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1964; Slade et al., 1964; Newman & Weissmann, 1968; Berg &
Hall, 1975). A special case of strains is an extensional
deformation of the lattice in the direction of crystal growth
(Isherwood, 1968).

A typical metallurgical problem is the effect of heat treatment
on the microstructure of alloys. An example of the application of
the Kossel method to the task is given by Shinoda, Isokawa &
Umeno (1969), who reported a study of precipitation of o from 8
in copper-zinc alloys. The lattice parameters and thermal
expansion of «-iron and its alloys were examined by Lutts &
Gielen (1971). Structure defects resulting from over-pressure
experiments and annealing were investigated by Potts & Pearson
(1966). Irradiation effects caused by neutrons were the subject of
papers of Hanneman, Ogilvie & Modrzejewski (1962), Yakowitz
(1972), and Spooner & Wilson (1973); those caused by electron
bombardment were reported by Ullrich (1967).

Divergent-beam techniques are considered to be a suitable tool
for studying strains in epitaxic layers (Hart, 1981), since
corresponding lines of the layer and substrate, observed on one
photograph, can be readily identified. Relevant examples are
given by Briihl (1978), Chang, Patel, Nannichi & de Prince
(1979), and Chang (1979), who examined lattice mismatch in
LPE heterojunction systems, and by Brown, Halliwell &
Isherwood (1980), and Isherwood, Brown & Halliwell (1981,
1982), who reported characterization of distortions in hetero-
epitaxic structures together with a theoretical basis (multiple
diffraction) for the method.

Another task of real-structure examination is the determina-
tion of angles between crystal blocks. A method has been worked
out by Aristov, Shmytko & Shulakov (1974a,b).

Divergent-beam techniques can also be used in X-ray topo-
graphic studies, realized either by means of Kossel-line scanning
(Rozhansky, Lider & Lyutzau, 1966) or by line-profile analysis
(Glass & Weissmann, 1969).

Schetelich & Geist (1993) used the Kossel method for lattice-
parameter determination and a qualitative estimation of the
crystal perfection of quasicrystals and showed that the fine
structure of Kossel lines of quasicrystals is the same as observed
for conventional crystals.

Mendelssohn & Milledge (1999) used a Dingley-Kossel
camera for quick and simple computer-aided measurements of
cell parameters of isotopically distinct samples of LiF over a
wide temperature range of 15-375 K.

5.3.3. Methods with counter recording
5.3.3.1. Introduction

Although, theoretically, the limit of accuracy in all methods
based on the Bragg law [equation (5.3.1.1)] is given by the
accuracy of the wavelength measurement (84// ~ 107°), with
photographic recording this limit is not attained. Surprisingly
high accuracy may be offered by accurately applied Kossel or
divergent-beam techniques. In practice, however, even in this
case the accuracy achieved is poorer by an order of magnitude.

The use of Geiger-Miiller, proportional, or scintillation
counters together with a step-scanning motor makes it possible
to record the diffraction profile in a quantitative numerical form
convenient for data processing, to locate it with better accuracy
and precision and, as a consequence, to obtain better accuracy
and precision for the Bragg angle and thus for the lattice
parameter. To make the most of this possibility, theoretical
papers concerning methods of peak location, estimation of
systematic and statistical errors, and optimization of the

measurement were developed in parallel with constructional
and experimental methods.

Methods of lattice-parameter determination with counter
recording form a large and heterogeneous group. As well as
measurements on two- or four-circle standard diffractometers, a
separate method developed by Bond (1960) and a variety of non-
dispersive (X-ray and optical interferometry) and pseudo-non-
dispersive methods (two- and three-circle spectrometers,
multiple-beam techniques, and combined methods) are included
in this group.

5.3.3.2. Standard diffractometers

The determination of lattice parameters by the use of a
standard diffractometer is based, as in the case of photographic
methods, on (5.3.1.1) and (5.3.1.2), and the main task is to
measure a sufficient number of reflections (the 6 values for
various hkl indices) for determining and solving the equations
and for calculating the unknown parameters. The reflections can
be chosen arbitrarily or in a special way (high 6 angle, axial or
non-axial reflections).

The characteristic feature of measurements performed on a
diffractometer is, however, that to satisfy the Ewald condition
for a given reflection the crystal and the detector are rotated or,
depending on the geometry (equatorial or inclination), shifted
round their axes as well. Basic and more detailed information
about the geometry of diffractometers is given elsewhere (Arndt
& Willis, 1966, Chap. 3; Stout & Jensen, 1968, Section 6.3;
Kheiker, 1973, Chap. 4; Luger, 1980, Chap. 4; Section 2.2.6 of
this volume). For calculating the setting angles for given hkl
reflections, the lattice parameters (at least preliminary values)
have to be known, and conversely, if the setting angles are
known, it is possible to calculate or to refine lattice parameters.
Therefore, not only the 6 values (given by the angle 26 of
rotation of the detector about the goniometer axis) but also the
values of the remaining setting angles (i.e. w, ¢, and x of the
crystal rotation in equatorial geometry, or u and ¢ for the crystal
and v for the detector in inclination geometry) can be used for
lattice-parameter determination. This problem can be treated by
a matrix analysis.

5.3.3.2.1. Four-circle diffractometer

In the case of an automated four-circle (equatorial geometry)
diffractometer, the setting angles are calculated by means of the
orientation matrix U, i.e. a matrix such that

A" =UAg, (5.3.3.1)
where
a*
A" = | b (5.3.3.1a)
C*
is the reciprocal-axis system with metric
a? a*b*cosy* a*c*cosp
G ' = | a*b* cos y* b*2 b*c*cosa* | (5.3.3.1b)
a*c*cos f* b*c*cosa* c*?
and
ag
Ag = | bg (5.3.3.1¢)
Cg

is the crystal-fixed orthonormal system. As can be proved
(Busing & Levy, 1967; Hamilton, 1974; Luger, 1980, Section
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4.1.1; Gabe, 1980), the reciprocal-cell parameters are related to
the orientation matrix by the following equation:

AAY =U - U, (5.3.3.2)

where A*A* = G~ is given by (5.3.3.1b). It is thus possible to
calculate the lattice parameters from the terms of the orientation
matrix.

The determination of the orientation matrix is usually the first
step in measurements performed on the four-circle diffrac-
tometer. This task can be accomplished when the preliminary
lattice-parameter values are known, and even when they are
unknown. In the first case, the setting angles of two reflections,
and, in the second, of three reflections, have to be determined.
The procedure (Busing & Levy, 1967; Hamilton, 1974) is
usually accomplished by the software of the four-circle
diffractometer. Least-squares refinement of the lattice and
orientation parameters may be performed when the setting
angles of several reflections have been observed (Clegg, 1984).
Appropriate constraints, resulting from the presence of sym-
metry elements in the given crystal structure, to be introduced
during the refinement, are discussed by Bolotina (1989).

In a particular case, the four-circle diffractometer can be used
for lattice-parameter measurements performed in the plane
perpendicular to the main goniometer axis (say, the horizontal
plane), for which x = 0°, so that, in practice, only 26 and w
values are used for lattice-parameter determination (see also
§5.3.3.4.1). The equations to be solved can be simplified if only
axial reflections are taken into account. In an example described
by Luger (1980, Section 4.2.2), the b* axis of a monoclinic
crystal is oriented in the direction of the main axis. Then each of
the two axial lengths, a¢* and c¢* (see Fig. 5.3.3.1), can be
obtained from only one measurement:

. 2siné

=i (5.3.3.3a)
. 2siné

= (5.3.3.3D)

whereas ¢ values of two reflections are used to determine the g*
angle between a* and c¢* axes, since

B" = Proo — Poor- (5.3.3.3¢)

This method is more suitable for orthogonal systems than for
non-orthogonal ones, because of the difficulties in obtaining the
proper orientation in the case of the monoclinic and, particularly,
the triclinic system. In the latter case, the crystal has to be set
three times.

Plane x =0

\¢~circle

#(00/)

©,(h00)

Fig. 5.3.3.1. Determination of reciprocal-lattice angles on the 6 circle
(after Luger, 1980).

5.3.3.2.2. Two-circle diffractometer

Lattice-parameter determination by the use of the two-circle
(inclination) diffractometer, the so-called ‘Weissenberg diffrac-
tometer’, is more troublesome than by means of the four-circle
one, because only two rotations [w (or ¢) of the crystal, and 26
(or y) of the detector] are motor-driven under computer control,
while two inclination angles (u for the crystal and v for the
detector) must be set by hand.

The problem of application of the popular two-circle
(Eulerian-cradle) diffractometer for measurements similar to
those presented in §5.3.3.2.1 was discussed by Clegg & Sheldrick
(1984). The main idea of their paper was to introduce equations
combining setting angles, obtained for selected reflections, with
reciprocal-cell parameters, for calculating the latter. The authors
started with zero-layer reflections for which, for a crystal
mounted about the ¢ axis,

sin@ = (x* +y*)1/2, (5.3.3.4a)
o= w,+60—tan"'(y, x), (5.3.3.4b)
where
x = A(ha* + kb* cos y*)/2, (5.3.3.4¢)
y = (Zkb* sin y*)/2, (5.3.3.44)

and w, is a zero-point correction.

The remaining parameter ¢ had to be determined from the
inclination angle w, measured by hand. The use of zero-layer
reflections was advantageous, apart from the simplicity of the
formulae (5.3.3.4a,b,c,d), because they were less affected by
crystal misalignment than were upper-layer reflections. How-
ever, a zero-point correction w, for w had to be performed. For
this purpose, the w, value was treated as an additional parameter
in off-line least-squares refinement.

As the next step, the authors introduced equations for a
general crystal orientation instead of an aligned crystal (cf.
§5.3.3.2.1) and derived equations defining the setting angles for
an arbitrary reflection useful for data collection from a randomly
oriented crystal if preliminary lattice-parameter values had been
assumed. This made possible measurements of reflections on a
range of layers; only one crystal mounting was required. The
matrix formulae suitable for Eulerian-geometry diffractometers
are also given by Kheiker (1973, Chap. 3, Section 9) and Gabe
(1980).

In order to perform precise refinement of all six cell
parameters, Clegg & Sheldrick (1984) used least squares with
empirical weights:

Wine = 1/ /@pu, (5.33.5)

where wy,,; is the width of the Akl reflection. An additional (third)
motor to control the u circle was proposed.

The authors point out that the two-circle diffractometer, owing
to its simpler construction in comparison with the four-circle
one, is well suited to operations that require additional
attachments; for example, for low-temperature operation.

5.3.3.3. Data processing and optimization of the experiment
5.3.3.3.1. Models of the diffraction profile

Every measurement is based on a certain model of its object.
By ‘model’ we understand here* all the systematized a priori

* Statisticians (Schwarzenbach, Abrahams, Flack, Gonschorek, Hahn, Huml,
Marsh, Prince, Robertson, Rollett & Wilson, 1989) define model as ‘conjecture
about physical reality used to interpret the observations’. Based on their
definition, the author proposes its operative interpretation.
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knowledge concerning the given measurement, necessary for
planning and performing the experiment and for estimating
parameters being determined. The use of an incorrect model
results in a bias, i.e. an additional systematic error that may
appear aside from physical and geometric aberrations. There-
fore, the choice of a well founded model is essential in accurate
measurements.

In the case of lattice-parameter determination, the object of
direct measurements is a diffraction profile, already mentioned
in Subsection 5.3.1.1, and the quantity that is directly
determined from the experiment is the Bragg angle 6.

The a priori information about the diffraction profile should
define: (i) the way in which the Bragg angle 6 is related to the
measured profile 4(w), i.e. a measure of location; (ii) the mean
values of the measured intensities within the profile; and (iii)
their variances.

(i) In traditional photographic methods, the Bragg angle is
determined from the measurement of distance on the film, where
points or lines of the most intense blackening are taken into
account. The blackening, which corresponds to the recorded
intensity, may be estimated qualitatively (‘by eye’) or quantita-
tively, by means of a special device. In the second case, the
intensity is determined as a function of the coordinates on the
photograph, which, in turn, are related to the angular positions
of diffracted beams. The distribution so obtained, i.e. the line
profile or the diffraction profile, allows more precise measure-
ments of the distances and the determination of 6 angles, if a
definition of the point (6, A,) of the profile 4(f), corresponding
to the Bragg angle, i.e. a measure of location, is accepted. The
analogous situation appears when the diffraction profile is
recorded by means of the counter diffractometer. Then the
intensities are measured by a counter, while the angular positions
of the detector (26 scan) or the sample (6 scan), or both (w-26
scan), are controlled by stepping motor. The device is normally
combined with a computer, which facilitates the data processing.

There are various measures of location of the diffraction
profile (Wilson, 1965; Thomsen & Yap, 1968). The most
popular are:

(1) the centroid or the centre of gravity, defined as

2, 2,
0, = [ ono)do / [ h(o)do, (5.3.3.6)
2, 2,

where £2, and 2, are the selected truncation limits;
(2) the median, the value 6,, that equally divides some
specified portion of the line profile, i.e.

