5.2.10.4[link]. NIST does not provide a tungsten standard, but reflection angles calculated from a = 3.16523 (4) Å at 298 K for Cu Kα1 = 1.5405929 Å are given in Table 5.2.10.2[link] and in Table 5.2.10.5[link] for a number of other wavelengths.

Table 5.2.10.2| top | pdf |
Reflection angles (°) for tungsten, silver, and silicon (λ = 1.5405929 Å, T = 298 K for tungsten and silver, T = 295.6 K for silicon)

hklTungstenSilverSilicon
a0 = 3.16523 (4) Åa0 = 4.08650 (2) Åa0 = 5.431195 (9) Å (SRM 640c)
11040.262  
111 38.11228.441
20058.25144.295 
21173.184  
22086.99664.43747.300
    
310100.632  
311 77.39056.120
222114.92381.533 
321131.171  
400153.53597.87569.126
    
331 110.49976.372
420 114.914 
422 134.87188.025
511/333 156.73794.947
440  106.701
    
531  114.084
620  127.534
533  136.880
444  158.603

Table 5.2.10.3| top | pdf |
Silicon standard reflection angles (°) (NIST SRM 640c a0 = 5.431195 Å, T = 295.6 K)

hk l  d (Å)IMo [K\alpha_1]1.000000 Å1.250000 Å1.500000 Å1.750000 ÅCr [K\alpha_1]
0.709317 Å2.289746 Å
111 3.13570100.0 12.98818.350 22.994 27.676 32.406 42.829
220 1.92022 71.1 21.287 30.186 37.990 45.981 54.217 73.202
311 1.6375743.5 25.016 35.556 44.873 54.516 64.597 88.714
400 1.3578011.8 30.283 43.215 54.813 67.059 80.245 114.955
331 1.2460017.4 33.074 47.317 60.213 74.016 89.215 133.514
            
422 1.10864 22.3 37.314 53.616 68.635 85.142 104.232  
511[\Big]] 1.04523 8.7 39.670 57.157 73.447 91.704 113.678  
3331.045232.9 39.670 57.157 73.447 91.704113.678 
440 0.96011 6.0 43.356 62.768 81.229 102.734 131.386  
531 0.91804 9.8 45.452 66.000 85.812 109.563 144.772  
            
620 0.85871 7.1 48.789 71.221 93.411 121.713   
533 0.82825 2.9 50.707 74.268 97.981 129.788   
444 0.78393 1.5 53.797 79.258 105.739 146.162   
711[\Big]]0.76052 1.9 55.594 82.211 110.532 160.918   
5510.76052 1.9 55.59482.211110.532 160.918   
            
642 0.72577 5.7 58.506 87.090 118.893    
731[\Big]]0.70708 2.4 60.209 90.004 124.237    
553 0.70708 1.260.20990.004124.237    
800 0.67890 0.5 62.987 94.866 134.030    
733 0.66353 0.8 64.620 97.797 140.757    
            
660[\Big]] 0.64007 0.7 67.297 102.735 155.085    
8220.640071.3 67.297102.735 155.085   
751[\Big]] 0.62714 1.7 68.876 105.740 170.531    
5550.627140.268.876105.740 170.531   
840 0.60723 0.9 71.473 110.855     
            
911[\Big]] 0.59615 0.4 73.013 114.009     
7530.596150.873.013114.009    
664 0.57897 0.7 75.551 119.447     
931 0.56934 0.6 77.061 122.854     
844 0.55432 0.5 79.555 128.846     
            
933[\Bigg]] 0.54586 0.2 81.042 132.692     
7710.54586 0.281.042 132.692    
7550.545860.281.042 132.692    
1020[\Big]] 0.53257 0.4 83.509 139.717     
8620.532570.883.509 139.717    
            
951[\Big]] 0.52505 0.4 84.982 144.460     
7730.525050.2 84.982144.460    
953 0.50646 0.3 88.897 161.678     
1042 0.49580 0.5 91.340      
1111[\Bigg]] 0.489710.1 92.808      
           
7750.489710.1 92.808     
880 0.48005 0.1 95.258      
1131[\Bigg]] 0.47453 0.2 96.729      
9710.474530.2 96.729     
9550.474530.196.729     

Table 5.2.10.4| top | pdf |
Silicon standard high reflection angles (°) (NIST SRM 640c a0 = 5.431195 Å, T = 295.6 K, λ = 0.709317 Å)

hk l d (Å)2θ
1060[\Big]]0.4657299.198
8660.4657299.198
1133[\Big]]0.46067100.686
9730.46067100.686
1200[\Bigg]]0.45260103.183
     
