International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 6.1, pp. 554-595
https://doi.org/10.1107/97809553602060000600

Chapter 6.1. Intensity of diffracted intensities

P. J. Brown,a A. G. Fox,b E. N. Maslen,e M. A. O'Keefec and B. T. M. Willisd

a Institut Laue–Langevin, Avenue des Martyrs, BP 156X, F-38042 Grenoble CEDEX, France,bCenter for Materials Science and Engineering, Naval Postgraduate School, Monterey, CA 93943-5000, USA,cNational Center for Electron Microscopy, Lawrence Berkeley National Laboratory MS-72, University of California, Berkeley, CA 94720, USA,dChemical Crystallography Laboratory, University of Oxford, 9 Parks Road, Oxford OX1 3PD, England, and eCrystallography Centre, The University of Western Australia, Nedlands, Western Australia 6009, Australia

Section 6.1.1 covers X-ray scattering from atoms and ions. Scattering is described by the Thomson formula, including coherent (Rayleigh) and incoherent (Compton) X-ray scattering. Atomic scattering factors, calculated using relativistic Hartree–Fock or Dirac–Slater wavefunctions, give the X-ray scattering from an atom (in fact, its ensemble of electrons) in terms of that from a single electron. Free-atom scattering factors are tabulated for neutral atoms from atomic number 1 (hydrogen) to 98 (californium) over a scattering range of sin θ/λ from 0 to 6 Å−1, and for ions from H1− to Pu6+ over 0 to 2 Å−1. Analytical fits to the scattering factors are given and methods for interpolation of the tabulated factors are described. Perturbations from free-atom electron density for bound atoms are handled with generalized scattering factors expressed as spherical harmonics. Probability density functions for atom displacement due to temperature are described in terms of generalized temperature factors related to atom vibration symmetries. The final parts of Section 6.1.1 describe the role of atomic scattering factors in the computation of crystal structure factors by summation over unit-cell atoms, and the reflecting power of small crystals. Section 6.1.2 presents the basic equations governing magnetic scattering of neutrons. They are used to define the useful intermediate quantities of the magnetic interaction vector, the magnetic structure factor and the magnetic form factor, which are used in calculations of magnetic cross sections. A brief account of the way in which the magnetic scattering depends upon the neutron spin direction (neutron polarization) is included. Formulae for the scattering of neutrons by the nuclei of an atom are given in Section 6.1.3. The scattering cross sections for a single nucleus, for an element containing a mixture of isotopes, and for a single crystal are considered.

Keywords: approximations; atomic scattering factors; coherent scattering; Compton scattering; cumulant expansion; curvilinear density functions; Fourier-invariant expansions; Gram–Charlier series expansion; incoherent scattering; magnetic form factors; magnetic scattering; magnetic structure factors; neutron polarization; neutron scattering; neutrons; nuclear scattering; polarization; polarized neutrons; quasi-Gaussian approximation; Rayleigh scattering; reflecting power; scattering; scattering factors; structure factors; X-ray scattering.

6.1.1. X-ray scattering

| top | pdf |
E. N. Maslen,e A. G. Foxb and M. A. O'Keefec

6.1.1.1. Coherent (Rayleigh) scattering

| top | pdf |

An electromagnetic wave incident on a tightly bound electron is scattered coherently. For an incident wave of unit amplitude with the electric vector normal to the plane of the reflection x0y containing the incident and diffracted beams (Fig. 6.1.1.1[link] ), the amplitude of the scattered wave at a distance r is [r_e/r,\eqno (6.1.1.1)]where [r_e=(\mu_0/4\pi)(e^2/m)] is the classical radius of the electron (2.818 × 10−15 m).

[Figure 6.1.1.1]

Figure 6.1.1.1| top | pdf |

Scattering by an electron. k0 and k are the incident and scattered wavevectors, respectively.