.efm h() do = 72 h(0) do; (5.3.3.7)
2,

[Z

m

(3) the geometrical peak - the abscissa value 6, for which the
maximum occurs, i.e.

h(6)

Fig. 5.3.3.2. The extrapolated-peak procedure (after Bearden, 1933).

[dr(6)/ d@]gzgp =0; (5.3.3.8)

(4) the extrapolated peak or the midchord peak, introduced by
Bearden (1933) - the point 6, of intersection of two curves, one
of them approximating the midpoints of chords drawn through
the profile parallel to the abscissa axis (or to the background) and
the other approximating the data points (Fig. 5.3.3.2);

(5) the single midpoint of a chord 6,,,. drawn horizontally at the
defined height, «H, where H is the peak height and « is the
truncation level, 0 < o < 1.

The advantages and disadvantages of these measures of
location have been widely discussed (Wilson, 1965, 1967;
Thomsen & Yap, 1968; Segmiiller, 1970; Kirk & Caulfield,
1977; Grosswig, Jackel & Kittner, 1986; Gatdecka, 1994), the
errors, both systematic (biases) and statistical (variances),
resulting from each of these definitions being taken into account.
The dependence of these errors on the scanning range (truncation
limits) is of great importance. Such features of the definitions as
their simplicity or current usage were also considered.

The geometrical peak of the least-squares parabola, approx-
imating the data points near the top of the profile, distinguishes
itself with the best precision but rather large bias (because of the
asymmetry of the profiles met in practice); the extrapolated peak
- commonly used in the case of the Bond (1960) method
(definition 4) — permits location of the peak with better accuracy
and omitting the dispersion error (cf. §5.3.3.4.3.2). The centre of
gravity, very useful in theoretical considerations (Wilson, 1963),
is strongly dependent on the truncation limits and requires a
rather large scanning range. The choice of the definition of the
measure of location is the first step of lattice-parameter
calculations and also of systematic and statistical error estima-
tion.

In the papers that appeared in the mid-1950’s, and which were
mainly concerned with powder samples, the centre of gravity as
a measure of location was more often used than the peak,
probably owing to its property of additivity (the total systematic
error in the Bragg angle is a sum of the partial errors related to
various physical and apparatus factors) and the estimated errors
were consequently referred to this point. The papers were
reviewed by Wilson (1963, 1980), one of the authors, in the form
of a homogeneous mathematical theory of X-ray powder
diffractometry. Some of the formulae describing corrections
for displacements of the centroid caused by physical and
geometrical factors (collected in convenient tables) proved to
be useful for single-crystal methods as well (Smakula & Kalnajs,
1955; Kheiker & Zevin, 1963). Wilson (1963) derived the
general formula for calculations of the peak displacements due to
various factors. As results from this, the displacements are not
additive and, in the case when at least one of the partial
distributions is asymmetric, the convolution of the curves [see
equation (5.3.1.6)] may lead to an appreciable peak shift, if the
distributions are not known. The problem has been treated by
Berger (1984, 1986a), who used computer modelling.

In later single-crystal methods, in particular in the Bond
(1960) method, the peak position of the profile was determined
rather than the centroid and the respective corrections referred to
the peak (§5.3.3.4.3.2). As a rule, the corrections that related to
the peak position were treated as being independent. In practice,
this simplifying assumption can be sufficient in measurements
with moderate and even high accuracy. However, if the highest
accuracy, say of 1 part in 107, is required, the joint effect of all
the aberrations should be considered (the so-called ‘cross terms’
are used besides the main terms). Such considerations [Hartwig
& Grosswig, 1989; cf. §5.3.3.4.3.2, point (7)] must be based on a
well-founded physical model of the diffraction profile.
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(ii) As already mentioned in Subsection 5.3.1.1, the diffraction
profile can be described as a convolution of several factors
(distributions), namely the wavelength distribution, crystal
profile and certain aberration profiles. To the so-obtained net
profile [equation (5.3.1.6)], a background should be added -
constant in the case of an w scan (as in one-crystal spectrometers,
for example), and more complex (but usually approximated with
a straight line within a narrow angular range) in other cases.
Thus, to describe accurately the distribution of the mean values of
measured intensities, all individual distributions must be given.

Such complete syntheses of the diffraction profile are rarely
performed, and only for the highest-accuracy absolute measure-
ments (Hértwig, Holzer, Forster, Goetz, Wokulska & Wolf,
1994). Since one of the basic factors of the convolution model is
the wavelength distribution that characterizes a given source of
radiation, its accurate determination and proper scaling in metric
units is of primary importance in high-accuracy lattice-parameter
measurements. At present, only a few such measurements are
reported, which relate to the CuKo emission line (Berger,
1986b; Hartwig, Holzer, Wolf & Forster, 1993; Hértwig,
Bak-Misiuk, Berger, Briihl, Okada, Grosswig, Wokulska &
Wolf, 1994) and to the Cu K 8 line (the latter paper). Owing to a
relatively simple analytical model proposed by Berger (1986b) to
describe the K« , doublet, the measurement results are easy to
handle.

Profiles connected with individual apparatus factors (collima-
tion, for example) can also be, in principle, described
analytically, under some simplifying assumptions. Examples of
such profiles are distributions related to the vertical divergence
of the beam (Eastabrook, 1952) and to the horizontal (in-plane)
divergence (Urbanowicz, 1981a). These are general enough, so
can be calculated for given apparatus parameters. While
performing high-accuracy measurements, however, the validity
of all respective accompanying assumptions must be carefully
considered (Urbanowicz, 1981b; Hirtwig & Grosswig, 1989;
Hartwig et al., 1993).

In wider practice, there is a tendency towards using simpler
descriptions of the diffraction profile. Often, one of the factors,
apart from the spectral distribution, is dominant, and the
influence of the other ones can be neglected. Berger (1986b),
for example, neglecting small effects of both the vertical
divergence and the crystal profile, obtained an analytical model
of the measured Cu K« emission spectrum, with several adjusted
parameters, and so managed to determine the pure CuKo
emission-spectrum profile without the necessity of calculating the
deconvolution of the measured spectrum in relation to the
horizontal-divergence profile.

The choice of model of the shape of the diffraction profile
depends, of course, on the purpose for which it is applied. The
simplest possible descriptions are used in low- or medium-
accuracy measurements, in which first the measured values of
Bragg angles are determined by approximation of the measured
profiles with simple analytical functions (polynomials or
so-called shape functions), the parameters of which have no
physical meaning, and then all necessary corrections are
calculated and subtracted from the measured Bragg angles -
under the assumption of their additivity, mentioned in (i) - to
obtain their true values. Another application of the simple
models is just the estimation of systematic and statistical errors
of the Bragg-angle determination. The choice and use of such
simple models will be shown in §5.3.3.3.2.

(iii) The knowledge of variances (and covariances) of recorded
counts is needed to evaluate the goodness of fit while
approximating the measured profile with a given model function
(appropriate criteria have been formulated by Gatdecka,

1993a,b) and to estimate the precision of the Bragg-angle
determination.

Most often, one assumes that the variances of measured
intensities are defined by the Poisson statistic, i.e.

o*(h) = h,

where 4 is the intensity in number of counts.

Other factors affecting the statistics of recorded counts and the
validity of the assumption [equation (5.3.3.9)] have been taken
into consideration by BacCkovsky (1965) [see also equations
(5.3.3.17) and (5.3.3.18) and the comments on these], Wilson
(1965), and Gatdecka (1985). The factors are mostly errors in
the angle setting and reading and also fluctuations of the primary-
beam intensity, of the counting time, and of the temperature of
the sample. The use of automatic scanning can cause correlations
between intensities measured at different points in the profile
(Gatdecka, 1985).

(5.3.3.9)

5.3.3.3.2. Precision and accuracy of the Bragg-angle
determination; optimization of the experiment

The analysis of the variance o%(f,) of a chosen measure
of location permits a combination of the precision of the
Bragg-angle determination, and so of the lattice-parameter
determination [equation (5.3.1.4)], with the scanning range
282 = 2, — 2, [see definition (1), §5.3.3.3.1] or truncation
level « [see definition (5)], the number of measuring points
n (usually n=2p+41), the parameters of the profile
(number of counts H in the peak position, the half-width
wy,), and its shape. It is convenient to present the profile
h(P) in a standardized form (Thomsen & Yap, 1968) as:

h(0) = Hv[x(0)], (5.3.3.10)
where
x(6) =2 6= 0 (5.3.3.10a)
h
are standardized angle values and
v(x) = h/H (5.3.3.10D)

is the shape function, not dependent on the parameters H and w),.
For each measure of location [definitions (1)-(5) of
§5.3.3.3.1(i)], there is the dependence:

2
@y,

2
6,) = F—, 5.3.3.11
o (6o) 1T ( )
where 1, is the peak intensity, T'is the total counting time, and F
is a dimensionless factor that depends on the measure of location
and the shape of the profile.
Since, in the case of fixed-time counting, the total counting

time 7 is proportional to the number n of measuring points:
T =nAt, (5.3.3.12)

where At is the counting time, and since the number of counts £

is proportional to the intensity I
h = 1At, (5.3.3.13)

and, in particular, the number of counts H in the peak position is
proportional to the peak intensity 7,

H =1,At, (5.3.3.13a)
the dependence (5.3.3.11) can be presented as
F w?
2(0p) = — 2. 5.3.3.14
0*(0) =~ = (5.33.14)
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Thus, for a given measure of location and given shape of the
profile [equations (5.3.3.10), (5.3.3.10b)], the variance o*(6,)
depends on the ratio w?2/H of the profile parameters (w,, H) and
decreases with an increase of the number of points, n.

In particular, the variance 02(9p) of the peak [definition (3),
§5.3.3.3.1] of the least-squares parabola has been estimated
(Wilson, 1965) as

3H
2ps2[h'(60,)F

where h"(6,) is the second derivative of /() in the peak position
and p is a number such that n=2p+1 (n=2p, if p is
sufficiently large).

Taking into account the standardization performed [equations
(5.3.3.10), (5.3.3.10a,b)], equation (5.3.3.15) can be rewritten
in the form:

o*(6,) = (5.3.3.15)

1 3 w?
0)=— e .3.3.16
) = e OF B (5.3.3.16)
where X is the standardized scanning range
X =22/w, (5.3.3.16a)

and v"(0) is the second derivative of the shape function in the
peak positions. By comparing (5.3.3.16) and (5.3.3.14), we find
the factor F in this case to be

3
" or

From (5.3.3.14) and (5.3.3.16b), the variance of the peak of
the least-squares parabola decreases with an increase of the
scanning range. On the other hand, the bias of the peak
position, resulting from the asymmetry of the profile, is
proportional to £2* (Wilson, 1965):

A6, = 2(2 o)V (u,)/V'(u,)],

where v'(u,) and v""(u,) are the second and third derivatives of a
function describing the profile at its peak position u,. These two
aspects should be taken into account in choosing the scanning
range. Yet, as shown by Gatdecka (1993b; Section 5),
(5.3.3.16¢) may be applied to reduce the bias by extrapolating
to £2 = O the results obtained within various scanning ranges.

In the case of polynomials of higher (and even) degrees
(m=4, 6, 8 and 0.5 <« X « 1, the factor F can be expressed
by a semi-empirical dependence (Thomsen, 1974; Gatdecka,
1993b):

(5.3.3.16b)

(5.3.3.160)

F =0.0017 m? (tan~! X)/X°, (5.3.3.16d)

but it is difficult to evaluate the bias. Therefore, as shown by
Gatdecka (1993b), polynomials of higher degrees have no
advantage over a least-squares parabola.

To minimize the bias, a reasonable shape function may be
used rather than a polynomial (Gatdecka, 1993a,b). The function
should be continuous (including its derivatives), not negative and
closely related to known physical models of the diffraction
profiles. Since the measured diffraction profiles are, as a rule,
asymmetric, the proper selection of a description of asymmetry
is of primary importance. The use of the so-called ‘split
functions’, consisting of two ‘half’ functions of the same (or
different) shape and different half-widths, leads to a noticeable
bias, so such functions must not be used for accurate lattice-
parameter determination.

The variance o0°(6,.) of a single midpoint of a chord
[definition (5), §5.3.3.3.1] has been estimated by Backovsky
(1965) as

() = %(6) + 0*(h) /[ ), (5.3.3.17)

where 02(6,) and o2(h;) are the variances of the coordinates 6 and
h, respectively, and /'(0) is the first derivative at the ith point. If
it is assumed that 02(;) is small in relation to the second
component of (5.3.3.17) and if (5.3.3.9) and the standardizations

(5.3.3.10), (5.3.3.10a,b) are taken into consideration,
(5.3.3.17) can be rewritten in the form:
2
20,0) = 0 5.3.3.18
o ( mc) 4[V/(xl')]2 H 4 ( )
where V'(x;) is the first derivative of the shape function in the ith
position.
Comparison of (5.3.3.18) and (5.3.3.14), with n = 2, leads to
V.
= . 5.3.3.18
2P (33318

For an arbitrary shape function v(x) describing the diffraction
profile, it is thus possible to find such a truncation level & = &,
[§5.3.3.3.1, definition (5)], for which F is a minimum. If the
shape function is the Cauchy function,

1
y=—
1+ x2

the optimum truncation level is «,, = 2/3, and the resulting
factor, F = F,;, = 0.84.