8840.45260103.183
1151[\Big]]0.44796104.694
7770.44796104.694
1222[\Big]]0.44053107.235
10640.44053107.235
      
1153[\Big]]0.43624108.777
9750.43624108.777
1240 0.42937111.378
991 0.42540112.961
1082 0.41903115.642
      
993[\Bigg]]0.41533117.279
11710.41533117.279
11550.41533117.279
13110.41533117.279
1244 0.40939120.064
      
1173[\Bigg]]0.40595121.773
13310.40595121.773
9770.40595121.773
1262 0.40039124.694
1333 0.39717126.497
      
995 0.39717126.497
888 0.39196129.600
1351[\Big]]0.38894131.530
11750.38894131.530
10100[\Bigg]]0.38404134.882
     
10860.38404134.882
14200.38404134.882
1353[\Big]]0.38120136.990
11910.38120136.990
1280 0.37659140.703
      
1193[\Big]]0.37390143.079
9970.37390143.079
1266[\Bigg]]0.36955147.363
101040.36955147.363
14420.36955147.363
      
1371[\Bigg]]0.36701150.191
11770.36701150.191
13550.36701150.191
1284 0.36289155.551
1195[\Bigg]]0.36048159.376
     
15110.36048159.376
13730.36048159.376
1460 0.35658168.113

Table 5.2.10.5| top | pdf |
Tungsten reflection angles (°) (a0 = 3.16523 Å, T = 298 K)

hkl  d (Å)IMo [K\alpha_1]    Cr [K\alpha_1]
0.709317 Å1.000000 Å1.250000 Å1.500000 Å1.750000 Å2.289746 Å
110 2.23816100.018.23525.81732.43139.15746.02761.531
200 1.5826218.125.89936.83446.52156.57567.13092.672
211 1.2922037.031.86045.52857.85170.95885.241124.747
220 1.1190811.136.95353.07667.90384.164102.868 
310 1.0009314.441.50559.93877.27997.059121.896 
            
222 0.913723.345.67966.35286.316110.333146.518 
321 0.8459414.249.57472.46495.262124.894  
400 0.791311.353.25578.376104.339142.810  
330[\Big]]0.746052.056.76884.164113.805   
4110.746054.056.76884.164113.805   
            
420 0.707773.160.14589.893124.027   
332 0.674832.563.41195.621135.687   
422 0.646102.066.586101.406150.632   
510[\Big]]0.620751.669.687107.312    
4310.620753.269.687107.312    
            
521 0.577892.275.717119.815    
440 0.559540.578.668126.656    
530[\Big]]0.542830.881.589134.172    
4330.542830.881.589134.172    
600[\Bigg]]0.527540.284.488142.810    
           
4420.527540.784.488142.810    
611[\Big]]0.513470.687.373153.695    
5320.513471.287.373153.695    
620 0.500470.590.251175.042    
541 0.488411.093.129     
            
622 0.477180.496.016     
631 0.466690.898.919     
444 0.456860.1101.845     
550[\Bigg]]0.447630.2104.802     
7100.447630.3104.802     
           
5430.447630.7104.802     
640 0.438940.3107.800     
552[\Bigg]]0.430730.3110.851     
6330.430730.3110.851     
7210.430730.6110.851     
            
642 0.422970.6113.963     
730 0.415620.3117.150     
732[\Big]]0.401980.5123.837     
6510.401980.5123.837     
800 0.395650.1127.376     
            
741[\Bigg]]0.389610.5131.091     
8110.389610.3131.091     
5540.389610.3131.091     
820[\Big]]0.383840.3135.029     
6440.383840.3135.029     
            
653 0.378320.6139.257     
822[\Big]]0.373030.3143.877     
6600.373030.1143.877     
743[\Bigg]]0.367950.6149.106     
7500.367950.3149.106     
           