For a wave with the electric vector parallel to the plane x0y, the amplitude of the scattered wave is [{r_e\over r}\cos2\theta.\eqno (6.1.1.2)]For unpolarized incident radiation with unit mean amplitude, the amplitude of the scattered wave is given by the Thomson formula[{r_e\over r}\bigg\{{1+\cos^22\theta\over2}\bigg\}^{1/2}.\eqno (6.1.1.3)]The corresponding intensity of scattering per unit solid angle is [I_e=I_or^2_e\bigg[{1+\cos^22\theta\over 2}\bigg]\eqno (6.1.1.4)]for an unpolarized incident beam of intensity [I_o].

6.1.1.2. Incoherent (Compton) scattering

| top | pdf |

For scattering from a free electron, the quantum nature of the radiation must be considered. Under the impact of a photon with energy hc/λ, momentum h/λ, the recoil of an electron, initially at rest, results in a change in wavelength of [\Delta\lambda={2h\over mc}\sin^2\theta,\eqno (6.1.1.5)]a geometry similar to that in Fig. 6.1.1.1[link] being assumed. There is no fixed relationship between the phases of the incident and scattered beams – i.e. the scattering is incoherent. The intensity [I_e] predicted by the Thomson formula is modified by the correction factor [λ/(λ + Δλ)]3.

6.1.1.3. Atomic scattering factor

| top | pdf |

For scattering by atomic electrons there are both coherent and incoherent components, with total intensity given by the Thomson formula. The phase for coherent scattering is by convention related to that of a free electron at the nucleus. There is a phase shift of π for scattering from a free electron. The scattering from an element of electron density [\rho({\bf r}_j)] has a phase difference of [i{\bf S}\cdot{\bf r}_j], where [{\bf S}=2\pi{\bf s}.\eqno (6.1.1.6)]The total amplitude for coherent scattering from the jth electron is [f_j=\textstyle\int\rho({\bf r}_j)\exp(i{\bf S}\cdot{\bf r}_j)\,{\rm d}{\bf r}_j.\eqno (6.1.1.7)]The intensity of coherent scattering is [I_{\rm coh}=I_e f^2_j.\eqno (6.1.1.8)]The intensity of Compton scattering from that electron is [I_{\rm incoh}=I_e-I_{\rm coh}=I_e(1-f^2_j).\eqno (6.1.1.9)]For an atom with atomic number Z, [I_{\rm coh}=I_e\bigg(\textstyle\sum\limits^Z_{j=1}f_j\bigg)^2\eqno (6.1.1.10)]and [I_{\rm incoh}=I_e\bigg(Z-f^2_j-\textstyle\sum\limits_{j,k}f_{jk}\bigg),\eqno (6.1.1.11)]where the correction term [f_{jk}=\int\psi^*_j\psi_k\exp(i{\bf S}\cdot{\bf r})\,{\rm d}{\bf r},\eqno (6.1.1.12)]owing to exchange, meets the requirements of the Pauli exclusion principle.

Atomic scattering factors for neutral atoms are listed in Table 6.1.1.1[link] for the range [0\lt(\sin\theta)/\lambda\lt6.0\,{\rm \AA}^{-1}]. The values for hydrogen are calculated from the analytical solution to the Schrödinger equation and are effectively zero for [(\sin\theta)/\lambda\gt1.5\,{\rm \AA}^{-1}]. Those for heavier atoms are for relativistic wavefunctions, based on the calculations of Doyle & Turner (1968[link]) using the wavefunctions of Coulthard (1967[link]) (designated RHF in Table 6.1.1.1[link]), or on those of Cromer & Waber (1968[link]) using the wavefunctions of Mann (1968a[link]) (designated *RHF). The latter are based on a more exact treatment of potential that allows for the finite size of the nucleus, but the effect on the scattering factors is small. The calculations of Cromer & Waber (1968[link]) were originally made for [0\lt(\sin\theta)/\lambda\lt2.0\,{\rm \AA}^{-1}], but these have been extended to 6 Å−1 by Fox, O'Keefe & Tabbernor (1989[link]); this has been done because there are increasing numbers of applications for high-angle scattering factors.

