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establishment and control of the temperature (Baker, George,
Bellamy & Causer, 1968; Lukaszewicz, Kucharczyk,
Malinowski & Pietraszko, 1978; Okazaki & Ohama, 1979;
Okada, 1982; Soejima, Tomonaga, Onitsuka & Okazaki, 1991),
so that the basic instrument should be relatively simple (Glazer,
1972; Berger, 1984; Clegg & Sheldrick, 1984). Since measure-
ments at many temperatures are then performed, the problem is
to obtain the desired precision in as short a time as possible by
using automatic control (Baker, George, Bellamy & Causer,
1968), special strategy of measurement (Barns, 1972;
Urbanowicz, 1981a), and special sources of radiation [synchro-
tron radiation used by Buras et al. (1977) and Ando, Hagashi,
Usuda, Yasuami & Kawata (1989)]. Analogous problems appear
when the effects of other factors such as pressure (Mauer,
Hubbard, Piermarini & Block, 1975; d’Amour, Denner, Schulz
& Cardona, 1982; Leszczynski, Podlasin & Suski, 1993), or
electric field (Kobayashi, Yamada & Nakamura, 1963) are
examined.

(iv) To detect small differences of lattice parameter between
the sample and the standard or between two points of the same
specimen, the highest precision is required. To improve
resolution in traditional methods, a finely collimated X-ray
beam (Kobayashi, Yamada & Nakamura, 1963) and cameras
with large radius (Kobayashi, Yamada & Azumi, 1968) are
required. Really high precision, which reaches 1 part in 10°, can
be obtained with multiple-crystal (pseudo-non-dispersive)
techniques (Hart, 1969; Buschert, Meyer, Stuckey Kauffman
& Gotwals, 1983).

In the present review, all the methods are classified with
respect to the measurement technique, in particular into
photographic and counter-diffractometer techniques. Moreover,
the methods will be described in approximately chronological
sequence,* i.e. from the earliest and simplest rotating-crystal
method to the latest more-complex non-dispersive techniques,
and at the same time from those of poor accuracy and precision
to those attaining the highest precision and/or accuracy. In each
of the methods realizing a given technique, first the absolute and
then the relative methods will be described.

5.3.2. Photographic methods
5.3.2.1. Introduction

Photographic single-crystal techniques used for unit-cell
determination can be divided into three main groups:

(1) the Laue method with a well collimated beam of
polychromatic X-radiation with a stationary crystal;

(2) methods with a well collimated beam of characteristic
radiation and a moving crystal;

(3) methods with a highly divergent X-ray beam of mono-
chromatic radiation (usually combined with white radiation).

In the past, only techniques belonging to groups (2) and (3)
were used in absolute lattice-parameter measurements. As
recently shown by Carr, Cruickshank & Harding (1992), a
single synchrotron-radiation Laue photograph can provide all
necessary information for the determination of unit-cell dimen-
sions on an absolute scale (though with low accuracy for the
present).

The methods of the second group are popular moving-crystal
methods or their modifications especially adapted for lattice-
parameter determination. Cameras and other equipment for
performing these measurements — with the exception of special
designs - are available in every typical X-ray diffraction

* With some exceptions; for example, multiple-diffraction methods introduced by
Renninger (1937) are placed after the Bond (1960) method.

laboratory. At present, these methods of poor (1 part in 10%)
or moderate (up to 1 part in 10*) accuracy are suitable only for
preliminary measurements.

Less popular and more specific divergent-beam methods (third
group) give satisfactory accuracy (1 part in 10* or 1 part in 10°%),
comparable with that obtained by counter-diffractometer
methods, by means of very simple equipment.

In spite of the common use of counter diffractometers, and of
the increasing use of imaging plates (and synchrotron radiation),
traditional photographic methods of the second and the third
groups are still popular and new designs are reported.

5.3.2.2. The Laue method

As based on polychromatic radiation, the Laue method is, in
principle, useless for accurate lattice-parameter determination.
It is true that, from a single Laue diffraction pattern (in
transmission), one can determine precisely the axial ratios and
interaxial angles (a method based on the gnomonic projection is
described by Amorés, Buerger & Amords, 1975), but the unit
cell determined will differ from the true cell by a simple scale
factor.

The problem of absolute scaling of the cell is important
nowadays, when synchrotron-radiation Laue diffraction patterns
are currently being used for collecting X-ray data (from single-
crystal systems including proteins, for example). As shown by
Cruickshank, Carr & Harding (1992), it is possible to estimate
the scale factor using the minimum wavelength present in the
incident X-ray beam. A method proposed by the authors (Carr,
Cruickshank & Harding, 1992) allows one to determine the unit
cell and orientation of an unknown crystal (in a general
orientation) from a single Laue pattern. The accuracy of the
absolute lattice-parameter determination depends on the accu-
racy with which the minimum wavelength is known for the
experiment and is, at present, about 5% in favourable cases
(while the error in axial ratio determination after refinement is
typically 0.25%). To increase the accuracy, the authors propose
either to record the Laue patterns with an attenuator in the
incident beam that has a suitable absorption edge (4., can
become a sharp and accurately known limit) or to locate the
bromine-absorption edge, if the X-ray detector contains
bromine, as in photographic films and image plates.

5.3.2.3. Moving-crystal methods

Moving-crystal methods of lattice-parameter determination
apply basic photographic techniques, such as:

(1) the rotating- or oscillating-crystal method;

(2) the Weissenberg method;

(3) the technique of de Jong-Bouman; or

(4) the Buerger precession method.

