International
Tables for Crystallography Volume C Mathematical, physical and chemical tables Edited by E. Prince © International Union of Crystallography 2006 |
International Tables for Crystallography (2006). Vol. C. ch. 5.2, pp. 491-492
|
The Bragg angles are determined from the observations by a series of operations that are often quite complex.
For film cameras of diameter 57.3 or 114.6 mm, a simple measurement with a millimetre scale gives θ in degrees (1 mm = 1 or 0.5°). This determination is crude, and ordinarily the lines on the film would be measured with a low-power travelling microscope or a densitometer. The effective camera diameter is found from measurements of fiducial marks imprinted on the film, or by use of the Straumanis film mounting. References to detailed descriptions are given in Section 2.3.4
.
For Bragg–Brentano (Parrish) and Seemann–Bohlin diffractometers, rate-meter measurements with strip-chart recordings have time-constant errors, and precision measurements require step-scanning (Subsection 2.3.3.5
). The data may be analysed to give one or more of the following measures of position:
As usual, it is necessary to distinguish between the precision (reproducibility) of a measurement and its accuracy (extent to which it is affected by systematic errors). In principle, it does not matter if the Bragg angle obtained by any of the above operations is affected by systematic errors, as these can be calculated and allowed for, as described in the following paragraphs. The most precise methods are the peak-search and individual profile-fitting computer procedures. They are routinely capable of a precision of about for reasonably sharp reflections, and are free from the subjective effects that may influence, for example, film measurements or the graphical extrapolation of the mid-points of chords. As well as a measure of the peak position, the peak-search procedure gives a measure of the peak intensity, and the profile-fitting procedure gives a measure of the peak intensity and (if desired) a measure of the integrated intensity.