In spite of a large bias introduced by the midpoint of a single
chord (the difference between its position and the peak position),
this measure of location is preferred by Barns (1972), because
the calculations are less time-consuming than those for other
points of the profile. Barns takes « = 0.5 [F = 1 for the Cauchy
function; equations (5.3.3.18a), (5.3.3.19)] and compensates the
bias at this level by determining an effective value of the
wavelength based on a silicon standard.

The estimators of the variance for the centroid and the median
given by Wilson (1967), or estimators of both the variance and
the bias of the extrapolated-peak position given by Galdecka
(1994) can also be the basis of the choice of the scanning range if
these measures of location are applied.

The other possibility of affecting the precision of the
measurements is to change the shape and the parameters of the
profile [see equations (5.3.3.14), and (5.3.3.16b) or (5.3.3.18a)]
by changing the apparatus parameters [the influence on 4,(6),
equation (5.3.1.6)], or the X-ray source profile %,(6), or the
crystal profile h(6).

An example of the first possibility is the optimization of the
parameters of in-plane collimation in the case when the peak of
the least-squares parabola is used as the measure of the location
(Urbanowicz, 1981a). Since both the shape and the parameters
of the profile depend on the collimation parameters, the task
is to choose collimator-slit dimensions to minimize the value
(wi/H){1/[V'(0)]*} [¢f. equation (5.3.3.16)]. As a result of
detailed considerations, under the assumption given by (5.3.3.9),
the optimum exists and is defined by the following formula:

d, =d,=0565Low,, (5.3.3.20)

where d; and d, are the widths of the slits, L is the collimator
length, and w; is the half-width of the original profile #,(0) [cf.
equations (5.3.1.6), (5.3.1.7), and (5.3.1.8)]. Systematic errors
connected with collimation have been discussed separately
(Urbanowicz, 1981b).

The width of the original profile 4,(f) can be reduced by
means of spectrally narrow sources or by the use of additional
crystal(s) in multiple-crystal methods (Subsection 5.3.3.7). The
latter also affects the crystal profile 4.(6).

(5.3.3.19)
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5.3.3.4. One-crystal spectrometers
5.3.3.4.1. General characteristics

A diffractometer in which both 26 and w scans are available,
intended for precise and accurate lattice-parameter determina-
tion, is sometimes called a one-crystal spectrometer, by analogy
with a similar device used for wavelength determination. This
name has been used by Lisoivan (1982), who in his review paper
described various properties and applications of such a device.

Bragg-angle determination with the one-crystal spectrometer
can be performed in an asymmetric as well as in a symmetric
arrangement (Arndt & Willis, 1966, pp. 262-264). In the
asymmetric arrangement (Fig. 5.3.3.3a), the angle 26 is the
difference between two detector positions, related to the
maximum intensity of the diffracted and the primary beam,
respectively. Bragg-angle determination in such an arrangement
is subject to several systematic errors; among these zero error,
eccentricity, and absorption are of great importance. As shown
by Berger (1984), the latter two errors can be eliminated when
Soller slits are used.

To eliminate the zero error, a symmetric diffractometer may
be used, in which each measurement of the Bragg angle is
performed twice, for two equivalent diffracting positions of the
sample, symmetrical in relation to the primary-beam direction
(Fig. 5.3.3.3b). The respective positions of the counter (or
counters, since sometimes two counters are used) are also
symmetrical. Such an arrangement may be considered to be
(Beu, 1967), in some ways, the diffractometer counterpart of the
Straumanis film method (Straumanis & IevinS, 1940). From
geometric considerations, the absolute value of the angle
between the two counter positions is 46 and the absolute value
of the angle between the two sample positions, @, and w,, is
180°-26, so that both 26 and w scans can be used for the Bragg-
angle determination.

As was mentioned in §5.3.2.3.4(vi), the idea of calculating the
6 angle from the two sample positions has been used with
photographic methods (Bragg & Bragg, 1915; Weisz, Cochran
& Cole, 1948). Bond (1960), in contrast, was the first to apply
this to measurements on the counter diffractometer, and proved
that, owing to the geometry, not only the zero error but also the
eccentricity, absorption, and several other errors can be reduced.

5.3.3.4.2. Development of methods based on an asymmetric
arrangement and their applications

Although the Bond (1960) method, based on a symmetric
arrangement presented in §5.3.3.4.3, makes possible higher
accuracy than that obtained by means of a standard diffrac-

(hkl) planes

Incident beam

26

Detector

(@)

tometer, an asymmetric arrangement proves to be more suitable
for certain tasks connected with lattice-parameter measurement,
because of its greater simplicity. The more detailed arguments
for the use of such a device result from some disadvantages of
the Bond method, discussed in §5.3.3.4.3.4.

One of the earliest and most often cited methods of lattice-
parameter determination by means of the counter single-crystal
diffractometer (in an asymmetric arrangement) is that of
Smakula & Kalnajs (1955). The authors reported unit-cell
determinations of eight cubic crystals. The systematic errors
due to seven factors were analysed according to the formulae
derived by Wilson (1950) and Eastabrook (1952) for powder
samples, and valid also for single crystals. The lattice parameters
computed for various diffraction angles were plotted versus
cos? @; extrapolation to 20 = 180° gave the lattice parameters
corrected for systematic errors. Accuracy of 4 parts in 10°,
limited by the uncertainty of the X-ray wavelength, and precision
of 1 part in 10° were achieved.

A more complete list of factors causing broadening and
asymmetry of the diffraction profile, and so affecting statistical
and systematic errors of lattice-parameter determination, has
been given by Kheiker & Zevin (1963, Tables IV, IVa, and IVD).
Since the systematic errors due to the factors causing asymmetry
(specimen transparency, axial divergence, flat specimen) are, as
a rule, dependent on the Bragg angle and proportional to cos6,
cos? 6, cot @ or cot? 6, they can be removed or reduced - as in the
method of Smakula & Kalnajs (1955) - by means of extrapola-
tion to 6 = 90°. The problem has also been discussed by Wilson
(1963, 1980) in the case of powder diffractometry [cf.
§5.3.3.3.1(1)]. When comparing the considerations of Kheiker
& Zevin and Wilson [the list of references concerning the subject
given by Kheiker & Zevin (1963) is, with few exceptions,
contained in that given by Wilson (1963)], it will be noticed that
some differences in the formulae result from differences in the
geometry of the measurement rather than from the different
nature of the samples (single crystal, powder).

As in the photographic methods, the accurate recording
of the angular separation between Ko and K diffraction lines
can be the basis for lattice-parameter measurements with a
diffractometer (Popovi¢, 1971). The method allows one to
reduce the error in the zero setting of the 26 scale and the error
due to incorrect positioning of the sample on the diffractometer,
since the angular separations are independent of the zero
positions of the 26 and w scales.

An example of a contemporary method of lattice-parameter
determination is given by Berger (1984). As has been mentioned
in §5.3.3.4.1, the characteristic feature of the device is the Soller
slits, which limit the divergence of both primary and diffraction

Detector

(]

Fig. 5.3.3.3. Determination of the Bragg angle by means of the one-crystal spectrometer using (a) an asymmetric or (b) a symmetric arrangement.
The zero position of the detector arms must be known in (a), but not in (b). After Arndt & Willis (1966).
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beams and, at the same time, eliminate errors due to eccentricity
and absorption. On the other hand, systematic errors due to
refraction, vertical inclination, vertical divergence, and Soller-
slit inaccuracy, as well as asymmetry of profiles and crystal
imperfection, have to be analysed.

Since, in this case, the angle between the incident and the
reflected beam is measured, the inclinations of both beams must
be considered. As a result of the analysis [analogous to that of
Burke & Tomkeieff, 1969; referred to in §5.3.3.4.3.2(4)], the
following expression for the angular correction A6, (to be added
to the measured value of 6) is obtained:

a6, = Oty
"7 2sin26 4tan26’

where « and y are the vertical inclinations of the incident and
reflected beams, respectively. The correction for vertical
divergence is presented in §5.3.3.4.3.2(3).

The Soller-slit method, the accuracy and precision of which
are comparable to those obtained with the Bond method, is
suitable both for imperfect crystals, since only a single
diffracting position of the sample is required, and for perfect
samples, when an exactly defined irradiated area is required. It
is applicable to absolute and to relative measurements. Examples
are given by Berger, Rosner & Schikora (1989), who worked
out a method of absolute lattice-parameter determination of
superlattices; by Berger, Lehmann & Schenk (1985), who
determined lattice-parameter variations in PbTe single crystals;
and by Berger (1993), who examined point defects in II-VI
compounds.

An original method, based on determining the Bragg angle
from a two-dimensional map of the intensity distribution (around
the reciprocal-lattice point) of high-angle reflections as a
function of angular positions of both the specimen and the
counter, was described by Kobayashi, Yamada & Nakamura
(1963) and Kobayashi, Mizutani & Schmidt (1970). A finely
collimated X-ray beam, with a half-width less than 3’, was used
for this purpose. The accuracy of the counter setting was £0.1°,
the scanning step A6 = 0.01°. Systematic errors depending on
the depth of penetration and eccentricity of the specimen were
reported, and were corrected both experimentally (manifold
measurements of the same planes for different diffraction ranges,
and rotation of the crystal around its axis by 180°) and by means
of extrapolation. The correction for refraction was introduced
separately. The method was used in studies of the antiparallel
180° domains in the ferroelectric barium titanate, which were
combined with optical studies.

The determination of variations in the cell parameter of GaAs
as a function of homogeneity, effects of heat treatments, and
surface defects has been presented by Pierron & McNeely
(1969). Using a conventional diffractometer, they obtained a
precision of 3 parts in 10° and an accuracy better than 2 parts in
10%. The systematic errors were removed both by means of
suitable corrections (Lorentz-polarization factor and refraction)
and by extrapolation.

A study of the thermal expansion of «-LilO; over a wide range
of temperatures (between 20 and 520K) in the vicinity of the
phase transition has been reported by Abrahams et al. (1983).
Lattice-parameter changes were examined by means of a
standard diffractometer (CAD-4); absolute values at separate
points were measured by the use of a Bond-system diffrac-
tometer.

An apparatus for the measurement of uniaxial stress based on a
four-circle diffractometer has been presented by d’ Amour et al.
(1982). The stress, produced by turning a differential screw, can
be measured in situ, i.e. without removing the apparatus from

(5.3.3.21)

the diffractometer. An example of lattice-parameter measure-
ment of Si stressed along [111] is given, in which the stress
parameter ¢ is calculated from intensity changes of the chosen
600 reflection.

5.3.3.4.3. The Bond method

5.3.3.4.3.1. Description of the method

By the use of the symmetric arrangement presented in
§5.3.3.4.1 (Fig. 5.3.3.3b), it is possible to achieve very high
accuracy, of about 1 part in 10° (Bond, 1960), and high
precision (Baker, George, Bellamy & Causer, 1968) but, to
make the most of this, some requirements concerning the device,
the sample, the environmental conditions, the measurement
itself, and the data processing have to be fulfilled; this problem
will be continued below.

Bond (1960) in his notable work used a large, highly pure and
perfect single crystal (zone-refined silicon) in the shape of a flat
slab. The scheme of the method is given in Fig. 5.3.3.4. The
crystal was mounted with the reflecting planes accurately parallel
to the axis of the shaft on a graduated circle (clinometer), the
angular position of which could be read accurately (to 1”). The
X-ray beam travelling from the tube through a collimator (two
50 um slits, 215 mm apart, so that the half-width of the primary
beam was 0.8’) fell directly upon the crystal, set in one of the two
diffracting positions. The diffracted beam was intercepted by one
of two detectors [Geiger-Miiller (G-M) counters], which were
fixed in appropriate positions. The detectors were wide open, so
that their apertures were considerably wider than the diffracted
beam, which eliminated some systematic errors depending on the
counter position. The crystal was rotated step by step through the
reflecting position to record the diffraction profile. Next, the
peak positions of both profiles were determined by the
extrapolated-peak procedure [§5.3.3.3.1, definition (4)] to find
the accurate positions of the sample, @, and w,, from which the
Bragg angle was calculated by use of a formula that can be
written in a simple form as

0 = [180° — |, — w,|/2]. (5.3.3.22)

Before calculating the interplanar distance [equation (5.3.1.1)]
or, in the simplest case, the lattice parameter directly, the
systematic errors have to be discussed and evaluated. Some-
times, corrections are made to the parameters themselves rather
than to the 6 values. The reader is referred to §5.3.3.4.3.2, in
which present knowledge is taken into account, rather than to
Bond’s original paper.

Bond performed measurements at room temperature (298 K)
for reflections 444, 333, and 111 and, after detailed discussion of

Detector

X-rays  Collimator

Fig. 5.3.3.4. Schematic representation of the Bond (1960) method.
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errors, reported the a, values (in kXU), which related to these
measurements (standard deviations are given in parentheses),
as 5.419770 (0.000019), 5.419768 (0.000031), 5.419790
(0.000149). These values are referred to 4 = 1.537395 kXU.
These results were then tested by Beu, Musil & Whitney (1962)
by means of the likelihood-ratio method to test the hypothesis of
‘no remaining systematic errors’. They proved that the estimate
for this sample of silicon is accurate within the stated precision
(1 part in 390 000).