In the first of these methods, the film remains stationary, while
in the others it is moved during the exposure. The principles and
detailed descriptions of these techniques have been presented
elsewhere (Buerger, 1942; Henry, Lipson & Wooster, 1960;
Evans & Lonsdale, 1959; Stout & Jensen, 1968, Chapter 5;
Sections 2.2.3, 2.2.4, and 2.2.5 of this volume) and only their
use in lattice-parameter measurements will be considered here.

5.3.2.3.1. Rotating-crystal method

The rotating-crystal method - the simplest of the moving-
crystal methods - determines the identity period [ along the axis
of rotation (or oscillation), r = ua + vb + we, from the formula

I(uvw) = nl/sinv, (5.3.2.1)
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in which 7 is the number of the layer line and v is the angle
between the directions of the primary and diffracted beams.

The angle v is determined from the measurement of the
distance [, between two lines corresponding to the same layer
number n from the equation

tanv = I,/R, (532.2)

where R is the camera radius.

All the lattice parameters may be determined from separate
photographs made for rotations of the crystal along different
rotation axes, i.e. the system axis, plane and spatial diagonals
(Evans & Lonsdale, 1959), without indexing the photographs. In
practice, however, this method is rarely used alone and is most
often applied together with other photographic methods (for
example, the Weissenberg method), but it is a useful preliminary
stage for other methods. In particular, the length of a unit-cell
vector may be directly determined if the rotation axis coincides
with this vector.

Advantages of this method are:

(a) simple equipment (only rotation of the crystal is required,
since the film is stationary);

(b) immediate determination of direct-cell parameters (photo-
graphs obtained with other cameras afford information about
reciprocal-lattice parameters only);

(c) indexing of the photographs is unnecessary.

Drawbacks of the method are:

(a) poor precision and accuracy of the measurement
(I5d|/d ~ 1072);

(b) small amount of information from a single photograph (one
parameter only);

(c) necessity of taking several photographs in the case of a
lower-symmetry system if this method is the only one used.

5.3.2.3.2. Moving-film methods

A two-dimensional picture of a reciprocal cell from one
photograph can be obtained by the methods in which rotation of
the crystal is accompanied by movement of the film, as in the
Weissenberg, the de Jong-Bouman, and the Buerger precession
techniques. = These  methods give greater precision
(16d|/d ~ 10~*) than the previous one (§5.3.2.3.1).

The advantages of the Weissenberg method in relation to the
other two are:

(a) a simpler camera;

(b) a larger range of reciprocal-lattice points recorded on one
photograph (larger range of 6 angles, up to 90° for the zero
layer).

On the other hand, the disadvantage, in contrast to the de
Jong-Bouman and the Buerger precession methods, is that it
gives deformed pictures of the reciprocal lattice. This is not a
fundamental problem, especially now that computer programs
that calculate lattice parameters and draw the lattice are available
(Luger, 1980). In lattice-parameter measurements, both the
zero-layer Weissenberg photographs and the higher-layer ones
are used. The latter can be made both by the normal-beam
method and by the preferable equi-inclination method. Photo-
graphs in the de Jong-Bouman and precession methods give
undeformed pictures of the reciprocal lattice, but afford less
information about it than do Weissenberg photographs.

5.3.2.3.3. Combined methods

The most effective photographic method of lattice-parameter
measurement is a combination of two techniques (Buerger, 1942;
Luger, 1980), which makes it possible to obtain a three-
dimensional picture of the reciprocal lattice; for example: the

rotation method with the Weissenberg (lower accuracy); or the
precession (or the Weissenberg) method with the de Jong-
Bouman (higher accuracy).

A suitable combination of the two methods will determine all
the lattice parameters, even for monoclinic and triclinic systems,
from one crystal mounting. This problem has been discussed and
resolved by Buerger (1942, pp. 388-390), Hulme (1966), and
Hebert (1978). Wolfel (1971) has constructed a special
instrument for this task, being a combination of a de Jong-
Bouman and a precession camera.

5.3.2.3.4. Accurate and precise lattice-parameter determina-
tions

To measure with a precision and an accuracy better than is
possible in routine photographic methods, additional work has to
be performed. The first methods allowing precise measurement
of lattice parameters were photographic powder methods
(Parrish & Wilson, 1959). Special single-crystal methods with
photographic recording to realize this task (earlier papers are
reviewed by Woolfson, 1970, Chap. 9) combine elements of
basic single-crystal methods (presented in §§5.3.2.3.1 and
5.3.2.3.2) with ideas more often met in powder methods
(asymmetric film mounting). A similar treatment of some
systematic errors (extrapolation) is met in both powder and
single-crystal methods.

(i) The relative accuracy AI/I of the identity period I in the
rotating-crystal method, estimated by differentiation of formula
(5.3.2.1), is given by

Al/I = — cotvAv. (5.3.2.3)

This formula shows that the highest accuracy is obtained for v
tending to 90°. Since reflections with large values of v are
difficult to record in commonly used cameras, a special camera
may be used for this task, in which a flat film is placed
perpendicular to the rotation axis, or a different one, whose axis
coincides with the primary beam (Umansky, 1960). The
accuracy achieved with these improvements is still no better
than 5 parts in 10°.

(i) The asymmetric film mounting proposed by Straumanis &
Ievins (1940) in the case of powder cameras can also be used in
a simple oscillating camera (Farquhar & Lipson, 1946). In
particular, this idea can be realized in a precision Debye-
Scherrer camera adapted to single-crystal measurements by
mounting in it a goniometer head (Popovi¢, 1974). The
Straumanis mounting allows the recording of the high-angle
reflections close together on the film, thus reducing the effect of
film shrinkage and making it possible to measure the effective
camera radius.