Table 6.1.1.1| top | pdf |
Mean atomic scattering factors in electrons for free atoms

Methods: E: exact; RHF, *RHF (see text): relativistic Hartree–Fock.

ElementHHeLiBeBCNOFNe
Z12345678910
MethodERHFRHFRHFRHFRHFRHFRHFRHFRHF
(sin [\theta])/λ (Å−1)          
0.001.0002.0003.0004.0005.0006.0007.0008.0009.00010.000
0.010.9981.9982.9863.9874.9885.9906.9917.9928.9939.993
0.020.9911.9932.9473.9504.9545.9586.9637.9678.9709.973
0.030.9801.9842.8843.8894.8975.9076.9187.9268.9339.938
0.040.9661.9722.8023.8074.8205.8376.8557.8698.8819.891
0.050.9471.9572.7083.7074.7245.7496.7767.7988.8159.830
0.060.9251.9392.6063.5924.6135.6456.6827.7128.7369.757
0.070.9001.9172.5023.4684.4885.5266.5747.6128.6459.672
0.080.8721.8932.4003.3364.3525.3966.4537.5018.5419.576
0.090.8421.8662.3043.2014.2095.2556.3217.3788.4279.469
0.100.8111.8372.2153.0654.0605.1076.1807.2458.3029.351
0.110.7781.8062.1352.9323.9084.9526.0307.1038.1689.225
0.120.7441.7722.0652.8043.7564.7945.8756.9548.0269.090
0.130.7101.7372.0042.6833.6064.6335.7146.7987.8768.948
0.140.6761.7011.9502.5693.4594.4725.5516.6377.7218.799
0.150.6411.6631.9042.4633.3164.3115.3856.4727.5608.643
0.160.6081.6241.8632.3653.1794.1535.2186.3047.3958.483
0.170.5741.5841.8282.2773.0483.9985.0516.1347.2268.318
0.180.5421.5431.7962.1972.9243.8474.8865.9647.0558.150
0.190.5111.5021.7682.1252.8083.7014.7235.7936.8837.978
0.200.4811.4601.7422.0602.6993.5604.5635.6236.7097.805
0.220.4241.3771.6931.9512.5033.2974.2545.2896.3627.454
0.240.3731.2951.6481.8642.3363.0583.9634.9656.0207.102
0.250.3501.2541.6261.8282.2632.9493.8254.8085.8516.928
0.260.3281.2141.6041.7952.1952.8463.6934.6555.6856.754
0.280.2871.1361.5591.7392.0772.6583.4454.3635.3636.412
0.300.2511.0601.5131.6921.9792.4943.2194.0895.0546.079
0.320.2200.9881.4651.6521.8972.3513.0143.8344.7615.758