The results reported in Bond (1960) — very high accuracy and
remarkable reproducibility (low standard deviation), obtained by
use of a relatively simple device, which can be realized on the
basis of a standard diffractometer — encourage experimenters to
perform similar measurements. However, many problems arise
with the adaptation of the Bond method to other kinds of samples
and/or to other purposes than those described by Bond (1960) in
his original paper. Both theoretical and experimental work have
increased the accuracy and the precision of the method during
the last 35 years.

5.3.3.4.3.2. Systematic errors

As mentioned above (§5.3.3.4.1), some systematic errors that
affect the asymmetric diffractometer are experimentally elimi-
nated in the Bond (1960) arrangement. According to Beu (1967),
who has supplemented the list of errors given by Bond, the
following systematic errors are eliminated at the 0.001°6 level:

(a) absorption, source profile, radial divergence and surface
flatness; removed since the detectors are used only to measure
intensities and not angular positions;

(b) zero, eccentricity, misalignment and diffractometer radius;
eliminated since 6 depends only on the difference in the crystal-
angle positions and not on these geometrical factors;

(c) ratemeter recording does not affect the measurements since
the detectors are used only for point-by-point counting;

(d) 2:1 tracking error is eliminated because the 2:1 tracking
used in most commercial asymmetric diffractometers is not used;

(e) dispersion, if the peak position of the profile is determined
rather than the centroid or the median, and the wavelength has
been determined for the peak position also.

As well as these errors there are other systematic errors, due
to both physical and apparatus factors, which should be
eliminated by suitable corrections.

(1) Lorentz-polarization error. The Lorentz—polarization
factor Lp influences the shape of the profile as follows:

vi(x) = Lpv(x), (5.3.3.23)

where v(x) and v,(x) are the shape functions [see equations
(5.3.3.10), (5.3.3.10a,b)] of the undistorted and distorted
profiles, respectively. It therefore produces a shift (Af;,) in
the peak position.

The correction for the Lp factor was estimated, assuming that
v(x) is the Cauchy function [equation (5.3.3.19)], by Bond
(1960, 1975), Segmiiller (1970), and Okazaki & Ohama (1979)
for two cases. For perfect crystals, when the Lp factor has the
form (James, 1967, p. 59; Segmiiller, 1970; Okazaki & Ohama,
1979)

Lp = (1 + | cos26]|)/ sin 26,
the correction is given by
0—0,= (w,/2)*[cot 20, +sin26,/(1 + | cos 26,])], (5.3.3.25)

(5.3.3.24)

where w), is the half-width of the profile, 6, is the Bragg angle
related to the distorted profile, and 6 is the corrected Bragg
angle. In contrast, the following formulae are valid for mosaic
crystals:

Lp = (1 + cos? 260)/(2sin 26), (5.3.3.26)

and
0 — 6, = (w,/2)* cot 260,(2 + sin*26,)/(2 — sin*6,). (5.3.3.27)

Because of a notable difference between the values calculated
from (5.3.3.25) and (5.3.3.27), the problem is to choose the
formulae to be used in practice. However, the Lorentz-
polarization error is usually smaller than the rest.

(2) Refraction. In the general case, when the crystal surface is
not parallel to the reflecting planes but is rotated from the atomic
planes around the measuring axis by the angle ¢, the correction,
which relates directly to the determined interplanar distance, has
the form (Bond, 1960; Cooper, 1962; Lisoivan, 1974, 1982)

Scos’e
sin (6 +¢)sin (8 —¢)|’

d=d,|1+ (5.3.3.28)
where § is unity minus the refractive index of the crystal for the
X-ray wavelength used, and d, and d are the uncorrected and
corrected interplanar distances, respectively.

(3) Errors due to axial and horizontal (in-plane) divergence.
The axial divergence of the primary beam, given by an angle
2A, depending on the source and collimator dimensions, causes
the angle ¢, formed by a separate ray of the beam with a given
set of crystallographic planes, to differ from the proper Bragg
angle. In general, if the plane of diffraction is not sufficiently
perpendicular to the axis of rotation but lacks perpendicularity by
an angle A, the measured Bragg angle 6 can be described,
according to Bond (1960), as

sin = sec Asin6. (5.3.3.29)

Let us assume that both the crystal and the collimator have been
accurately adjusted so that the lack of perpendicularity results
from axial divergence only. By averaging the expression
(5.3.3.29) over the limits +A,, the mean value of sin¢ can be
found and, as a consequence, the following formula describing
the correct d spacing can be obtained:

d=d(1+ 4,/6), (5.3.3.30)

where d’ is the apparent d spacing.

According to Berger (1984), this correction is valid only for
the case of infinitely small focus, when all rays have the same
intensity. Taking into consideration the shift of the centroid
caused by vertical divergence when the focus emits uniformly
within the axial limits (—F, F), he proposes an alternative
correction for 6:

A0, = Ltano(P* + F?), (5.3.3.31)

where 2P is the sample height.

As tested using computer modelling (Urbanowicz, 1981b) and
estimated analytically (Hartwig & Grosswig, 1989), the effect of
the horizontal divergence on the peak position of the recorded
profiles cannot be neglected, contrary to suggestions of Bond
(1960). The respective systematic error is dependent on
asymmetries of both the focus-tube emissivity and the spectral
line, and so it is difficult to express it with a simple formula [cf.
point (7) below]. In practice (Hartwig, Grosswig, Becker &
Windisch, 1991), it proves to be the second largest error. (The
first is the one caused by refraction.)

(4) Specimen-tilt and beam-tilt error. Since the three main
sources of systematic error in diffractometer measurements, i.e.
zero, eccentricity, and absorption, have been eliminated in the
Bond method, two errors due to misalignment of the crystal and
the collimator can strongly influence results of lattice-parameter
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determination. They are difficult to control because of the
random character; numerous authors analysing the Bond method
have tried to cope with them. A review is given by Nemiroff
(1982).

Bond (1960) considered the crystal-tilt error separately from
the collimator tilt. However, in subsequent papers on this subject
it was shown that the errors connected with the crystal tilt and the
collimator tilt, i.e. with the angles that the normals to the crystal
and collimator make, respectively, with the plane of angular
measurement, are dependent and should be treated jointly.

Foreman (in Baker, George, Bellamy & Causer, 1968)
derived a formula for the real value of the angle between two
reflecting positions [i.e. w, and w, in equation (5.3.3.22)] when
affected by both tilts. Burke & Tomkeieff (1968, 1969), in
contrast, have found a dependence between the crystal tilt « and
the beam tilt 8 and the relative error Aa/a in lattice parameter a
in the form

Aaja = af/sind — (&? + p*)/2. (5.3.3.32)

A separate analysis is given by Gruber & Black (1970) and by
Filscher & Unangst (1980).

Two approaches are used to eliminate the systematic errors
considered, based on the above formula:

(i) The error resulting from the crystal tilt and the collimator
tilt can be reduced experimentally. Baker, George, Bellamy &
Causer (1968) have given a simple procedure that allows a
collimator tilt of small but unknown magnitude to be tolerated
and, at the same time, the tilt of the crystal to be adjusted to its
optimum value. Burke & Tomkeieff (1968, 1969) propose a
method for setting the crystal so that « = 8, since, as is obvious
from (5.3.3.32), the error has then its minimum value; « and 8
have to be of the same sign. Then the influence of crystal tilt and
beam tilt on the accuracy of lattice-parameter determination is
negligible at the level of 1 part in 10°.

(i) Equation (5.3.3.32) permits calculation of the exact
correction due to both crystal and collimator tilts, if the
respective values of o and B are known. Halliwell (1970)
proposed a method for determining the beam and the crystal tilt
that requires measuring reflections from both the front and back
surfaces of the crystal. In a method described by Nemiroff
(1982), the two tilts are measured and adjusted independently
within +0.5 mrad.

(5) Errors connected with angle reading and setting. Errors in
angle reading and angle setting depend both on the class of the
device and on the experimenter’s technique. Some practical
details are discussed by Baker, George, Bellamy & Causer
(1968). Since the angles are measured by counting pulses to a
stepping motor connected to a gear and worm, the errors due to
angle setting and reading depend on the fidelity with which the
gear follows the worm. To diminish errors affected by the
gearwheel (notably eccentricity), the authors propose a closed
error-loop method, which involves using each part of the gear in
turn to measure the angle and averaging the results. In the
diffractometer reported in the above paper, there was,
originally, an angular error of about +15” around the gearwheel,
and this can be corrected by means of a cam so that the residual
error is reduced to about +5”.

Another example of a high-precision drive mechanism is given
by Pick, Bickmann, Pofahl, Zwoll & Wenzl (1977). In the
diffractometer described in their paper (see also §5.3.3.7.2), the
gear was shown to follow the worm with fidelity even down to
0.01” steps, and a drift of +£10% per step was traced to
insufficient stability of temperature (30.15K).

(6) Temperature correction. An error Ad; in the lattice
parameter d owing to the uncertainty AT of the temperature T

can be estimated from the formula (Lukaszewicz, Pietraszko,
Kucharczyk, Malinowski, Stepien-Damm & Urbanowicz, 1976):

Adr =day AT, (5.3.3.33)
if the thermal-expansion coefficient ¢, in the required direction
is known.

In the case of the 111 reflection of silicon, for which
oy ~ 2.33 x 1079, to obtain a relative accuracy (precision) of 1
part in 10%, the temperature has to be controlled with accuracy
(precision) not worse than £0.05 K if the temperature correction
is to be neglected (Segmiiller, 1970; Hubbard & Mauer, 1976;
Lukaszewicz et al., 1976).

(7) Remarks. The above list of corrections, sufficient when the
Bond (1960) method is applied under the conditions similar to
those described by him (large, perfect, specially cut single
crystal; well collimated primary beam; large open detector
window) has to be sometimes complemented in the case of
different specimens and/or different measurement conditions
(§5.3.3.4.3.3). When an asymmetric diffractometer is used, all
the systematic errors listed in this section (see also §5.3.3.4.1)
must be taken into account.

Using a complete convolution model of the diffraction profile,
Hartwig & Grosswig (1989) were able to derive all known
aberrations (and so respective corrections) in a rigorous,
analytical way. The analytical expressions given by the authors,
though based on some simplifying assumptions, are usually much
more complex than the ones shown in points (1)-(6) above.
Some coefficients in their equations depend on physical
parameters characterizing the particular device and experiment.
So, to follow the idea of Hirtwig & Grosswig, one must
individually consider all preliminary assumptions. As shown by
the authors, to achieve the accuracy of 1 part in 107, all
aberrations mentioned by them must be taken into account. The
most important aberrations prove to be those related to refraction
and to horizontal divergence.

5.3.3.4.3.3. Development of the Bond method and its
applications

The Bond (1960) method, in its first stage, was meant for
large, specially cut and set samples. In principle, only one lattice
parameter can be determined in one measuring cycle. As has
been shown, the method can also be adapted to other samples,
with non-cubic symmetry, and to geometries of the illuminated
area, different from those used by Bond. This task needs,
however, some additional operations and often some additional
corrections for systematic errors.

The basic application of the Bond (1960) method, because its
geometry reduced several systematic errors, was to absolute
lattice-parameter measurements. The method also proved useful
in precise investigations of lattice-parameter changes.

Bond-system diffractometers were most often realized in
practice on the basis of standard diffractometers under computer
control (Baker, George, Bellamy & Causer, 1968; Segmiiller,
1970; Pihl, Bieber & Schwuttke, 1973; Kucharczyk, Pietraszko
& Lukaszewicz, 1993). Some were designed for special
investigations, such as high-precision = measurements,
o(d)/d = 1077 (Baker, George, Bellamy & Causer, 1966;
Grosswig, Hartwig, Alter & Christoph, 1983; Grosswig et al.,
1985; Grosswig, Hartwig, Jackel, Kittner & Melle, 1986); local
measurements at chosen points of a specimen (Lisoivan &
Dikovskaya, 1969; Lisoivan, 1974, 1982); examination of
lattice-parameter changes over a wide temperature range
(Lukaszewicz et al., 1976, 1978; Okada, 1982); or the effect
of high pressure on lattice parameters (Mauer, Hubbard,
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Piermarini & Block, 1975; Leszczynski, Podlasin & Suski,
1993).

By introduction of synchrotron radiation to a Bond-system
diffractometer (Ando et al., 1989), a highly collimated and
very narrow beam has been obtained, so lattice-parameter
measurements can be accomplished reliably and quickly with a
routinely achieved precision of 2 parts in 10°%; these can be
combined with X-ray topographs made in selected areas of the
sample.

(1) Crystals with different symmetry. Cooper (1962) used the
Bond (1960) diffractometer and method for absolute measure-
ments of lattice parameters of several crystals belonging to
various orthogonal systems. Special attention was paid to
preparing the samples, i.e. cutting and polishing, to obtain
crystal surfaces parallel to the planes of interest. One sample
of a given substance was sufficient to find the lattice in the case
of cubic crystals but two samples were required for tetragonal
and hexagonal systems, and three were necessary for the
orthorhombic system. This difficulty increases when non-
orthogonal lattices have to be examined. This problem was
resolved by Lisoivan (1974, 1982), who used very thin single-
crystal slabs, which made possible measurements both in
reflection and in transmission. Lisoivan (1981, 1982), devel-
oping his first idea, derived the requirements for a precision
determination of all the interaxial angles for an arbitrary
system. The coplanar lattice parameters can also be determined
in one crystal setting when only reflection geometry is used
(Grosswig et al., 1985).