(iii) Sometimes, to eliminate systematic errors (uncertainty of
the camera radius), the separations resulting from the wave-
length differences of the Ko; and Ko, doublet are measured
rather than the absolute distances on the film (Main & Woolfson,
1963; Alcock & Sheldrick, 1967). The first reference related to
the zero-layer normal-beam photograph, the second to higher
layer lines (in the equi-inclination method also) and oscillation
photographs.

(iv) Systematic errors connected with film shrinkage can also
be eliminated by means of the ratio method, introduced by
Cernohorsky (1960) for powder samples and adapted by
Polcarova & Zura (1977) for single crystals. In this method,
pairs of reflections that differ from one another in wavelength
and/or in hkl indices are used and the ratio of the two diameters
of the diffraction rings corresponding to these reflections is taken
into account. The accuracy of the method is about 1 part in 10*

509



5. DETERMINATION OF LATTICE PARAMETERS

if systematic errors due to absorption, refraction, Lp factor,
temperature, changes of the camera radius, and misalignment of
the sample and the goniometer are corrected. The ratio method
was generalized by Horvath (1983) to the monoclinic crystal
system.

(v) Graphical extrapolation, similar to that used in powder
methods (Parrish & Wilson, 1959), can also be used for single
crystals (Farquhar & Lipson, 1946; Weisz, Cochran & Cole,
1948), to reduce systematic errors proportional to sinf. Least-
squares refinement, on the other hand, permits a reduction of the
standard deviations of the results (Main & Woolfson, 1963;
Clegg, 1981). Mathematical methods of processing the data
obtained from oscillation photographs, including ‘eigenvalue
filtering’ and profile fitting (Rossmann, 1979; Reeke, 1984) have
been applied to the refinement of unit-cell parameters, crystal
orientation, and reflecting-range parameters needed to process
oscillation photographs.

(vi) By measuring the angle between two reflecting crystal
positions, symmetrical in relation to the primary beam [the idea
used in the original Bragg spectrometer (Bragg & Bragg, 1915)],
one can eliminate some sources of systematic errors. Such a
spectrometer with photographic recording was used by Weisz,
Cochran & Cole (1948). In spite of the great simplicity of the
arrangement, the accuracy obtained was about 1 part in 10*. The
authors indicated the need for introducing counter recording to
the method. 12 years later, their idea was realized by Bond
(1960) (cf. Subsection 5.3.3.4, in particular §5.3.3.4.3).

(vii) The other way of reducing some systematic errors is to
introduce a reference crystal. Singh & Trigunayat (1988)
adapted the idea to the oscillation method. By mounting the
specimen crystal and the reference crystal, properly centred and
set, on two identical goniometer heads with a screw-type base,
they recorded layer lines of the two crystals simultaneously. The
identity period I of the crystal was then determined from the
formula that results from a combination of (5.3.2.1) and
(5.3.2.2) for layer lines of the two crystals (notation of the
present Section):

12012 — m2 )2 12
M_F} , (5.3.2.4)

I_nA{ e
in which /, and /,, are the measured distances between nth
layer lines of the crystal and between mth layer lines of the
specimen, respectively, and I, is the identity period of the
reference crystal. The result is thus independent of the camera
radius. When the differences between [, and /,,, are no greater
than a few mm, the error due to film shrinkage is
automatically taken care of, and the error due to a parallel
shift of the axis of the cylindrical cassette in relation to the
axis of rotation is negligible in practice. The other possible
misalignments related to the cassette and the collimator can be
readily detected beforehand by taking a complete rotation
photograph.

Reference crystals are commonly used in multiple-crystal
methods reviewed in Subsection 5.3.3.7.

5.3.2.3.5. Photographic cameras for investigation of small
lattice-parameter changes

Small changes of lattice parameters caused by thermal
expansion or other factors can be investigated in multiple-
exposure cameras.

Bearden & Henins (1965) used the double-crystal spectrom-
eter with photographic detection to examine imperfections and
stresses of large crystals. The technique allowed the detection of

angle deviations as small as 0.5”. A nearly perfect calcite crystal
was used as the first crystal (monochromator), the sample was
the second. The device distinguished itself with very good
sensitivity. The use of the long distance (200cm) between the
focus and the second crystal made possible resolution of the
doublet Ko, ,, and elimination of the Ko, radiation. An
additional advantage was that the arrangement was less time-
consuming, so that it was suitable for controlling the perfection
of growing crystals and useful for choosing adequate samples for
the wavelength measurements.

Kobayashi, Yamada & Azumi (1968) have described a special
‘strainmeter’ for measuring small strains of the lattice. The strain
x; along an axis normal to the 7 plane results in a change dd; of the
interplanar distance d;:

x; = 8d,/d, = — cot 6,3,. (5.3.2.5)

The use of a large camera radius R = 2639 mm makes it possible
to obtain both high sensitivity and high precision (2 parts in 10°)
even in the range of lower Bragg angles (6 >~ 55°). The device is
suitable for the investigation of defects resulting from small
strains and may be used in measurements of thermal expansion.

Glazer (1972) described an automatic arrangement, based on
the Weissenberg goniometer, for the photographic recording of
high-angle Bragg reflections as a function of temperature,
pressure, time, efc. A careful choice of the oscillation axis and
oscillation range makes it possible to obtain a distorted but
recognizable phase diagram (Fig. 5.3.2.1) within several hours.
The method had been applied by Glazer & Megaw (1973) in
studies of the phase transitions of NaNbO;.

