International Tables for Crystallography (2006). Vol. C, Section 5.2.11, p. 500.

5. DETERMINATION OF LATTICE PARAMETERS

Table 5.2.10.3. Silicon standard reflection angles (°) (NIST SRM 640c, $a_0 = 5.431195 \text{ Å}$, T = 295.6 K)

h k l	<i>d</i> (Å)	Ι	Mo <i>Kα</i> ₁ 0.709317 Å	1.000000 Å	1.250000 Å	1.500000 Å	1.750000 Å	Cr <i>Kα</i> ₁ 2.289746 Å
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.13570 1.92022 1.63757 1.35780 1.24600	100.0 71.1 43.5 11.8 17.4	12.988 21.287 25.016 30.283 33.074	18.350 30.186 35.556 43.215 47.317	22.994 37.990 44.873 54.813 60.213	27.676 45.981 54.516 67.059 74.016	32.406 54.217 64.597 80.245 89.215	42.829 73.202 88.714 114.955 133.514
$\begin{array}{cccc} 4 & 2 & 2 \\ 5 & 1 & 1 \\ 3 & 3 & 3 \\ 4 & 4 & 0 \\ 5 & 3 & 1 \end{array}$	1.10864 1.04523 1.04523 0.96011 0.91804	22.3 8.7 2.9 6.0 9.8	37.314 39.670 39.670 43.356 45.452	53.616 57.157 57.157 62.768 66.000	68.635 73.447 73.447 81.229 85.812	85.142 91.704 91.704 102.734 109.563	104.232 113.678 113.678 131.386 144.772	
$\begin{array}{cccc} 6 & 2 & 0 \\ 5 & 3 & 3 \\ 4 & 4 & 4 \\ 7 & 1 & 1 \\ 5 & 5 & 1 \end{array}$	$\begin{array}{c} 0.85871 \\ 0.82825 \\ 0.78393 \\ 0.76052 \\ 0.76052 \end{array}$	7.1 2.9 1.5 1.9 1.9	48.789 50.707 53.797 55.594 55.594	71.221 74.268 79.258 82.211 82.211	93.411 97.981 105.739 110.532 110.532	121.713 129.788 146.162 160.918 160.918		
$\begin{array}{cccc} 6 & 4 & 2 \\ 7 & 3 & 1 \\ 5 & 5 & 3 \\ 8 & 0 & 0 \\ 7 & 3 & 3 \end{array}$	0.72577 0.70708 0.70708 0.67890 0.66353	5.7 2.4 1.2 0.5 0.8	58.506 60.209 60.209 62.987 64.620	87.090 90.004 90.004 94.866 97.797	118.893 124.237 124.237 134.030 140.757			
$\begin{bmatrix} 6 & 6 & 0 \\ 8 & 2 & 2 \\ 7 & 5 & 1 \\ 5 & 5 & 5 \\ 8 & 4 & 0 \end{bmatrix}$	0.64007 0.64007 0.62714 0.62714 0.60723	0.7 1.3 1.7 0.2 0.9	67.297 67.297 68.876 68.876 71.473	$102.735 \\102.735 \\105.740 \\105.740 \\110.855$	155.085 155.085 170.531 170.531			
$\begin{array}{ccc} 9 & 1 & 1 \\ 7 & 5 & 3 \\ 6 & 6 & 4 \\ 9 & 3 & 1 \\ 8 & 4 & 4 \end{array}$	0.59615 0.59615 0.57897 0.56934 0.55432	0.4 0.8 0.7 0.6 0.5	73.013 73.013 75.551 77.061 79.555	114.009 114.009 119.447 122.854 128.846				
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.54586 0.54586 0.54586 0.53257 0.53257	0.2 0.2 0.2 0.4 0.8	81.042 81.042 81.042 83.509 83.509	132.692 132.692 132.692 139.717 139.717				
$\begin{array}{ccc} 9 & 5 & 1 \\ 7 & 7 & 3 \\ 9 & 5 & 3 \\ 10 & 4 & 2 \\ 11 & 1 & 1 \\ \end{array}$	$\begin{array}{c} 0.52505\\ 0.52505\\ 0.50646\\ 0.49580\\ 0.48971 \end{array}$	0.4 0.2 0.3 0.5 0.1	84.982 84.982 88.897 91.340 92.808	144.460 144.460 161.678				
$\begin{bmatrix} 7 & 7 & 5 \\ 8 & 8 & 0 \\ 11 & 3 & 1 \\ 9 & 7 & 1 \\ 9 & 5 & 5 \end{bmatrix}$	$\begin{array}{c} 0.48971 \\ 0.48005 \\ 0.47453 \\ 0.47453 \\ 0.47453 \\ 0.47453 \end{array}$	0.1 0.1 0.2 0.2 0.1	92.808 95.258 96.729 96.729 96.729					

5.2.11. Intensity standards

The measurement of intensity falls within the scope of Parts 6 and 7. However, powder methods are much used in quantitative analysis, and the National Institute of Standards and Technology provides five standards for use as internal standards for this purpose and for checking the accuracy of diffractometer and camera intensity measurements. The five materials, certified as SRM 674, are α -Al₂O₃ (corundum), ZnO, TiO₂ (rutile), Cr₂O₃, and CeO₂. Table 5.2.11.1, taken from the NIST certificate, is a

partial list of pertinent data. The lattice parameters have an uncertainty of 3 parts in 10^5 , which must be increased by a factor of 2 or 3 because of uncertainty in internal standards and thermal expansion. The five materials have a wide range of absorption coefficient and the crystallite size (about $2 \mu m$) causes a small profile broadening. The table gives the intensities of the second-and third-strongest lines relative to the strongest = 100, and the final column gives the ratio of the strongest peak to the strongest peak of Al₂O₃.