Superlattices can be determined using the system proposed by
Bond; a simple method for this purpose was derived by Kudo
(1982).

(2) Different sample areas. A separate problem is to adapt the
Bond method for measurement of small spherical crystals,
commonly used in structure investigations. A detailed analysis of
this problem is given by Hubbard & Mauer (1976), who indicate
that the effect of absorption and horizontal divergence has to be
taken into account if the sample dimensions are less than the
cross section of the primary beam. As has been mentioned above
(§§5.3.3.4.1,5.3.3.4.3.2), these factors, as well as eccentricity
and uncertainty of the zero point, could be neglected in Bond’s
(1960) experiment. Kheiker (1973) considered systematic errors
resulting from the latter two factors when small crystals are
used. He proposed a fourfold measurement of the sample
position (rather than a twofold one used by Bond), in which ‘both
sides’ of a given set of planes are taken into account, so that
measurement by the Bond method is performed for two pairs of
specimen positions: w; and w, = w; — 20, and w; = 180° 4 w,
and w, = 180° 4+ w,. The corresponding positions of the counter
are also determined and used in calculations of the Bragg angle
(cf. §5.3.3.4.1). The mean value of the 0 angle is not subject to
the errors mentioned. A similar idea has been presented by
Mauer et al. (1975).

In many practical cases, it is necessary to determine lattice
parameters of thin superficial layers. One of the possibilities is to
use the Bond method for this purpose. Wotcyrz, Pietraszko &
Lukaszewicz (1980) used asymmetric Bragg reflections with
small angles of incidence, to reduce the penetration depth of
X-rays. This rather simple method permits high accuracy if
proper corrections (the formulae are given by the authors)
resulting from the dynamical theory of diffraction of X-rays are
carefully determined. This method was used to estimate the
gradient of the lattice parameter inside diffusion layers. The
penetration depth was changed by rotation of the sample.
Golovin, Imamov & Kondrashkina (1985) achieved a penetration
depth as small as about 1 to 10 nm, using X-ray total-reflection

diffraction (TRD) from the planes normal to the surface of the
specimen. The sample was oriented in such a way that the
conditions for total external reflection were satisfied when the
X-ray beam fell on the sample at a small angle of incidence,
about 0.5°.

The homogeneity of the crystal in a direction parallel to
its surface may be examined by means of local measure-
ments, described by Lisoivan & Dikovskaya (1969) and
Lisoivan (1974), in which the goniometer head was
specially designed so that the sample could be precisely
set and displaced.

(3) Determination of lattice-parameter changes. Baker,
George, Bellamy & Causer (1968) have shown that a carefully
manufactured and adjusted Bond-system diffractometer (men-
tioned above) with good stability of environmental conditions
(temperature, pressure, power voltage) may be a suitable tool
for the investigation of lattice-parameter changes. A static
method of thermal-expansion measurement is proposed, in
which changes in angle of an in situ specimen due to changes
in the lattice parameter with temperature are quickly deter-
mined. If it is assumed that the intensity and the shape of the
peak have not altered with the change of conditions (cf. the
method based on double-crystal diffractometers in §5.3.3.7.1),
the change in angle can be determined by intensity
measurement alone. The reported precision of the relative
measurement is 1 part in 107. Since the shape of the profile
may change with the change of conditions, the whole profile
must be determined accurately and precisely, so that the whole
experiment, consisting of a series of measurements, is time-
consuming. The optimization problems resulting from this
inconvenience have been discussed above (§5.3.3.3.2; Barns,
1972; Urbanowicz, 1981a,b).

In particular, thermal-expansion studies can detect phase
transitions and the resulting changes in crystal symmetry
(Kucharczyk, Pietraszko & Lukaszewicz, 1976; Kucharczyk &
Niklewski, 1979; Pietraszko, Waskowska, Olejnik & Lukasze-
wicz, 1979; Horvath & Kucharczyk, 1981; Pietraszko, Tomas-
zewski & Lukaszewicz, 1981; Keller, Kucharczyk & Kiippers,
1982; Asbrink, Wotcyrz & Hong, 1985).

Another group of applications of the Bond method is
connected with single-crystal characterization problems (homo-
geneity, doping, stoichiometry) resulting from technological
operations (epitaxy, diffusion, ion implantation) producing
changes in lattice spacings, 8d/d = 1072 to 10~>. The examples
cited below show a variety of applications.

Stepien, Auleytner & f.ukaszewicz (1972) and Stepien-
Damm, Kucharczyk, Urbanowicz & Lukaszewicz (1975)
examined y-irradiated NaClO;. The effect of X-ray irradiation
on the lattice parameter of TGS crystals in the vicinity of the
phase transition was studied by Stepien-Damm, Suski, Meysner,
Hilczer & Lukaszewicz (1974). Pihl, Bieber & Schwuttke (1973)
dealt with ion-implanted silicon, using a Bond-system diffrac-
tometer for local measurements. The effect of silicon doping on
the lattice parameters of gallium arsenide was studied by Fewster
& Willoughby (1980). Crystal-perfection studies by the Bond
method were reported by Grosswig, Melle, Schellenberger &
Zahorowski (1983), and Wotcyrz & Lukaszewicz (1982). In the
latter paper, the measurements were performed on a superficial
single-crystal layer by the use of the geometry described above
[paragraph (2)] (Wolcyrz, Pietraszko & If.ukaszewicz, 1980).
Lattice distortion in LiF single crystals was examined by
Dressler, Griebner & Kittner (1987), who used the method of
Grosswig et al. (1985) [cf. paragraph (1)]. The use of anomalous
dispersion in studies of microdefects was considered by Holy &
Hartwig (1988).
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5.3.3.4.3.4. Advantages and disadvantages of the Bond
method

The significant advantages of the Bond (1960) method, such
as:

(a) very high accuracy;

(b) rather high precision;

(c) well elaborated analysis of errors;

(d) a simple arrangement, which may be realized on the basis
of a standard diffractometer with computer control and, if
necessary, supplemented with suitable attachment; and

(e) variety of applications;
make this method one of the most popular at present.

The method, however, has the following limitations:

(1) Special requirements concerning the sample are difficult to
satisfy in some cases.

(ii) Problems arise with determination of all the lattice
parameters of non-cubic crystals. Multiple-sample preparation
or a special approach is needed in such cases.

(iii) Lattice-spacing determination from small spherical
crystals requires additional corrections or fourfold measure-
ments.

(iv) Displacement of the irradiated area on the sample surface
(Wotcyrz, Pietraszko & Iukaszewicz, 1980; Berger, 1984)
complicates examination of the real structure (for example, by
local measurements).

(v) The method is rather time-consuming, since twofold
scanning of the profile is required for determination of a single 6
value.

(vi) Because two detectors, or a wide range of rotations of
only one detector, are required, measurement with additional
attachments is more difficult than on an asymmetric diffrac-
tometer.

Nevertheless, the geometry proposed by Bond (1960), owing
to its advantages, is commonly used in precise and accurate
multiple-crystal spectrometer methods (§§5.3.3.7.1, 5.3.3.7.2).

Other limitations concerning the precision and accuracy of the
method are common to it and to all the ‘traditional’ methods
(Subsection 5.3.3.5).

5.3.3.5. Limitations of traditional methods

As ‘traditional’ are considered the methods that depend on a
comparison of the lattice spacings to be determined with the
wavelength values of characteristic X-radiation that comes
directly from laboratory (Bremsstrahlung) sources. The emission
lines are wide and asymmetric, which limits both the accuracy
and precision of lattice-parameter measurements (as discussed in
Subsection 5.3.1.1). One of the limiting factors is the uncertainty
of the wavelength value. For many years, the wavelength values
determined by Bearden (1965, 1967) with an accuracy of 5 parts
in 10° were widely used. At present, owing to remarkable
progress in the measurement technique, it is possible to achieve
an accuracy in wavelength of an order better, and nowadays
remeasurements of some characteristic emission X-ray wave-
lengths are reported [cf. §5.3.3.3.1(iii) and Subsection 5.3.3.8].
Yet, even after reducing the uncertainty in wavelength, and after
introducing all necessary corrections for systematic errors, the
highest accuracy of traditional methods does not exceed 1 part in
10 (¢f. Subsection 5.3.3.8).

The accuracy of an order better is possible with X-ray and
optical interferometry. This non-dispersive method (cf. Sub-
section 5.3.3.8) is used for accurate lattice-spacing determina-
tion of highly perfect standard crystals; the standards are next
used for both lattice-parameter determination with a double-
beam comparison technique (Baker & Hart, 1975; see also

§5.3.3.7.3) and for the accurate wavelength determination
mentioned above.

Another problem is the limited precision attainable by
traditional methods. As was discussed in Subsection 5.3.1.1,
the width of the diffraction profile depends on the spectral
distribution of the wavelength, (5.3.1.6), (5.3.1.7), (5.3.1.8),
and cannot be less than this owing to the wavelength dispersion.
However, much has been done to approach this limit and to
attain the precision and accuracy of the diffraction profile
location (c¢f. Subsection 5.3.3.3). The highest precision of
lattice-parameter determination that it is possible to achieve with
traditional methods is about 1 part in 10”. For some problems
connected with single-crystal characterization, such as the effect
of irradiation, stress, defect concentration, including local
measurement (topography), better precision is required.

From (5.3.1.9), the other possibility of increasing precision,
besides choosing optimum parameters for the measurement and
improvement of profile-location methods, is to influence the
original profile h;(w). This aim can be attained either by
applying spectrally narrower X-ray sources or by reducing the
width of the original profile by means of arrangements with
additional crystals playing the role of monochromator and
reference crystal. This second possibility is applied in double- or
triple-crystal spectrometry, in multiple-beam methods, or in
combined methods. These methods are called ‘pseudo-non-
dispersive’ methods, since the width of the diffraction profile is
considerably limited in them owing to considerable limitation of
the width of the original profile. A similar situation to that in
n-crystal spectrometers, in which the beam reflected from one set
of crystal planes is the source of radiation for the second (or the
next) diffraction phenomena, arises in multiple-diffraction
methods; this is described in Subsection 5.3.3.6.

A systematic and well illustrated review of pseudo-non-
dispersive and other differential methods is given by Hart
(1981), who is the author of numerous papers on this subject.

5.3.3.6. Multiple-diffraction methods

Multiple diffraction occurs when two or more sets of planes
simultaneously satisfy the Bragg law for a single wavelength A.
The beam diffracted from one set of planes becomes the incident
beam within the crystal for the next diffraction. In the reciprocal-
space representation, this means that three or more reciprocal-
lattice points lie simultaneously on the Ewald sphere (Fig.
5.3.3.5). These points can be detected by successive rotations of
the crystal, as described below. This phenomenon, known also as

Sphere of reflection

Fig. 5.3.3.5. Schematic representation of multiple diffraction in
reciprocal space (after Post, 1975).
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simultaneous reflection or (after Renninger, 1937) ‘Umwegan-
regung’, may be observed in both X-ray and neutron experi-
ments. In the first case, it occurs both in methods with counter
recording, initiated by Renninger (1937), and in methods with
photographic recording in which a highly divergent beam is used
(§5.3.2.4.2). The intersections of conic sections encountered in
the methods developed by Kossel (1936) and Lonsdale (1947) are
the cases of multiple-diffraction phenomena in photographic
methods.

Simultaneous reflection, undesirable in some cases (‘forbid-
den’ reflections in measurements of intensities) can be very
useful in others. Its various applications have been reviewed by
Terminasov & Tuzov (1964) and Chang (1984). Only the utility
of multiple diffraction in lattice-parameter determination will be
discussed here.

Rotation
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Incident 0 A point
X-ray beam e N
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Fig. 5.3.3.6. Schematic representation of the multiple-diffraction
method. (a) Experimental set-up (after Cole, Chambers & Dunn,
1962; Post, 1975). (b) Geometric representation in reciprocal space.

0 10

The principle of Renninger’s (1937) experiment, which is
also the basis of the method described by Post (1975), is shown
in Fig. 5.3.3.6. The crystal in the shape of a slab is at first set
in a position to diffract the primary X-ray beam. A primary
reflection whose intensity is very low or which is forbidden by
the space group of the crystal is usually selected. Its intensity
determines the background intensity of the pattern, which
should be low. The detector, with a wide-open window, is
situated in the appropriate position and remains fixed through-
out the experiment while the crystal is rotated around the axis
perpendicular to the crystal planes (and its surface) to record
successive reflections.