Popovic¢, Sljuki¢ & Hanic (1974) used a Weissenberg camera
equipped with a thermocouple mounted on the goniometer head
for precise measurement of lattice parameters and thermal
expansion in the high-temperature range.

5.3.2.4. The Kossel method and divergent-beam techniques
5.3.2.4.1. The principle

Another group of methods with photographic recording has
been developed in parallel with those discussed in Subsection
5.3.2.3. These are the methods in which the crystal remains
stationary and the diffraction conditions are fulfilled, simulta-
neously for more than one set of crystallographic planes, by the
use of a highly divergent beam, dispersed from a point source
(Fig. 5.3.2.2). The Kossel method (Kossel, 1936, and references
therein), the divergent-beam techniques initiated by Lonsdale
(1947), and their numerous modifications belong to this group.

The excitation of the characteristic X-rays used in these
methods can be performed by X-radiation (Lonsdale, 1947), by
electron bombardment (Kossel, 1936; Gielen et al., 1965;
Ullrich & Schulze, 1972) or by proton irradiation (Geist &
Ascheron, 1984) of a single crystal. The source of emitted
X-rays may be located either in the sample itself (the Kossel
method), on the surface of the sample in a layer of target material
(the pseudo-Kossel method), or outside the sample (the
divergent-beam techniques). The divergent X-ray beam diffracts
from sets of crystallographic planes. The diffracted rays for each
Bragg reflection form a conical surface whose semivertical angle
is equal to 90° — 6 and whose axis is normal to the Bragg plane
(i.e. coincides with the reciprocal-lattice vector).

The conical surface of an %kl reflection can be described in the
form (Morris, 1968; Chang, 1984):

(5.3.2.6)

where (x',y,7) is an orthogonal coordinate system with its
origin at the vertex of the cone and with 7' along the axis of the

X2 +y’2 = tan’a,
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cone and normal to the plane of interest, and « is the semivertical
angle. Since o« depends on the Bragg angle, it is possible to
combine (5.3.2.6) with the Bragg law [equations (5.3.1.1) or
(5.3.1.2)], and so with the lattice parameters. In particular, the
dependence can be presented as:

r 1 2d

i il (5.3.2.6a)
where r = (x2 +y? + z%)'/2.

In another convenient coordinate system (x, y, z) common for

all the cones, say with z along the direction of the incident beam,
(5.3.2.6a) will take the form:

2d
. _=“ (5.3.2.6b)
cx+teytez nk
where c,, ¢,, ¢, are direction cosines of the angles between the 2’

axis and the axes x, y and z, respectively. Since the origin of the
coordinate system has not been changed,

r=0+y + )7 (5.3.2.6¢)

The Kossel lines (Fig. 5.3.2.3) are formed at the intersections of
the cones with a flat film placed parallel to the specimen surface
(Fig. 5.3.2.2). When the film plane is normal to the z axis, and
the focus-to-film distance is equal to Z, putting z=2Z in

395
3-94f
393}
3-92F

3-91f

Pseudocubic subcell parameters (A)

3-90F

3'89L

o

s lovaalaaaal

EECERELE
13-96
33-95
i3-94
:3-93
13-92
_:3-91
23-90

13-89

)

e L 456500506700 800
Temperature (°C)

Fig. 5.3.2.1. (a) Photographic recording of lattice-parameter changes. (b) Corresponding diagram of the variation of lattice parameters in

pseudocubic NaNbO; (Glazer & Megaw, 1973).
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(5.3.2.6b,c) gives the formulae describing the conic section on
the film.

A high-precision Kossel camera is described by Reichard
(1969) and the generation of pseudo-Kossel patterns by the
divergent-beam method has been described by Imura,
Weissmann & Slade (1962), Ellis, Nanni, Shrier, Weissmann,
Padawer & Hosokawa (1964), and Berg & Hall (1975).

The photographs may be in either the transmission or the
back-reflection region (Fig. 5.3.2.2). The second arrangement
seems to be (Lutts, 1968) more suitable for lattice-parameter
determination, since the background is less intensive and the
lines on the photographs have greater contrast. Both possibilities
are used in practice. Photographs in the back-reflection region
have been reported by Imura, Weissmann & Slade (1962),
Ullrich (1967), Newman & Weissmann (1968), Newman &
Shrier (1970), and Berg & Hall (1975). Examples of the use of
the transmission region are given by Yakowitz (1966a), Reich-
ard (1969), and Glass & Weissmann (1969).

The recommended crystal thickness t for work in the

transmission region, according to Hanneman, Ogilvie &
Modrzejewski (1962), is given by:
t=1/02pu;, (5.3.2.7)

where u; is the linear absorption coefficient for K« radiation
generated in the crystal. A more detailed study of the effect of
sample thickness, as well as operating voltage, on the contrast of
Kossel transmission photographs is given by Yakowitz (1966a).

The picture geometry does not depend, in principle, on
whether the Kossel, pseudo-Kossel, or divergent-beam technique
is applied. Imura (1954) has studied in detail the form of the
curves of the light or deficiency type, and recorded both in the

transmission and in the back-reflection region. The curves on
transmission patterns can be considered to be conics; those
recorded in the back-reflection region are related to ellipses, but
of higher order. In general, the photograph has to be indexed
before performing measurement on the film. For this purpose,
the pattern may be compared with a calculated pattern
(gnomonic, orthogonal, cylindrical, or stereographic projec-
tion). For lattice-parameter determination, various features of
the photographs may be used, i.e. intersections or near-
intersections of Kossel lines, their near-tangency, lens-shaped
figures, and the whole lines approximated with a function.