0.340.1930.9201.4171.6161.8292.2272.8313.5994.4845.451
0.350.1800.8871.3931.6001.7992.1712.7473.4894.3535.302
0.360.1690.8561.3691.5831.7712.1202.6673.3834.2255.158
0.380.1480.7951.3201.5511.7232.0282.5223.1863.9834.880
0.400.1300.7381.2701.5201.6811.9482.3933.0063.7594.617
0.420.1150.6861.2211.4891.6441.8802.2782.8443.5514.370
0.440.1010.6361.1731.4581.6111.8212.1782.6973.3604.139
0.450.0950.6131.1491.4431.5961.7942.1322.6293.2704.029
0.460.0900.5911.1251.4271.5811.7702.0892.5643.1833.923
0.480.0790.5481.0781.3951.5531.7252.0112.4453.0223.722
0.500.0710.5091.0331.3621.5261.6851.9422.3382.8743.535
0.550.0530.4230.9241.2791.4631.6031.8022.1152.5593.126
0.600.0400.3530.8231.1951.4021.5371.6971.9462.3092.517
0.650.0310.2950.7321.1121.3391.4791.6161.8162.1122.517
0.700.0240.2480.6501.0301.2761.4261.5511.7141.9562.296
0.800.0150.1770.5120.8761.1471.3221.4451.5681.7351.971
0.900.0100.1290.4040.7401.0201.2191.3531.4631.5881.757
1.000.0070.0950.3200.6220.9001.1141.2651.3771.4821.609
1.100.0050.0720.2550.5220.7901.0121.1721.2981.3981.502
1.200.0030.0550.2050.4390.6900.9141.0901.2211.3241.418
1.300.0030.0420.1650.3690.6020.8221.0041.1451.2541.346
1.400.0020.0330.1340.3110.5240.7360.9211.0701.1861.280
1.500.0010.0260.1100.2630.4570.6590.8430.9971.1201.218
1.60 0.0210.0910.2230.3980.5880.7690.9261.0551.158
1.70 0.0170.0750.1900.3470.5250.7000.8570.9901.099
1.80 0.0140.0630.1630.3040.4680.6360.7920.9281.041
1.90 0.0110.0530.1390.2660.4180.5780.7310.8680.984
2.00 0.0100.0440.1200.2330.3730.5250.6740.8100.929
2.50 0.0040.0210.0600.1260.2160.3240.4430.5640.680
3.00 0.0020.0110.0330.0720.1300.2040.2920.3890.489
3.50 0.0010.0060.0190.0430.0810.1320.1960.2700.331
4.00 0.0040.0120.0270.0530.0880.1340.1900.254 
5.00  0.0020.0050.0120.0250.0430.0670.0990.137
6.00  0.0010.0030.0060.0130.0230.0370.0550.079