The multiple-diffraction pattern (an example is shown in Fig.
5.3.3.7) has next to be indexed. The principle of the method
of indexing, known as the reference-vector method (Cole,
Chambers & Dunn, 1962; Post, 1975; Chang, 1984), is shown in
Fig. 5.3.3.6(b). Directions of the primary and diffracted beams
are marked by vectors K, and K. The ends of the vectors lie on
the Ewald sphere, the radius of which is equal to 1/4. The
reciprocal vector P = hja* + k;,b* + [,c*, being the difference
between the vectors K and K, represents the first diffraction
phenomenon, which is observed for setting angles equal to ¢,
and p (usually o = 6). Let us assume that the reciprocal vector
H = ha* + kb* + Ic*, observed for setting angles ¢, + 8 and v,
represents the next diffraction. The vector components of H,
parallel and normal to P, are denoted by Hp and H,,
respectively. For a given wavelength, the lengths P, H, H,, H,
of respective vectors P, H, H,, H, are functions of lattice
parameters and diffraction indices.

The task is to find the relationship between the difference g of
angles of rotation (or between two values of the setting angles, 8
and v) and the lengths of the reciprocal vectors. The following
relations result from Fig. 5.3.3.6(b):

(C'AY +H:—R?
2H(C'A)
(C'4)* =R* — P*/4,
Hp = P/2 — Rsinv,

cos B =

R = Rcosv.
Taking these into consideration, and remembering that
H? = H} 4+ H}, we finally obtain
H? — H,P
cosfB = (5.3.3.34)

2H,(R> — P?/4)12°

Since cos(—p) = cos B, the appearance of successive reflections
does not depend on the direction of rotation. A detailed
discussion of (5.3.3.34) is given by Cole, Chambers & Dunn
(1962) and Chang (1984). When preliminary values of the lattice
parameters are known, (5.3.3.34) can be applied for indexing
multiple-diffraction patterns. A computer program (Rossmanith,
1985) can be very useful in rather complicated calculations and
in the graphical representation of the multiple-diffraction

Ge 222
Cu Kay

20 30 «a
Fig. 5.3.3.7. The multiple-diffraction pattern at the 222 position in germanium (Cole, Chambers & Dunn, 1962).
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pattern. Formula (5.3.3.34), since C'A’ = Rcosp, can be
presented in another form:

2
H> —H,P

= 5.3.3.35
2H, cos ucos B ( )

where two setting angles, u and 8, are taken into account. When
the indices are known, both (5.3.3.34) and (5.3.3.35) can be
used for the determination or refinement of lattice parameters.

Another analytical method for indexing multiple-diffraction
patterns, based on the determination of the Lorentz point,
has been described by Kshevetsky, Mikhailyuk, Ostapovich,
Polyak, Remenyuk & Fomin (1979).

Formulae (5.3.3.34) and (5.3.3.35) are valid for all crystal
systems. In practice, however, the rather complicated method is
used mainly for cubic crystals, and a special approach proved to
be needed in order to adapt the method to other (rectangular)
systems (Kshevetsky, Mikhalchenko, Stetsko & Shelud’ko,
1985). In the case of a cubic lattice, it is convenient to substitute

R=a/’ (5.3.3.35q)

into (5.3.3.34) and (5.3.3.35) rather than R = 1/4 used in the
general case, so that the lengths of the reciprocal vectors, being
now functions of the indices only, are:

P = (hi+ks+15)",
H — (h2 + k2 + 12)1/2’
H,P = HP = hoh + kok + Ll.

(5.3.3.35b)
(5.3.3.35¢)
(5.3.3.35d)

The lengths of the components of H can be determined from
(5.3.3.35b,c,d) taking H,=H,P/P and H,=(H*—H,)">.
After introducing the alterations [equation (5.3.3.35a) and the
resulting equations (5.3.3.35b,c,d)], (5.3.3.35) now describes a
simple dependence between the ratio a/4, the indices, and the
setting angles.

The accuracy of the lattice-parameter determination resulting
from (5.3.3.35) in the cubic case can be assumed to be:

Aa

e tan uAp + tan BAB; (5.3.3.36)
this thus depends on the values of the setting angles 8, © and
their accuracies AfB, Ap. The latter depend on various
systematic errors.

Since the differences between the two angular settings at
which a given set of planes diffracts are measured rather than
their absolute values, the systematic errors due to absorption,
specimen displacement, and zero-setting are eliminated. In
contrast, errors due to vertical divergence, refraction and the
change of wavelength of the incident radiation (when it enters the
crystal), alignment, and dynamical effects should be taken into
account. In the case described by Post (1975), when a fine focus
(effective size 0.4 x 0.5 mm) and collimation limiting the beam
divergence to 2’ were used, the vertical divergence causing the
relative error in d of about 5 x 10~® could be ignored.

The errors due to the real structure (inhomogeneity, mosaicity
and internal stress) were discussed by Kshevetsky et al. (1979).

The accuracy possible by this method (from 1 to 4 parts in 10°)
is comparable with that obtained with the Bond (1960) method.
The advantages of this method from the point of view of lattice-
parameter determination are as follows:

(a) a large number of reflections can be measured without
realigning or removing the crystal;

(b) all the lattice parameters can be determined and not only
one, as in the Bond (1960) method;

(c) the narrow diffraction profiles can be located with very
high accuracy and precision;

(d) the arrangement makes it possible to remove some
systematic errors;

(e) the high accuracy resulting from (a)-(d), which is
comparable with that obtained by means of the Bond (1960)
method;

(f) the high precision that results from (a) and (c).

A disadvantage, on the other hand, is the complicated
interpretation (indexing) of multiple-diffraction patterns, so
that this method is less popular than the Bond (1960) method.

The Post (1975) method has been applied to the accurate
lattice-parameter determination of germanium, silicon, and
diamond single crystals (Hom, Kiszenick & Post, 1975).

5.3.3.7. Multiple-crystal - pseudo-non-dispersive techniques
5.3.3.7.1. Double-crystal spectrometers

Detailed information concerning the double-crystal spectrom-
eter, which consists of two crystals successively diffracting the
X-rays, can be found in James (1967, pp. 306-318), Compton &
Allison (1935), and Azaroff (1974). This device, usually used for
wavelength determination, may also be applied to lattice-
parameter determination, if the wavelength is accurately
known. The principle of the device is shown in Fig. 5.3.3.8.
The first crystal, the monochromator, diffracts the primary beam
in the direction defined by the Bragg law for a given set of
planes, so that the resulting beam is narrow and parallel. It can
thus be considered to be both a collimator (or an additional
collimator, if the primary beam has already been collimated) and
a wavelength filter. The final profile (), obtained as a result of
the second diffraction by the specimen when the first crystal
remains stationary and the second is rotated, is narrower than
that which would be obtained with only one crystal. The final
crystal profile h-(6) [¢f. equation (5.3.1.6)] is due to both
crystals, which, if it is assumed that they are cut from the same
block, can be described by the autocorrelation function (Hart,
1981):

he(0) = K of RE)RE — 6)d0, (5.3.3.37)

where R(0) is an individual reflectivity function of one crystal
and K is a coefficient of proportionality. Its half-width is 1.4
times larger than that related to only one crystal. In spite of this,
the recorded profile can be as narrow as, for example, 2.6”
(Godwod, Kowalczyk & Szmid, 1974), since the profile due to
the wavelength #,(9), modified by the first crystal, is extremely
narrow. Additional advantages of the diffraction profile are: its
symmetry, because ho(0) is symmetric as an effect of
autocorreletion, and smoothness, as an effect of additional
integration. The profile can thus be located with very high
accuracy and precision.

When there is a small difference in the two lattice spacings, so
that one has a value d and the other d + éd, if §A/4 is small
enough, it can be assumed that the profile does not alter in shape
but in its peak position [cf. §5.3.3.4.3.3, paragraph (3)]. If for
two identical crystals this were located at 6,, the peak position

Specimen

Monochromator

ND)

Detector

Fig. 5.3.3.8. Schematic representation of the double-crystal spectrom-
eter.
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shifts to 6, — tan68d/d. The measurement of this shift rather
than the absolute position of the rocking curve is the basis of all
the double-crystal methods. An example of the application of a
double-crystal spectrometer with photographic recording has
been given in §5.3.2.3.5 (Bearden & Henins, 1965).

The basic requirements that should be fulfilled to make the
most of the double-crystal spectrometer are: limitation of the
primary beam by means of a collimator, parallelism of the two
axes [precision as high as 1" obtained by Godwod, Kowalczyk &
Szmid (1974)], and high thermal stability (0.1K; Godwod,
Kowalczyk & Szmid, 1974). Alignment procedure, errors, and
corrections valid for the double-crystal spectrometer have been
considered by Bearden & Thomsen (1971).

The double-crystal diffractometer, because of the small width
of the diffraction profile, is a very suitable tool for local
measurements of lattice-parameter differences, for example
between an epitaxic layer and its substrate. Hart & Lloyd
(1975) carried out such a measurement on a standard single-axis
diffractometer (APEX) to which a simple second axis,
goniometer head, and detector were added (Fig. 5.3.3.9). The
diffracted beam was recorded simultaneously by three detectors.
A symmetric arrangement with two detectors, D, and D,, with
no layer present, makes possible the determination of the
absolute value of the lattice parameter of the substrate, as in the
Bond (1960) method. The third detector makes it possible to
record the double-crystal rocking curve, which usually fully
resolves the layer and substrate profiles. The changes in the
lattice parameter between the two components can be used for
determination of strain (at 1 part in 10%).

The very important advantage of this method, from the point
of view of local measurements, is that single- or double-crystal
diffraction can be selected, simultaneously if needed, on exactly
the same specimen area. Other examples of strain measurements
by means of a double-crystal spectrometer are given by Takano
& Maki (1972), who measured lattice strain due to oxygen
diffusing into a silicon single crystal; by Fukahara & Takano
(1977), who compared experimental rocking curves and
theoretical ones computed within the frame of the dynamical
theory; and Barla, Herino, Bomchil & Pfister (1984), who
examined the elastic properties of silicon.

®

Fig. 5.3.3.9. Schematic representation of the double-crystal arrange-
ment of Hart & Lloyd (1975) for the examination of epitaxic layers.
(a) Experimental set-up. (b) Diffraction profiles recorded by detectors
D,, D,, and D;.

The standard double-crystal technique does not allow
determination of relatively small strains, i.e. ones that affect
the lattice parameter by, for example, less than 2-3 parts in 10,
as in the case of (004) Si reflection and Cu K« radiation. To
overcome this difficulty, Zolotoyabko, Sander, Komem &
Kantor (1993) propose a new method that combines double-
crystal X-ray diffraction with high-frequency ultrasonic excita-
tion. Since ultrasound has a wavelength a little less than the
X-ray excitation length, it affects the diffraction profile close to
the Bragg position and so permits the detection of very small
profile broadenings caused by lattice distortions. With this
method, lattice distortion as small as 5 parts in 10° can be
measured.

As has been shown in the case of the device used by Hart &
Lloyd (1975), the symmetric arrangement due to Bond (1960)
proves to be very useful when the double-crystal spectrometer is
to be used for absolute lattice-parameter determination, since
such an arrangement combines the high precision and sensitivity
of a double-crystal spectrometer with the high absolute accuracy
of the Bond method. Other examples of a similar idea are
presented by Kurbatov, Zubenko & Umansky (1972), who report
measurements of the thermal expansion of silicon; Godwod,
Kowalczyk & Szmid (1974), who also discuss the theoretical
basis of their arrangement; Ridou, Rousseau & Freund (1977),
who examine a phase transition; Sasvari & Zsoldos (1980), and
Fewster (1982). The latter two papers are concerned with
epitaxic layers. A rapid method is proposed by Sasvari &
Zsoldos (1980) for deconvoluting the overlapping peaks due to
the layer and the substrate. A particular feature of the
arrangement proposed in the first of these papers (Kurbatov,
Zubenko & Umansky, 1972) is the use of a germanium-crystal
monochromator with anomalous transmission, to obtain a nearly
parallel primary beam (the horizontal divergence is 28" and the
vertical 14”).

The error analyses given by Godwod, Kowalczyk & Szmid
(1974) and Sasvari & Zsoldos (1980) show that systematic errors
due to eccentricity, absorption, and zero position are eliminated
experimentally, owing to the symmetric arrangement, as in the
Bond (1960) method. In contrast, the errors due to crystal tilt,
refraction and the Lorentz—polarization factor [their uncertain-
ties in lattice parameters, as evaluated by Sasvari & Zsoldos
(1980), are 105 A each], axial divergence (2 x 1076 A), angle
reading (10~ 4A), and instrument correction and calculations
(each to 5 x 1075 A) should be taken into account. The effect
of absorption, discussed by Kurbatov, Zubenko & Umansky
(1972), proved to be negligible. The final accuracy achieved for
silicon single crystals by Godwod, Kowalczyk & Szmid (1974) is
comparable with that obtained by Bond (1960).

A specific group of double-crystal arrangements is formed
by those in which white X-radiation is used instead of
characteristic. Such an arrangement makes possible very large
values of the Bragg angle (larger than about 80°), which
increases the accuracy, precision, and sensitivity of measure-
ment of the lattice parameters and their change with change of
temperature. This task is rather difficult to realize by means of

White Sample

X-ray beam _Collimator
Analyser 20,

20,

Detector

Fig. 5.3.3.10. Schematic representation of the double-crystal arrange-
ment of Okazaki & Kawaminami (1973a); white incident X-rays are
used.
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traditional methods, in which both the wavelengths and the
lattice parameters are fixed, and it is difficult to find a suitable
combination of their values.