5.3.2.4.2. Review of methods of accurate lattice-parameter
determination

The basis of lattice-parameter determination involves mea-
surements performed on the film. There are various methods
covering most of the different geometrical features of the cones
and recorded pictures. These were reviewed by Lutts (1968),
Yakowitz (1966b, 1969) and Tixier & Waché (1970). In each
case, the wavelength of the excited radiation has to be known.
Often, the resolved Ko, , doublet and/or K § radiation is applied
rather than a single (but most pronounced) Ko, line. The other
data needed (a sufficient number of equations, the solution of
which leads to lattice-parameter determination; camera geome-
try; crystal system; and indices) depend on the method.

Biggin & Dingley (1977) propose a classification of all the
methods using a divergent beam based on the information
required.

(i) All the kinds of information mentioned above are needed in
the earliest method (Kossel, 1936), in which near-tangency of
Kossel lines is taken into account.

/Cone axis normal to the planes

Electron

Divergent"
beam 9

X-ray
beam

cone
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cone

(hkl) planes
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Fig. 5.3.2.2. Schematic representation of the origin of the Kossel lines. (a) The Kossel (1936) method. (b) The divergent-beam method developed
by Lonsdale (1947). (c¢) The proton-induced Kossel effect (Geist & Ascheron, 1984). In (b), the divergent X-ray beam is directed onto the sample
from a point source while in the remaining cases it is generated within a crystal by (a) electrons or (c) protons.

512



5.3. X-RAY DIFFRACTION METHODS: SINGLE CRYSTAL

(i1) As has been shown in successive papers that appeared from
1947 to the early 1970’s, information on camera dimensions can
be eliminated if the crystallographic system is known and the
photograph is indexed. Some dependence between crystal planes
and, as a consequence, between lines on the photograph, is then
taken into consideration. This is of great importance, since

¢ ’ > /V\'l :"
V8, %S AV

RO &‘Qm IR
SRR

»v»"

®

Fig. 5.3.2.3. (a) The Kossel pattern from iron and () the corresponding
stereographic projection (Tixier & Waché, 1970).

camera dimensions, in particular the distance from the focus to
the centre of the photograph, are difficult to measure accurately
and negatively influence the precision and accuracy of the
determined lattice parameters.

The Lonsdale (1947) method is based on triple intersections of
the Kossel lines resulting from multiple-diffraction effects (cf.
Subsection 5.3.3.6), which are dependent on the wavelength, so
first the particular wavelength has to be determined by an
extrapolation. Two or three lines with known indices produced
by different wavelengths (K« , Ko, , and/or K B) are used for this
task (Schwartzenberger, 1959; Mackay, 1966; Isherwood &
Wallace, 1971; Spooner & Wilson, 1973). Similar problems
arise when near-tangency of two lines is taken into consideration
(Kossel, 1936; Mackay, 1966).

With the use of reciprocal-lattice geometry, the equation of the
so-called Kossel plane (Isherwood & Wallace, 1971) for a
diffracting plane (kkl) is given by (Spooner & Wilson, 1973;
Chang, 1984):

1
le* + Lzy* + ng* = E ,
where L,, L,, and L, are direction cosines between the reciprocal

vector H = ha* + kb* + Ic* and the unit-cell vectors a*, b*, ¢*,
i.e.

(5.3.2.8)

=7 (5.3.2.8a)
where H = |H| = 1/d, a* = |a*|, b* = |b*|, ¢* = |¢*|.

In the case of the triple intersection, (5.3.2.8) is satisfied
simultaneously by three sets of diffracting planes, the Miller
indices of those being (hk;l), i=1,2,3. From the Ewald
construction, it follows that the triple point (xj, ¥§, z5) must lie on
the sphere of reflection:

x*2 +y*2 +Z*2 :%
0
The radius of the sphere, 2//,, is the modulus of the double
wavevector defined by Isherwood & Wallace (1971).
For cubic crystals, where H = (h* 4+ k* + [2)'/?/a, the set of
equations to be solved, resulting from (5.3.2.8) and (5.3.2.8a),
which relates to the triple point, takes the form

hoxy + kiys + Lz = (b + & +17)/a,

where i =1, 2, 3.

First, coordinates xg,y;,z; dependent on a are determined
from (5.3.2.9), and next a is calculated from (5.3.2.8b). It
should be noted that the measurements performed on the film are
used here for determination of the wavelength only. As shown
(theoretically and experimentally) by Briihl & Rhan (1985) for
cubic lattices, positions of the lines on the film that result from
the multiple-diffraction phenomenon are insensitive to lattice-
parameter changes (caused by thermal expansion, for example),
while positions of the primary reflections depend on actual
lattice-parameter values. Practical examples of photographic
multiple-diffraction methods are given by Lonsdale (1947) (see
also Tixier & Waché, 1970; Chang, 1984), Isherwood &
Wallace (1966), Isherwood (1968), Isherwood & Wallace
(1970), Spooner & Wilson (1973), Brown, Halliwell & Isher-
wood (1980), and Isherwood, Brown & Halliwell (1981, 1982).

The technique, in which triple intersections of Kossel lines are
analysed, can be wused both for back-reflection and for
transmission. In the second case, the thickness ¢ of the crystal
should be such that u;t >~ 1 [¢f. equation (5.3.2.7)]. However,
thicker crystals, for which u;¢# 2 10, can be examined by
anomalous transmission, if the degree of crystal perfection is

(5.3.2.8b)

(5.3.2.9)
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high (Glass & Moudy, 1974). A correction for displacement of
the conics due to wafer thickness ¢ is necessary in the case when
the intersection lies along the normal to the specimen surface.
One triple intersection allows the determination of the lattice
parameter of a cubic crystal, but for a structure in the
orthorhombic system three such intersections would be required.