ElementNaMgAlSiPSClArKCa
Z11121314151617181920
MethodRHFRHFRHFRHFRHFRHFRHFRHFRHFRHF
(sin [\theta])/λ (Å−1)          
0.0011.00012.00013.00014.00015.00016.00017.00018.00019.00020.000
0.0110.98011.97812.97613.97614.97715.97916.98017.98118.96319.959
0.0210.92211.91412.90313.90414.90915.91516.91917.92418.85419.838
0.0310.83011.81112.78613.78714.79815.80916.82017.83018.68319.645
0.0410.70911.67412.62913.62814.64615.66516.68317.70018.46219.392
0.0510.56811.50712.43913.43414.45815.48416.51117.53618.20419.091
0.0610.41211.31912.22213.20914.23715.27116.30617.34017.92418.758
0.0710.24911.11611.98712.96113.99015.03016.07317.11617.63018.405
0.0810.08410.90311.73912.69513.72114.76415.81416.86517.33218.045
0.099.92010.68711.48512.41713.43514.47815.53316.59117.03217.685
0.109.76010.47211.23012.13413.13814.17715.23416.29816.73317.331
0.119.60510.26210.97811.84912.83413.86514.92115.98816.43616.987
0.129.45510.05910.73311.56712.52713.54614.59715.66516.13816.655
0.139.3099.86410.49811.29212.22313.22414.26615.33115.84116.334
0.149.1669.67810.27311.02511.92212.90213.93214.99115.54316.024
0.159.0279.50210.05910.76911.62912.58313.59714.64715.24315.723
0.168.8889.3349.85710.52511.34512.27013.26314.30114.94115.430
0.178.7519.1759.66710.29311.07211.96412.93413.95714.63815.142
0.188.6139.0239.48710.07410.81111.66812.61113.61514.33414.859
0.198.4758.8769.3189.86810.56311.38212.29713.27914.03114.580
0.208.3358.7359.1589.67310.32711.10911.99112.94913.72814.304
0.228.0528.4658.8629.3199.89410.59811.41312.31513.13013.760
0.247.7648.2058.5929.0049.51010.13810.88111.72112.55013.225
0.257.6188.0788.4658.8599.3359.92710.63311.44112.26812.961
0.267.4717.9518.3418.7229.1709.72710.39811.17211.99412.701
0.287.1767.6988.1038.4678.8699.3639.96410.67111.46812.194
0.306.8817.4467.8738.2318.6009.0399.57610.21610.97711.705
0.326.5887.1947.6488.0118.3578.7529.2319.80710.52111.240
0.346.2986.9437.4267.8008.1348.4948.9239.44110.10310.800
0.356.1566.8177.3167.6988.0298.3768.7829.2729.90810.590
0.366.0156.6917.2057.5977.9288.2628.6499.1139.72210.388
0.385.7396.4426.9857.3987.7338.0518.4038.8209.37510.004
0.405.4716.1946.7667.2027.5477.8568.1818.5589.0619.650
0.425.2145.9516.5487.0087.3677.6737.9798.3228.7789.324
0.444.9675.7126.3306.8157.1907.5017.7948.1108.5229.025
0.454.8485.5956.2226.7197.1037.4177.7068.0118.4038.885
0.464.7315.4806.1156.6227.0177.3357.6217.9178.2908.752
0.484.5065.2535.9026.4316.8457.1747.4597.7398.0808.502
0.504.2935.0345.6926.2406.6747.0177.3057.5757.8898.275
0.553.8114.5205.1865.7696.2506.6336.9417.2077.4747.788
0.603.3984.0594.7135.3125.8296.2546.5956.8757.1257.392
0.653.0483.6524.2774.8785.4185.8776.2546.5606.8147.057
0.702.7543.2973.8834.4705.0205.5055.9156.2526.5236.762
0.802.3052.7293.2213.7504.2844.7905.2455.6395.9616.228
0.901.9972.3172.7123.1643.6494.1384.6075.0365.4065.717
1.001.7842.0222.3302.7023.1223.5704.0234.4604.8595.209
1.101.6341.8122.0492.3462.6983.0923.5093.9314.3374.710
1.201.5241.6601.8412.0762.3642.6993.0703.4623.8554.233
1.301.4381.5461.6871.8722.1042.3842.7043.0563.4233.791
1.401.3671.4591.5711.7171.9032.1332.4052.7133.0453.391
1.501.3041.3871.4811.5981.7471.9352.1622.4272.7223.039
1.601.2471.3261.4081.5051.6261.7791.9672.1922.4502.733
1.701.1911.2701.3461.4301.5301.6551.8112.0002.2212.470
1.801.1371.2191.2921.3671.4531.5571.6861.8442.0332.250
1.901.0841.1691.2431.3131.3891.4771.5851.7171.8762.063
2.001.0321.1201.1951.2641.3331.4111.5021.6141.7481.908
2.500.7910.8920.9791.0561.1221.1821.2401.3011.3671.444
3.000.5910.6910.7830.8670.9421.0091.0691.1231.1741.225
3.500.4380.5270.6150.6990.7770.8490.9150.9741.0281.078
4.000.3250.4010.4780.5660.6320.7050.7730.8360.8950.949
5.000.1830.2340.2900.3490.4110.4740.5360.5970.6570.715
6.000.1070.1410.1790.2220.2680.3160.3670.4190.4720.524

