International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 5.3, p. 508

Section 5.3.2.1. Introduction

E. Gałdeckaa

a Institute of Low Temperature and Structure Research, Polish Academy of Sciences, PO Box 937, 50-950 Wrocław 2, Poland

5.3.2.1. Introduction

| top | pdf |

Photographic single-crystal techniques used for unit-cell determination can be divided into three main groups:

  • (1) the Laue method with a well collimated beam of polychromatic X-radiation with a stationary crystal;

  • (2) methods with a well collimated beam of characteristic radiation and a moving crystal;

  • (3) methods with a highly divergent X-ray beam of monochromatic radiation (usually combined with white radiation).

In the past, only techniques belonging to groups (2) and (3) were used in absolute lattice-parameter measurements. As recently shown by Carr, Cruickshank & Harding (1992[link]), a single synchrotron-radiation Laue photograph can provide all necessary information for the determination of unit-cell dimensions on an absolute scale (though with low accuracy for the present).

The methods of the second group are popular moving-crystal methods or their modifications especially adapted for lattice-parameter determination. Cameras and other equipment for performing these measurements – with the exception of special designs – are available in every typical X-ray diffraction laboratory. At present, these methods of poor (1 part in 102) or moderate (up to 1 part in 104) accuracy are suitable only for preliminary measurements.

Less popular and more specific divergent-beam methods (third group) give satisfactory accuracy (1 part in 104 or 1 part in 105), comparable with that obtained by counter-diffractometer methods, by means of very simple equipment.

In spite of the common use of counter diffractometers, and of the increasing use of imaging plates (and synchrotron radiation), traditional photographic methods of the second and the third groups are still popular and new designs are reported.

References

First citation Carr, P. D., Cruickshank, D. W. J. & Harding, M. M. (1992). The determination of unit-cell parameters from Laue diffraction patterns using their gnomonic projections. J. Appl. Cryst. 25, 294–308.Google Scholar








































to end of page
to top of page