Two intersecting Kossel lines sometimes form a lens
configuration (Fig. 5.3.2.4a). The use of such a figure,
consisting of two lenses (Fig. 5.3.2.4b) owing to the resolved
doublet of Ko; and Ko, (or Kp) radiation, makes it possible to
determine lattice parameters without a knowledge of the distance
between the source and the film. Lattice parameters are then
calculated from the ratio L,/L, of the distances L, and L,
between pairs of the sections. Heise (1962) used this method for
cubic crystals in the simplest case, in which the cone axes are
perpendicular to the film (symmetrical method). His idea had
been generalized by Gielen et al. (1965), who formed a theory of
the lens in the case of arbitrarily situated diffracting planes and
arbitrary wavelengths, but for cubic crystals only. Lutts (1968)
derived suitable formulae for cubic, tetragonal, and hexagonal
systems by combining the ratio L,/L, with interplanar spacings
and lattice parameters.

Several features of the Kossel pattern may be jointly taken into
account for its interpretation and lattice-parameter determina-
tion. Hanneman, Ogilvie & Modrzejewski (1962) used the conic
sections formed by Ko; and K g radiation and the lens figures.

Lang & Pang (1995) observed and analysed fine streaks in the
transmitted pseudo-Kossel patterns caused by both the coherent
multiple diffraction and the enhanced Borrmann (anomalous)

Point source of divergent X-ray
at or near surface of crystal

Single crystal slab

a=90°-6

Kossel
conic hyk,/,

"/ Kossel
conic h,k,/,

L—

L=2ttan a

(@

(hykyly)Kar, (hykylp)Ka,

\/
/N

(hyki1) Ka,
)

Fig. 5.3.2.4. Lens-shaped figures formed by pairs of intersecting
conics. (a) Schematic representation of the method of Heise (1962).
(b) The use of the Ko, doublet for precise and accurate lattice-
parameter determination.

transmission. As they have found, these fine-scale features of a
few arcseconds in angular width, which add markers to the
broad-line Kossel patterns, may be taken into account in accurate
lattice-parameter measurements.

(iii) Determination of lattice parameters by means of
techniques utilizing a highly divergent beam becomes much
more complicated if there is no information about indices and the
crystal system. Such a problem arises in the case when the crystal
system of the specimen is unknown or when the lattice is
deformed. Then, a three-dimensional array of intersecting cones
with a common vertex should be taken into consideration.

It is difficult to dispense with the data concerning the camera
geometry. However, the distance of X-ray source from the film
center may be eliminated in calculations when the multiple-
exposure technique is used. This technique, introduced by Ellis
et al. (1964) for back-reflection patterns, depends on recording
the Kossel lines at variable but controlled distances from the
focus to the film (Fig. 5.3.2.5), so that three or more positions of
a cone generator can be established and, as a consequence, the
cone axis and the semivertical angle are determined. The
interpretation of the multiple-exposure pictures is based, in
principle, on the coordinates of general points of lines rather than
on their special properties.

The basic formula valid for all the methods applying the
Kossel idea,

P-N =cosq, (5.3.2.10)
where P is the unit vector defining the cone generator and N is
the axial direction of a cone, can now be fully utilized, since
multiple-exposure techniques make possible accurate calcula-
tions of direction cosines. Lengthy and complicated calculations
resulting from measurements performed on the film may be
realized by means of a computer. A suitable program is given by
Fischer & Harris (1970). This technique has also been applied
and developed by Slade, Weissmann, Nakajima & Hirabayashi
(1964), Shrier, Kalman & Weissmann (1966), Newman &
Weissmann (1968), Schneider & Weik (1968), Fischer & Harris
(1970), Newman & Shrier (1970), Aristov, Shekhtman &
Shmytko (1973), and Soares & Pimentel (1983) for both the
back-reflection and the transmission region.

As mentioned above, the Kossel lines occurring in the back-
reflection region are similar to ellipses; they can be described
using an equation of the fourth degree (Newman, 1970). In
general, the major axes of such ellipse-shaped figures have been

Point source
of X-rays

23

Z

Z

3 A\
/Qi /Z Film 2
7 Rz ‘\
R,

Fig. 5.3.2.5. Schematic representation of the multiple-exposure
technique (after Fischer & Harris, 1970).
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taken into account in lattice-parameter determination. A novelty
introduced by Lider & Rozhansky (1967) was to also use the
minor axes in the calculations. The essential feature of their
method is the location of the X-ray source in the plane of a flat
film.

(iv) The other possibility for gathering the necessary
information for the recorded picture is a more detailed study
of the form of the Kossel lines. Morris (1968) proposed a method
based on the mathematical analysis of a cone, which makes
possible the determination of lattice parameters in any crystal
system, with a relative accuracy as high as 10 parts in 10°. The
necessary calculations can be made by a computer program. A
conic section can usually be expressed by a general equation of
the second degree (Bevis, Fearon & Rowlands, 1970; Harris &
Kirkham, 1971; Morris, 1968):

x* +Ay* +Bxy + Cx + Dy + E =0, (5.3.2.11)

which results from a combination and a transformation of
(5.3.2.6b) and (5.3.2.6¢). The coefficients A, B, C, D, and E,
being functions of the direction cosines and of the ratio 2d/nA,
can be found by the method of least squares. Methods based on
Kossel-line fitting can be realized both in the single-exposure
(Harris & Kirkham, 1971) and in the multiple-exposure
technique (Aristov, Shekhtman & Shmytko, 1973; Aristov &
Shmytko, 1978).