The principle of the method presented by Okazaki &
Kawaminami (1973a) is shown in Fig. 5.3.3.10. The first
crystal (the specimen to be measured) remains fixed during a
single measurement, the second (the analyser) is mounted on
the goniometer of an X-ray diffractometer and can be operated
with either an w or a 6-20 scan. As diffraction phenomena
appear for both the specimen and the analyser (in general of
different materials) whose interplanar spacings are equal to d,
and d,, respectively, the following relation results from
Bragg’s law:

dgsinf, = d,sinf,, (5.3.3.38)
where 6, and 0, are the respective Bragg angles. Since d, and 6,
are kept constant, a change in d, as a function of temperature is
determined from a change in 6,. The relative error 8d/d
resulting from (5.3.3.38) with 6, ~ 90° is

%‘Is =cot#,80, = tan (/2 — 6,) 86,
~ (/2 —0,)80,. (5.3.3.39)
The method initiated by Okazaki & Kawaminami (1973a) has
been developed by Okazaki & Ohama (1979), who constructed
the special diffractometer HADOX (the positions of the speci-
men and the analyser were interchanged) and discussed
systematic errors. Precision as high as 1 part in 107 was
reported. Examples of the application of such an arrangement for
measuring the temperature dependence of lattice parameters
were given by Okazaki & Kawaminami (1973b) and Ohama,
Sakashita & Okazaki (1979). Various versions of the HADOX
diffractometer are still reported. By introducing two slits
(Soejima, Tomonoga, Onitsuka & Okazaki, 1991) - one to
limit the area of the specimen surface to be examined and the
other to define the resolution of 26 - it is possible to combine w
and 26 scans and obtain a two-dimensional intensity distribution
in the plane parallel to the plane of the diffractometer, and to
determine the temperature dependence of lattice parameters on a
selected area of the specimen (avoiding the effects of the
surroundings). The HADOX diffractometer may work with both
a rotating-anode high-power X-ray source (examples reported
above) and a sealed-tube X-ray source. In the latter case (Irie,
Koshiji & Okazaki, 1989), to increase the efficiency of the X-ray
tube, the distance between the X-ray source and the first crystal
has been shortened by a factor of five. As is implied by
(5.3.3.39), one can increase the relative precision of the method
by using the analyser angle close to w/2. This idea has been
realized by Okazaki & Soejima (2001), who achieved the relative
accuracy of determination of lattice-parameter changes as high
as 1 part in 10°-10'° by extending the Bragg angle from 78°
(previous versions) to 89.99° and by elimination of systematic
errors due to crystal tilt, crystal displacement, temperature
effects and radiation damage.
An original method for the measurement of lateral lattice-
parameter variation by means of a double-crystal arrangement

Crystal R, Crystal R,
Awy
[
o)
Awg "D, O
X-rays S D,

Fig. 5.3.3.11. Schematic representation of the triple-crystal spectrom-
eter developed by Buschert (1965) (after Hart, 1981).

with an oscillating slit was proposed by Korytar (1984). This
method permitted simultaneous recording of two rocking curves
from two locations on a crystal. Precision of 3 parts in 107 was
reported. The method has been applied for the measurement of
growth striations in silicon.

The main disadvantage of double-crystal spectrometers, in
their basic form (Fig. 5.3.3.8), is that they cannot be used for
measurements on an absolute scale. Combination of the double-
crystal arrangement with the system proposed by Bond (1960)
makes it possible to recover the origin of the angular scale and
thus such an absolute measurement, but the reported precision is
rather moderate.

There are two other ways to overcome this difficulty in
pseudo-non-dispersive methods: addition either of a third crystal
(more accurately, a third reflection) (§5.3.3.7.2) or of a second
source (a second beam) (§5.3.3.7.3). Such arrangements require
additional detectors. Combinations of both techniques are also
available (§5.3.3.7.4).

5.3.3.7.2. Triple-crystal spectrometers

Higher precision than that obtained with the double-crystal
arrangements (§5.3.3.7.1) can be achieved by means of triple-
crystal diffractometers. Arrangements specially designed for the
determination of lattice-parameter changes are described by
Buschert (1965) and Skupov & Uspeckaya (1975), and reviewed
by Hart (1981).

The principle of the triple-axis spectrometer is shown in Fig.
5.3.3.11. The arrangement consists of one standard crystal S,
ultimately replaced by the sample under investigation, and two
reference crystals R, and R,. The principle of the measurement is
as follows. First, the crystals S, R;, and R, are set to their
diffraction (peak) positions using two detectors D; and D,. Then
the standard crystal S is replaced by the sample and the new peak
position is found by means of D, when the sample is turned from
its original position to its reflecting position. The angle of
rotation of the sample Aw, depends on the lattice-parameter
difference Ad between the sample and the standard. The relation
is given by (Hart, 1981)

Aw, = —tan0Ad/d. (5.3.3.40)

Next, the second reference crystal R, is turned through the angle
Awy to its diffracting position, the intensity being controlled
with the second detector D,. From the geometry of the
arrangement,

Awg = 2Aw,. (5.3.3.41)

Because the origin of the w, scale is lost during the crystal
exchange, this second angle of rotation (Awg) is used to
determine Ad rather than the first one (Aw,), by using (5.3.3.41)
and (5.3.3.40).
The diffraction profiles observed in the second detector,
described by Hart (1981),
hO)r = [ R*O)R® — 6)do,

—00

(5.3.3.42)

are not symmetric but can be as narrow as 0.1-1”, so that a
precision of 2 parts in 10% is possible.

The main experimental problem here is to adjust the tilts of the
crystals. The errors resulting both from the crystal tilts and from
the vertical divergence were discussed by Skupov & Uspeckaya
(1975).

Triple-crystal spectrometers are often applied as lattice-
spacing comparators, when very small changes of lattice
parameters (1078 < |Ad|/d < 107%) are to be detected, in
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particular for the examination of a correlation between lattice
parameter and the dopant or impurity concentration (Baker,
Tucker, Moyer & Buschert, 1968). Such an arrangement can
also be a very suitable tool in deformation studies, since it allows
the separation of the effect of deformation on the Bragg angle
from that due to lattice-parameter change (Skupov & Uspeckaya,
1975).

The basis of the accurate lattice-parameter comparison
proposed by Bowen & Tanner (1995) is the use of a high-purity
silicon standard (cf. §5.3.3.9 below) with a well known lattice
parameter. To compensate an error that may result from a slight
misalignment of crystal planes in relation to the axes of the
instrument, the authors recommend a twofold measurement of
the diffraction-peak position of the reference crystal (for a given
diffraction position and after rotating the specimen holder
through 180° about the axis normal to its surface) and a similar
twofold measurement of the diffraction-peak position of the
sample — after replacing the reference crystal by the sample. The
mean positions of the reference crystal and of the sample are
used in calculations of the Bragg-angle difference and then of the
unknown interplanar spacing. The method uses a standard
double-crystal diffractometer fitted with a monochromator
(therefore, a third crystal), which provides a well defined
wavelength, and with a specimen rotation stage. The measure-
ment is accompanied by a detailed error analysis. The accuracy
of absolute lattice-parameter determination as high as a few tens
of parts in 10°, and a much greater relative sensitivity are
reported.

By combining a triple-axis spectrometer with the Bond (1960)
method, the device can be used for absolute measurements (Pick,
Bickmann, Pofahl, Zwoll & Wenzl, 1977). The device described
in the latter paper is an automatic triple-crystal diffractometer
that permits intensity measurement to be made in any direction in
reciprocal space in the diffraction plane with step sizes down to
0.01” and therefore can be used for very precise measurements
[see also §5.3.3.4.3.2, paragraph (5)].

5.3.3.7.3. Multiple-beam methods

The other possibility of recovering the crystal-angle scale in
differential measurements with a double-crystal spectrometer
(cf. §§5.3.3.7.1,5.3.3.7.2) is to obtain reflections from two
crystal planes [for example, from (hkl) and (hkl) planes] by
means of a double-beam arrangement and to measure them
simultaneously.

The second X-ray beam may come from an additional X-ray
source (Hart, 1969) or may be formed from a single X-ray
source by using a beam-splitting crystal (Hart, 1969, second
method; Larson, 1974; Cembali, Fabri, Servidori, Zani, Basile,
Cavagnero, Bergamin & Zosi, 1992). In particular, two beams
with different wavelengths (Ko, KB;) separated with a slit
system can be used for this purpose (Kishino, 1973, second
technique). The principle of the double-beam method is shown in
Fig. 5.3.3.12. The beams are directed at the first crystal (the
reference crystal) so that the Bragg condition is simultaneously
fulfilled for both beams, and they then diffract from the second

Reference crystal Crystal S D,

-
<)

Fig. 5.3.3.12. Schematic representation of the double-beam comparator
of Hart (1969).

X-ray
sources -~~~

7 (hki)
planes

w

crystal (the specimen). As the second crystal is rotated, a double-
crystal diffraction profile is recorded first in one detector and
then in the other. The angle Af of crystal rotation between the
two rocking curves is given by (Baker & Hart, 1975):

A0 = (0, — 6,) = tan 0 Ad/d. (5.3.3.43)

This formula leads to the lattice-parameter changes Ad.

A double-beam diffractometer can be used for the examination
of variations in lattice parameters of about 10 parts in 10° within
a sample in a given direction. An example was reported by
Baker, Hart, Halliwell & Heckingbottom (1976), who used
Larson’s (1974) arrangement for this task.

The highest reported sensitivity (1 part in 10°) can be achieved
in the double-source double-crystal X-ray spectrometer proposed
by Buschert, Meyer, Stuckey Kauffman & Gotwals (1983). The
device can be used for the investigation of small concentrations
of dopants and defects.

The method can also be applied for the absolute determination
of a lattice parameter, if that of the reference crystal is accurately
known and the difference between the two parameters is
sufficiently small. Baker & Hart (1975), using multiple-beam
X-ray diffractometry (Hart, 1969, first technique), determined
the d spacing of the 800 reflection in germanium by comparing it
with the d spacing of the 355 reflection in silicon. The latter had
been previously determined by optical and X-ray interferometry
(Deslattes & Henins, 1973; the method is presented in
Subsection 5.3.3.8).

In the case of two different wavelengths and diffraction from
two different diffraction planes (h,k,[,) and (h,k,l,), the lattice
parameter g, of a cubic crystal can be determined using the
formula (Kishino, 1973)

ay = H{(Liy) + (M2, — L2, cos 6, )/ sin 6, '},
(5.3.3.44)

where L= (h3 + k2 + 132, M = (h3 + k3 +13)V/?, and 0,_, is
the difference between the two Bragg angles for the specimen
crystal, estimated from the measurement of A6 = |0,_, — 0]_,| if
the difference 0;_, for the first (reference crystal) is known
beforehand. The idea of Kishino was modified by Fukumori,
Futagami & Matsunaga (1982) and Fukumori & Futagami
(1988), who used the Cu K« doublet instead of Ko, and KB,
radiation. Owing to the change, they could use only one detector
(Kishino’s original method needs two detectors), but a special
approach is sometimes needed to resolve two peaks that relate to
the components of the doublet. A similar problem of separation
of two peaks (recorded by two detectors) is reported by Cembali
et al. (1992). By introducing a computer simulation of the
reflecting curves (using a convolution model), the authors
managed to determine the separation with an error of 0.01”
and to achieve a precision of some parts in 107. The same
precision is reported by Fukumori, Imai, Hasegawa & Akashi
(1997), who introduced a precise positioning device and a
position-sensitive proportional counter to their instrument.

As in the other multiple-crystal methods, the most important
experimental problem is accurate crystal setting. Larson (1974),
as a result of detailed analysis, gave the dependence between the
angular separation of two peaks and angles characterizing
misalignment of the first and second crystals.

5.3.3.7.4. Combined methods

The idea of multiple-beam measurement (§5.3.3.7.3) can be
applied to other arrangements that combine the features of the
double-beam comparator with those of the triple-crystal
spectrometer; there are additional advantages in such a system.

531



5. DETERMINATION OF LATTICE PARAMETERS

The application of the double-beam technique makes it possible
to realize a triple-reflection scheme for comparing lattice
parameters on the basis of a double-axis spectrometer. The
arrangement proposed by Ando, Bailey & Hart (1978), shown in
Fig. 5.3.3.13, consists of a sample and a reference crystal,
which are made from the same material but differ in purity (or
strain, stoichiometry, vacancy concentration, efc). The angular
difference A0 in the Bragg angles of the sample and the

reference crystal, 6 and 0, respectively,
AO = Og — O, (5.3.3.45a)

is measured as the sample angle Aw between the double-reflected
peak D and the triply diffracted peak T:

Af = Aow,

Aw = wp — 0.