8310.367950.6149.106     
662 0.363080.4155.271     
752 0.358391.1163.450     

For calibration at small diffraction angles, NIST provides fluorophlogopite, a synthetic mica, as SRM 675. The (001) lattice spacing, adjusted for the revised wavelength of Cu [K\alpha _{1}], is 9.98101 (7) Å at 298 K. Table 5.2.10.6[link] lists the diffraction angles for Cu [K\alpha _{1}]. NIST advises mixing it with silicon because the higher-angle reflections may be in error because of specimen transparency. SRM 675 was purposely prepared as large particles (up to 75 µm) to encourage preferred orientation of the mica flakes; only the 00l reflections are then observed. The first reflection with Cu [K\alpha_1] radiation for SRM 675 occurs at 8.853° (2θ) (Table 5.2.10.6[link]) and a material that extends the coverage of NIST SRMs down to very low angles is silver behenate (Huang, Toraya, Blanton & Wu, 1993[link]). The long spacing for this material, obtained with synchrotron radiation and by using SRM 640a as an internal standard, is d001= 58.380 (3) Å and, for Cu [K\alpha_1] radiation, there are 13 well defined and evenly spaced 00l reflections in the range 1.5 to 20°(2θ) (Table 5.2.10.7[link]). This material is suitable for use as an external or an internal low-angle calibration standard for the analysis of materials with large unit-cell dimensions and modulated multilayers with large layer periodicity.

Table 5.2.10.6| top | pdf |
Fluorophlogopite 00l standard reflection angles [NIST SRM 675, d(001) = 9.98104 (7) Å, T = 298 K, λ = 1.5405929 Å]

l2θ (°)
18.853
217.759
326.774
435.962
545.397
655.169
765.399
876.255
10101.025
11116.193
12135.674

Table 5.2.10.7| top | pdf |
Silver behenate 00l standard reflection angles [d(001) = 58.380 (3) Å, λ = 1.5405929 Å (Huang, Toraya, Blanton & Wu, 1993[link])]

l2θ (°)
11.512
23.024
34.537
46.051
57.565
69.081
710.599
812.118
913.640
1015.164
1116.691
1218.221
1319.754

Although the reflection angles are given to three decimal places in the tables in this section, the accuracy is lower by an amount that is not known with certainty. The lower accuracy arises from three factors: uncertainties in the lattice parameters of the W and Ag internal standards, the experimental precision, and the methods used. The wavelength given in Table 4.2.2.1[link] is far more accurate than these factors. The tables can probably be used to two places of decimals, the 2θ errors increasing with increasing 2θ.

In using an external standard for calibrating an instrument (without a wide receiving slit), it is essential to minimize specimen-surface displacement, which shifts the measured position of the reflection (Subsection 5.2.3.1[link]). The amount of the shift and even its direction may vary when the specimen is remounted, and it is advisable to make several measurements after removal and replacement, in order to determine the degree of reproducibility. Specimen transparency is equivalent to a variable specimen-surface displacement, since the effective depth of penetration varies with the angle of incidence of the beam. The maximum shift occurs at 2θ equal to 90°, and it vanishes at 0 and 180°. For example, for silicon, the linear absorption coefficient is 133 cm−1 for λ = 1.54 Å and 15 cm−1 for 0.7 Å, shifting the 422 reflection by −0.01° at 88° and −0.05° at 37°, respectively. It should be noted that SRM silicon 640b, as supplied by NIST, exhibits measurable sample broadening (van Berkum, Sprong, de Keijser, Delhez & Sonneveld, 1995[link]) and is thus not suitable for determining instrumental line profiles.

References

First citation Berkum, J. van, Sprong, G. J. M., de Keijser, Th. H., Delhez, R. & Sonneveld, E. J. (1995). The optimum standard specimen for X-ray diffraction line-profile analysis. Powder Diffr. 10, 129–139.Google Scholar
First citation Deslattes, R. D. & Henins, A. (1973). X-ray to visible wavelength ratios. Phys. Rev. Let. 31, 972–975.Google Scholar
First citation Dragoo, A. L. (1986). Standard reference materials for X-ray diffraction. Part I. Overview of current and future standard reference materials. Powder Diffr. 1, 294–304.Google Scholar
First citation Huang, T. C., Toraya, H., Blanton, T. N. & Wu, Y. (1993). X-ray powder diffraction analysis of silver behenate, a possible low-angle diffraction standard. J. Appl. Cryst. 26, 180–184.Google Scholar
First citation Hubbard, C. R. (1983). New standard reference materials for X-ray powder diffraction. Adv. X-ray Anal. 26, 45–51.Google Scholar
First citation Hubbard, C. R., Swanson, H. É. & Mauer, F. A. (1975). A silicon powder diffraction standard reference material. J. Appl. Cryst. 8, 45–48.Google Scholar
First citation Wong-Ng, W. & Hubbard, C. R. (1987). Standard reference materials for X-ray diffraction. Part II. Calibration using d-spacing standards. Powder Diffr. 2, 242–248.Google Scholar








































to end of page
to top of page