(v) From theoretical considerations based on the shape of
pseudo-Kossel lines (Harris & Kirkham, 1971), it is possible to
eliminate the need for information concerning camera geometry
if the source and the pattern centre are accurately located. Lattice
parameters of an unknown or deformed crystal can thus be
determined with no information other than measurements on the
film and a knowledge of the wavelength.

A general method for locating the X-ray source and the centre
of the pattern — which permits the realization of the above idea -
has been developed by Biggin & Dingley (1977). Its character-
istic feature is the introduction of steel balls between the
specimen and the film; these cast sharp shadows on the film by
blocking the diffuse radiation. Coordinates of points along the
Kossel lines as well as the shadow ellipses recorded on the film
are taken into account in calculations.

5.3.2.4.3. Accuracy and precision

Although the precision theoretically obtainable by means of
the Lonsdale (1947) method is of the order of 1 part in 10°,
this limit is unattainable in practice. The reported values are
in the range of about 1074-10=> A, depending not only on the
method but also on the crystal - its symmetry and perfection.
The highest accuracy known by the author was achieved by
Lonsdale [(1947), 5 x 1073 A, for diamond], Morris [(1968),
2 parts in 10°] and Aristov & Shmytko [(1978),
|8d|/d ~ 3 x 1075, 1-5 x 107> rad for angles between crystal-
lographic directions].

Systematic errors due to the methods in which a divergent
beam is applied have been discussed by Hanneman, Ogilvie &
Modrzejewski (1962), Gielen, Yakowitz, Ganow & Ogilvie
(1965), Beu (1967), Lutts (1968), and Aristov & Shmytko
(1978). The main sources of systematic error are:

(i) those common to all X-ray methods, resulting from a finite
depth of X-ray penetration, wavelength dispersion, refraction
(Isherwood & Wallace, 1966; Isherwood, 1968), and from the
real structure (substructures and mosaic blocks; and

(i) those common to methods with photographic recording,
resulting from film shrinkage and inaccurate determination of
camera dimensions and distances on the film.

The errors of the second group may be to some extent
removed if small differences of the length resulting from the
resolved Ko, doublet are measured on the film rather than
distances due to only one wavelength, and/or if the camera
dimensions can be eliminated from the equations used in the
calculations of lattice parameters (see §5.3.2.4.2). A relative
misorientation between the specimen and the flat film has been
analysed by Lutts (1973).

An error typical for methods realized by means of an electron
microscope or an electron-beam probe may result from the
thermal effects of the electron beam generating a divergent X-ray
beam at the crystal surface. Uncontrolled thermal effects may
also occur in the case of the Kossel method, since the sample is
situated inside the X-ray tube. In the latter method, the
wavelength of the radiation emitted depends on the chemical
composition of the sample, since the sample plays the role of the
anode of the X-ray tube.

The reported precision of the methods, limited by the finite
width of the lines on the photograph, and depending also on the
geometrical features taken into account, is 1 part in 10° to 1 part
in 10°. The highest [0(d)/d = 107] is reported by Hanneman,
Ogilvie & Modrzejewski (1962), Gielen, Yakowitz, Ganow &
Ogilvie (1965), and Lider & Rozhansky (1967). On the other
hand, the lowest (1 part in 10°), obtained by Harris & Kirkham
(1971), is attributed to the method in which neither the indexing
of the lines nor a knowledge of the crystallographic system or
camera geometry is required.

For precision determination of lattice-parameter differences, a
‘point’ source (i.e. as small as possible) is required and the high-
order Kossel lines should be used to obtain both well resolved
Ka, , doublets and ‘thin’ figures. The near-intersections of conic
sections, applied in Lonsdale’s (1947) method, the major axes of
lens-shaped figures, used in Heise’s (1962) method, and the
small spherical polygons formed by several Kossel cones are
very sensitive to lattice-parameter changes, so that these figures
can be taken into account in the precise measurements reported
in §5.3.2.4.4.

5.3.2.4.4. Applications

As was mentioned in §5.3.2.4.3, the methods in which a highly
divergent beam is used are applied both to the accurate
determination of the unit cell and to the precision detection of
lattice-parameter changes or differences. It should be added that
the Kossel method is especially suitable for small single crystals
or fine-grained polycrystals, whereas the other divergent-beam
techniques need larger specimens (Lutts, 1968).

Since all the methods are relatively simple (stationary
specimen, stationary film, simple construction of the camera)
and, on the other hand, are applicable mainly for highly
symmetric systems, they proved to be particularly useful in
studies of metals and semiconductors. Various applications of the
Kossel method and other divergent-beam techniques for this task
have been discussed by Ullrich (1967), Ullrich & Schulze
(1972), and Geist & Ascheron (1984). The latter paper relates
especially to semiconductors.

A task that arises both in metallurgy and in the semiconductor
industry is the examination of the real structure - in particular,
measurements of strains introduced by variation in temperature,
pressure, mechanical stress (elastic strains) or by point defects,
deviation from exact stoichiometry, irradiation damage, and
phase changes (permanent strains).

Measurements of small changes in interplanar spacings of
independent sets of crystal planes enable a stress—strain analysis
to be made (Imura, Weissmann & Slade, 1962; Elllis et al.,
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1964; Slade et al., 1964; Newman & Weissmann, 1968; Berg &
Hall, 1975). A special case of strains is an extensional
deformation of the lattice in the direction of crystal growth
(Isherwood, 1968).

