International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 5.2, p. 494

Table 5.2.4.1 

W. Parrish,a A. J. C. Wilsonb and J. I. Langfordc

a IBM Almaden Research Center, San Jose, CA, USA,bSt John's College, Cambridge CB2 1TP, England, and cSchool of Physics & Astronomy, University of Birmingham, Birmingham B15 2TT, England

Table 5.2.4.1 | top | pdf |
Centroid displacement 〈Δθ/θ〉 and variance W of certain aberrations of an angle-dispersive diffractometer; for references see Wilson (1963[link], 1965c[link], 1974[link]) and Gillham (1971[link])

For the Seemann–Bohlin arrangement, S and R are given by equations (5.2.4.1[link]) and (5.2.4.2[link]); for the symmetrical arrangement, they are equal to R0. Other notation is explained at the end of the table.

Aberration [\langle \Delta(2\theta)\rangle] W
Zero-angle calibration Constant 0
Specimen displacement [-s\{R^{-1}\cos(2\theta-\varphi)+S^{-1}\cos \varphi\}] 0
Specimen transparency
 Thick specimen [-\sin2\varphi/\mu(R+S)] [\sin^22\varphi/\mu^2(R+S)^2]
 Thin specimen See Wilson (1974[link], p. 547)
2:1 mis-setting Zero if centroid of illuminated area is centred [\beta^2 A^2[R^{-1}\cos(2\theta- \varphi)+S^{-1}\cos \varphi]^2/3]
Inclination of plane of specimen to axis of rotation Zero if centroid of illuminated area on equator of specimen [\gamma^2h^2[R^{-1}\cos(2\theta- \varphi)+S^{-1}\cos \varphi]^2/3] for uniform illumination
Flat specimen [-A^2\sin2\theta/3 \,RS] [4A^4\sin^22\theta/45\,R^2S^2]
Focal-line width Small [\sim f^2_1/12S^2]
Receiving-slit width Small [\sim r^2_1/12R^2]
Interaction terms Small if adjustment reasonably good See Wilson (1963[link], 1974[link])
Axial divergence
No Soller slits, source, specimen and receiver equal
[-h^2[(S^{-2}+R^{-2})\cot2\theta+(RS)^{-1}\,{\rm cosec}\, 2\theta]/3] [\eqalign{h^4[\{&7S^{-4}+2(RS)^{-2}+7R^{-4}\}\cot^22\theta \cr &+14(RS)^{-1}(S^{-2}+R^{-2})\cot 2\theta\,{\rm cosec}\, 2\theta \cr &+19(RS)^{-2}\,{\rm cosec}\,^2\,2\theta]/45}]
Narrow Soller slits
 One set in incident beam [-[\Delta^2/12+h^2/3R^2]\cot 2\theta] [\eqalign{ 7[&\Delta^4/720+h^4/45R^2]\cot^2 2\theta \cr &+h^2\,{\rm cosec}^2\,2\theta/9R^2}]
 One set in diffracted beam Replace R by S in the above
  Two sets [-(\Delta^2\cot2\theta)/6] [\Delta^4(10+17\cot^2\,2\theta)/360]
Wide Soller slits Complex. See Pike (1957[link]), Langford & Wilson (1962[link]), Wilson (1963[link], 1974[link]), and Gillham (1971[link])
Refraction [\sim -2\delta\tan\theta] [\sim\delta^2[-6\ln(\Delta/2)+25]/4\mu p]
Physical aberrations See Wilson (1963[link], 1965c[link], 1970a[link], 1974[link]) and Gillham & King (1972[link])

Notation: 2A = illuminated length of specimen; β = angle of equatorial mis-setting of specimen; γ = angle of inclination of plane of specimen to axis of rotation; Δ = angular aperture of Soller slits; μ = linear absorption coefficient of specimen; r1 = width of receiving slit (varies with θ in some designs of diffractometer); s = specimen-surface displacement; f1 = projected width of focal line; h = half height of focal line, specimen, and receiving slit, taken as equal; 1 − δ = index of refraction; p = effective particle size.