(5.3.3.45b)
(5.3.3.45¢)

Assuming that A6 is entirely due to changes Ad in atomic
spacings, the authors use the following relation for determination
of the latter:

Ad/d = — cotH.A6. (5.3.3.46)

The experimental requirements are simple and inexpensive,
owing to simple shapes of both the reference crystal and the
sample crystal, so that the measurement can be made quickly. By
combining the two reference crystals into a single monolithic
reference crystal, excellent stability, difficult to achieve with
triple-axis arrangements (cf. §5.3.3.7.2), is obtained at the same
time. The disadvantage of the method is that it covers a smaller
range of lattice parameters than the other double-beam methods
(Hart, 1969; Larson, 1974) described in §5.3.3.7.3. A new
version of the double-crystal triple-reflection scheme (Héuser-
mann & Hart, 1990) allows one to achieve a precision of 1 part
in 10® in 2 min of measurement time, which includes the data
analysis; 30 min are needed to change the sample. Errors due to
the crystal tilt and thermal drifts are considered.

Another example of the triple-reflection scheme realized by
means of the double-beam technique has been presented by
Kovalchuk, Kovev & Pinsker (1975), who realized the triple-
crystal arrangement on the basis of a double-crystal spectrometer
by parallel mounting of the two crystals to be compared (the
sample and the reference crystal) on one common axis. The
advantage of this system is that Bragg angles as high as 80° are
available. The device can be applied in studies of the real
structure of a single crystal.

High-sensitivity (Ad/d up to 43 x 10~%) lattice-parameter-
comparison measurement over a wide range of temperatures can

Reference crystal

~

Fig. 5.3.3.13. The double-axis lattice-spacing comparator of Ando,
Bailey & Hart (1978); a triple-diffracted beam is used.

be performed by means of the triple-crystal (more accurately,
triple-axis) X-ray spectrometer realized by Buschert, Pace,
Inzaghi & Merlini (1980). The arrangement (Fig. 5.3.3.14)
consists of four crystals. The first is used for obtaining a very
wide but extremely parallel exit beam, which is incident on both
the standard crystal S and an unknown crystal X, placed side by
side on a common axis in the cryostat. The reflected beams from
S and X are recorded by partially transmitting detectors DA, and
DB,, so that the beams reflect from the third crystal and are
detected by the counters DA; and DB;. There is a small,
sensitive, angle adjustment to rotate the crystal X with respect to
the standard S and it is used to bring the peaks of S and X into
approximate coincidence. The angular difference in the peak
positions on the third axis is used for determination of lattice-
parameter changes from (5.3.3.46), so that

AO = Ab;/2 — AD,, (5.3.3.47)
where A6, and A6; are the differences in peak positions at axes
(2) and (3), respectively. The device was used, for example, to
study the effect of isotope concentration on the lattice parameter
of germanium perfect crystals (Buschert, Merlini, Pace,
Rodriguez & Grimsditch, 1988). The measured differences in
the lattice parameter, of the order of 1 part in 10°, were
compared with those evaluated theoretically, and a very good
agreement was obtained.

Another variant of a multiple-beam arrangement, based on a
triple-crystal spectrometer, was proposed by Kubena & Holy
(1988). The authors compared the distances of lattice planes in a
direction perpendicular to the surface of the sample while
studying the growth striations. One well collimated and
monochromated beam coming from the first crystal was directed
into the sample, and then two beams - one transmitted and one
diffracted in the sample - diffracted in the reference crystal.
Intensities of the diffracted beams were measured by two
detectors. The difference of lattice spacings of the sample and
the reference crystal was determined from the difference in
positions of respective peaks. The accuracy of the lattice-spacing
comparison of 2 parts in 107 and the precision of 1 part in 107
were obtained.

A four-crystal six-reflection diffractometer (Fewster, 1989)
was built to study crystals distorted by epitaxy and defects in
nearly perfect crystals. Fig. 5.3.3.15 is a schematic diagram of
this device. The two-crystal four-reflection Bartels monochro-
mator (Bartels, 1983) defines a narrow reflectivity profile. The
analyser selects the angular range diffracted from the sample.
The device may be used for recording both near-perfect rocking
curves from distorted crystals (when rotations of the sample and
the analyser are coupled) and a diffraction-space map for
studying the diffuse scattering (when the two rotations are

Axis 1

Asymmetric
reflection

Beam {/ 93
aperture |

X-ray source

) DA,
! \Axis 2%_,_,_
RN\

DA, pg,

Fig. 5.3.3.14. Schematic representation of the double-beam triple-
crystal spectrometer of Buschert e al. (1980).
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Cryostat
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uncoupled). Various applications of such high-sensitivity multi-
ple-crystal X-ray spectrometers for reciprocal-space mapping
and imaging (topography), which are outside the scope of the
present paper, are reviewed by Fewster (1993, and references
therein).

As was shown a few years later by Fewster & Andrew (1995),
the device can also be used for absolute lattice-parameter
measurements of single-crystal and polycrystalline materials
with a relative accuracy of a few parts in 10°. The authors
checked the angular resolution and the sample centring of their
instrument, and discussed systematic errors due to refraction, the
Lorenz and polarization factor, the diffracting-plane tilt and the
peak-position determination.

5.3.3.8. Optical and X-ray interferometry - a non-dispersive
technique

The accuracy of an absolute measurement can be improved, in
relation to that obtained in traditional methods (cf. Subsection
5.3.3.5), either if the wavelength of the radiation used in an
experiment is known with better accuracy [cf. equation
(5.3.1.3)] or if a high-quality standard single crystal is given,
whose lattice spacing has been very accurately determined
(Baker & Hart, 1975; mentioned in §5.3.3.7.3). The two tasks,
i.e. very accurate determination of both lattice spacings and
wavelengths in metric units, can be realized by use of combined
optical and X-ray interferometry. This original concept of
absolute-lattice-spacing determination directly in units of a
standard light wavelength has been proposed and realized by
Deslattes (1969) and Deslattes & Henins (1973).

The principle of the method is presented in Fig. 5.3.3.16. The
silicon-crystal X-ray interferometer is a symmetric Laue-case
type (Bonse & te Kaat, 1968). The parallel translation device
consists of the stationary assembly (a) formed by two specially
prepared crystals, and a moveable one (b), to which belongs the
third crystal. One of the two mirrors of a high-resolution Fabry-
Perot interferometer is attached to the stationary assembly and
the second to the moving assembly. A stabilized He-Ne laser is
used as a source of radiation, the wavelength of which has been
established relative to visible standards. The first two crystals
produce a standing wavefield, which is intercepted by the third
crystal, so that displacement of the third crystal parallel to the
diffraction vector (as suggested by the large arrow) produces
alternate maxima and minima in the diffracted beams, detected
by X-ray detector (c). Resonant transmission maxima of the
optical interferometer are detected simultaneously by the
photomultiplier indicated at (d). Analysis of the fringes (shown

Monochromator
® Sample
20°
............ Film 1
PH
|+, Detector
Analyser :l

Film 2

Fig. 5.3.3.15. The geometry of the diffractometer used by Fewster &
Andrew (1995). The scattering angle, 2w/, is the fundamental angle
for determination of the interplanar spacing and P is the analyser-
groove entrance.

in Fig. 5.3.3.17) is the basis for the calculation of the lattice-
spacing-to-optical-wavelength ratio (d/1), which is given by

2d _n cosa (5.3.3.48)
A mcosp

where n and m are the numbers of optical and X-ray diffraction
fringes, respectively, and o and B are the measured angular
deviations of the optical and X-ray diffraction vectors from the
direction of motion. The measurements are carried out in two
steps. First, the lattice parameter of silicon along the [110]
crystallographic direction was measured in the metric system,
independently of the X-ray wavelength used in the experiment.
As the next step, a specimen of known lattice spacing, treated as
a reference crystal, was used for the accurate wavelength
determination of Cu Ko; and Mo Ke;. Accuracy better than 1
part in 10° was reported (see Section 4.2.2).

LR
se=ccl=szes TN
M —
mzz-_:‘:::, - S
l eqeed
. &L )

Fig. 5.3.3.16. Optical and X-ray interferometry. Schematic representa-
tion of the experimental set-up (after Deslattes & Henins, 1973;
Becker et al., 1981).

AVAVAA

Fig. 5.3.3.17. Portion of a dual-channel recording of X-ray and optical
fringes (Deslattes, 1969).
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The above experiment was a turning point in accurate
measurements of both wavelengths and lattice parameters.
Owing to the idea of Deslattes & Henins, it became possible to
determine the wavelength in nanometres rather than in trouble-
some XU or A* units (¢f. §4.2.1.1.1). However, the results
obtained and the method itself needed verification and some
adjustments. These were performed by another group of
experimenters with a similar but different measuring device
(Becker, Seyfried & Siegert, 1982, and references therein;
Siegert, Becker & Seyfried, 1984).

5.3.3.9. Lattice-parameter and wavelength standards

An extended series of measurements performed by means of
the optical and X-ray interferometry (cf. §5.3.3.8) led, among
other things, to evaluation of the lattice spacing of a highly
perfect silicon sample WASO 4.2.A (Becker et al., 1981). Such
silicon samples may be used as reference crystals in successive
lattice-spacing comparison measurements — with a double-source
double-crystal spectrometer (Windisch & Becker, 1990), for
example. The latter measurements provided new excellent
lattice-spacing standards (WASO 9, for example) of the well
known lattice-parameter values. As shown by the authors, the
differences in lattice parameters of different samples of float-
zone silicon (due to oxygen or carbon content) were not greater
than a few parts in IQS. Finally, the lattice parameter of silicon,
a = 5.43102088(16) A, has been accepted as the atomic scale
length standard (Mohr & Taylor, 2000).

Another reference material reported is crystals of pure
rhombohedral corrundum («-Al,O;), i.e. of ruby or sapphire
(Herbstein, 2000, and references therein; Shvyd’ko er al.,
2002).

With silicon standards, measurements or remeasurements of
Ko, , and/or KB, ; X-ray emission lines and absolute wavelength
determinations of most of the 34 transition metals (Cr, Mn, Fe,
Co, Ni and Cu) have been performed [Hértwig, Grosswig,
Becker & Windisch, 1991; Holzer, Fritsch, Deutsch, Héartwig &
Forster, 1997 (see §4.2.2)].

The standard crystals may also be used for determination of
such physical quantities as the Avogadro constant (Deslattes et
al., 1994; Deslattes, Henins, Schoonover, Caroll & Bowman,
1976). The single accurate wavelength values, on the other hand,
may be used both in simple measurements of lattice parameters
[based directly on the Bragg law, equation (5.3.1.1)] and for

Q PIN4

PIN photodiode \
PIN1 \

accurate scaling of the wavelength spectra, in order to use them,
for example, in high-accuracy lattice-parameter measurements
based on complete convolution models [cf. §5.3.3.3.1, point(ii)].

Unlike the X-rays emitted from an X-ray tube, for which the
spectral line and the characteristic wavelength are known, there
are no such characteristic features in synchrotron radiation.
Therefore, special energy-selective monochromators should be
applied in relative lattice-spacing measurements using synchro-
tron radiation. Obaidur (2002) proposes two measurement
schemes, using two types of high-resolution channel-cut mono-
lithic monochromators. The first scheme (see Fig. 5.3.3.18) is a
modification of the Bond method. The second one (see Fig.
5.3.3.19) uses_the simultaneous Bragg condition for the indices
6,1,3), (6,1,3), (1,5,3) and (1,5,3). The lattice-spacing
differences in Si wafers were determined in the sub-parts in 10°
range of 0.6 parts in 10° (in the first scheme) and of 0.2 parts in
10° (second scheme).

Recently, a new atomic scale wavelength standard was
proposed by Shvyd’ko et al. (2000), instead of the wavelength
of the Cu Ko; emission line or of the lattice parameter of a
silicon standard. It is the wavelength, 4,,, of the ’Fe Mdssbauer
radiation, i.e. of y radiation of natural linewidth from nuclear
transitions. It has been measured to the sub-parts in 10°
accuracy: 4, = 0.86025474(16) A (relative accuracy 0.19 parts
in 10°). Its advantage, in relation to the previous standards, is the
high spectral sharpness of the Mossbauer radiation of
3.5 x 1071 in relative units, which makes its wavelength 4,
extremely well defined. This standard wavelength value, which
lies a little outside of scope of the present review (X-ray
methods), was next used for the lattice-parameter determination
of sapphire single crystals with a relative accuracy of about 0.5
parts in 10° (Shvyd’ko et al., 2002). Fig. 5.3.3.20 is a diagram
of the measurement arrangement.

5.3.4. Final remarks

Let us review the most important problems concerning accurate
and precise lattice-parameter determination.

The first, commonly known, requirement for obtaining the
highest accuracy and precision is the use of high-Bragg-angle
reflections. The tendency to obtain, record, and use in
calculation such reflections can be met in rotating-crystal
cameras in which Straumanis mounting is applied (Farquhar &

o,

PIN2
Goniometer holding
sample crystal

Goniometer holding
monolithic monochromator

Si(111)

SR from
bending magnet

Fig. 5.3.3.18. Synchrotron radiation, SR, from the bending magnet incident on the Si(111) double-crystal monochromator and, after four reflections
from the monolithic monochromator (0.1410 nm), impinges on sample Si(444). Two diffractions are recorded at the photodiode detectors, PIN1
and PIN2. The w, and w, values of the crystal positions are recorded using a Heiden height encoder.
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