A typical metallurgical problem is the effect of heat treatment
on the microstructure of alloys. An example of the application of
the Kossel method to the task is given by Shinoda, Isokawa &
Umeno (1969), who reported a study of precipitation of o from 8
in copper-zinc alloys. The lattice parameters and thermal
expansion of «-iron and its alloys were examined by Lutts &
Gielen (1971). Structure defects resulting from over-pressure
experiments and annealing were investigated by Potts & Pearson
(1966). Irradiation effects caused by neutrons were the subject of
papers of Hanneman, Ogilvie & Modrzejewski (1962), Yakowitz
(1972), and Spooner & Wilson (1973); those caused by electron
bombardment were reported by Ullrich (1967).

Divergent-beam techniques are considered to be a suitable tool
for studying strains in epitaxic layers (Hart, 1981), since
corresponding lines of the layer and substrate, observed on one
photograph, can be readily identified. Relevant examples are
given by Briihl (1978), Chang, Patel, Nannichi & de Prince
(1979), and Chang (1979), who examined lattice mismatch in
LPE heterojunction systems, and by Brown, Halliwell &
Isherwood (1980), and Isherwood, Brown & Halliwell (1981,
1982), who reported characterization of distortions in hetero-
epitaxic structures together with a theoretical basis (multiple
diffraction) for the method.

Another task of real-structure examination is the determina-
tion of angles between crystal blocks. A method has been worked
out by Aristov, Shmytko & Shulakov (1974a,b).

Divergent-beam techniques can also be used in X-ray topo-
graphic studies, realized either by means of Kossel-line scanning
(Rozhansky, Lider & Lyutzau, 1966) or by line-profile analysis
(Glass & Weissmann, 1969).

Schetelich & Geist (1993) used the Kossel method for lattice-
parameter determination and a qualitative estimation of the
crystal perfection of quasicrystals and showed that the fine
structure of Kossel lines of quasicrystals is the same as observed
for conventional crystals.

Mendelssohn & Milledge (1999) used a Dingley-Kossel
camera for quick and simple computer-aided measurements of
cell parameters of isotopically distinct samples of LiF over a
wide temperature range of 15-375 K.

5.3.3. Methods with counter recording
5.3.3.1. Introduction

Although, theoretically, the limit of accuracy in all methods
based on the Bragg law [equation (5.3.1.1)] is given by the
accuracy of the wavelength measurement (84// ~ 107°), with
photographic recording this limit is not attained. Surprisingly
high accuracy may be offered by accurately applied Kossel or
divergent-beam techniques. In practice, however, even in this
case the accuracy achieved is poorer by an order of magnitude.

The use of Geiger-Miiller, proportional, or scintillation
counters together with a step-scanning motor makes it possible
to record the diffraction profile in a quantitative numerical form
convenient for data processing, to locate it with better accuracy
and precision and, as a consequence, to obtain better accuracy
and precision for the Bragg angle and thus for the lattice
parameter. To make the most of this possibility, theoretical
papers concerning methods of peak location, estimation of
systematic and statistical errors, and optimization of the

measurement were developed in parallel with constructional
and experimental methods.

Methods of lattice-parameter determination with counter
recording form a large and heterogeneous group. As well as
measurements on two- or four-circle standard diffractometers, a
separate method developed by Bond (1960) and a variety of non-
dispersive (X-ray and optical interferometry) and pseudo-non-
dispersive methods (two- and three-circle spectrometers,
multiple-beam techniques, and combined methods) are included
in this group.

5.3.3.2. Standard diffractometers

The determination of lattice parameters by the use of a
standard diffractometer is based, as in the case of photographic
methods, on (5.3.1.1) and (5.3.1.2), and the main task is to
measure a sufficient number of reflections (the 6 values for
various hkl indices) for determining and solving the equations
and for calculating the unknown parameters. The reflections can
be chosen arbitrarily or in a special way (high 6 angle, axial or
non-axial reflections).

The characteristic feature of measurements performed on a
diffractometer is, however, that to satisfy the Ewald condition
for a given reflection the crystal and the detector are rotated or,
depending on the geometry (equatorial or inclination), shifted
round their axes as well. Basic and more detailed information
about the geometry of diffractometers is given elsewhere (Arndt
& Willis, 1966, Chap. 3; Stout & Jensen, 1968, Section 6.3;
Kheiker, 1973, Chap. 4; Luger, 1980, Chap. 4; Section 2.2.6 of
this volume). For calculating the setting angles for given hkl
reflections, the lattice parameters (at least preliminary values)
have to be known, and conversely, if the setting angles are
known, it is possible to calculate or to refine lattice parameters.
Therefore, not only the 6 values (given by the angle 26 of
rotation of the detector about the goniometer axis) but also the
values of the remaining setting angles (i.e. w, ¢, and x of the
crystal rotation in equatorial geometry, or u and ¢ for the crystal
and v for the detector in inclination geometry) can be used for
lattice-parameter determination. This problem can be treated by
a matrix analysis.

5.3.3.2.1. Four-circle diffractometer

In the case of an automated four-circle (equatorial geometry)
diffractometer, the setting angles are calculated by means of the
orientation matrix U, i.e. a matrix such that

A" =UAg, (5.3.3.1)
where
a*
A" = | b (5.3.3.1a)
C*
is the reciprocal-axis system with metric
a? a*b*cosy* a*c*cosp
G ' = | a*b* cos y* b*2 b*c*cosa* | (5.3.3.1b)
a*c*cos f* b*c*cosa* c*?
and
ag
Ag = | bg (5.3.3.1¢)
Cg

is the crystal-fixed orthonormal system. As can be proved
(Busing & Levy, 1967; Hamilton, 1974; Luger, 1980, Section
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