ElementScTiVCrMnFeCoNiCuZn
Z21222324252627282930
MethodRHFRHFRHFRHFRHFRHFRHFRHFRHFRHF
(sin [\theta])/λ (Å−1)          
0.0021.00022.00023.00024.00025.00026.00027.00028.00029.00030.000
0.0120.96221.96422.96623.97124.96925.97026.97227.97328.97729.975
0.0220.84821.85622.86423.88524.87625.88226.88727.89228.90829.900
0.0320.66521.68222.69823.74624.72625.73826.74927.75928.79429.777
0.0420.42221.45122.47723.55824.52325.54326.56227.57928.64029.609
0.0520.13121.17122.20823.32924.27425.30426.33127.35628.44829.401
0.0619.80520.85421.90223.06523.98825.02626.06327.09628.22329.157
0.0719.45520.51121.56722.77223.67124.71925.76426.80627.97128.883
0.0819.09120.15021.21222.45923.33124.38725.44026.49027.69428.583
0.0918.72319.78120.84622.12922.97624.03825.09826.15627.39728.263
0.1018.35619.41020.47421.78922.61123.67824.74425.80727.08427.927
0.1117.99519.04120.10221.44122.24023.31024.38025.44826.75827.579
0.1217.64318.67819.73321.08921.86822.93924.01125.08326.42227.222
0.1317.30118.32219.36920.73421.49722.56823.64124.71426.07726.859
0.1416.96817.97419.01120.37821.12822.19723.27024.34425.72626.492
0.1516.64517.63518.66120.02220.76421.82922.90023.97325.37026.124
0.1616.33017.30418.31719.66720.40421.46522.53323.60425.00925.754
0.1716.02316.98017.98019.31220.04921.10422.16823.23724.64525.385
0.1815.72216.66317.64918.96019.69920.74821.80622.87224.27825.017
0.1915.42616.35117.32318.60919.35420.39521.44822.51023.91024.649
0.2015.13516.04417.00318.26019.01220.04621.09322.15023.54024.283
0.2214.56415.44416.37617.57018.34219.35920.39321.43822.79823.556
0.2414.00614.85915.76516.89317.68618.68519.70420.73722.05722.836
0.2513.73214.57215.46516.56117.36418.35419.36420.39021.68722.478
0.2613.46214.28915.16916.23217.04518.02519.02720.04621.31922.122
0.2812.93313.73514.58915.58816.41717.37818.36119.36520.58921.417
0.3012.42313.19814.02614.96515.80616.74417.70918.69619.86920.720
0.3211.93412.68213.48214.36515.21116.12717.07218.04019.16220.034
0.3411.46712.18712.95913.79014.63415.52716.45017.39818.47219.359
0.3511.24411.94912.70513.51314.35315.23316.14517.08418.13319.027
0.3611.02711.71712.45813.24214.07814.94515.84516.77317.79918.698
0.3810.61311.27111.98212.72013.54314.38415.26016.16517.14518.051
0.4010.22610.85211.53012.22713.03113.84514.69515.57616.51417.421
0.429.86610.45911.10511.76212.54313.32814.15115.00815.90416.809
0.449.53410.09310.70511.32612.08012.83513.63014.46115.31816.216
0.459.3779.92010.51511.11811.85812.59813.37914.19615.03415.926
0.469.2279.75310.33210.91711.64212.36713.13313.93714.75715.642
0.488.9469.4389.98410.53611.22811.92212.65913.43514.21915.090
0.508.6879.1489.66010.18010.84011.50212.20912.95613.70714.559
0.558.1328.5188.9529.4009.97310.55711.18811.86212.53313.328
0.607.6828.0078.3738.7569.2459.75310.30910.90911.50712.235
0.657.3127.5887.8988.2278.6399.0779.56110.09010.62111.276
0.706.9967.2407.5067.7918.1378.5128.9309.3929.86110.442
0.806.4606.6766.8927.1187.3687.6457.9558.3018.6639.108
0.905.9756.2006.4066.6066.8087.0237.2597.5197.7998.132
1.005.5015.7525.9726.1726.3596.5456.7386.9447.1667.417
1.105.0305.3105.5535.7685.9626.1436.3186.4956.6816.879
1.204.5704.8725.1395.3725.5865.7755.9506.1186.2856.453
1.304.1314.4454.7304.9825.2155.4205.6015.7765.9396.096
1.403.7224.0384.3334.5974.8495.0705.2705.4515.6175.775
1.503.3523.6603.9564.2264.4904.7254.9395.1335.3085.473
1.603.0233.3163.6043.8744.1444.3884.6114.8195.0055.180
1.702.7333.0063.2813.5453.8144.0624.2954.5114.7054.892
1.802.4852.7342.9923.2443.5063.7533.9894.2114.4134.610
1.902.2712.4962.7332.9713.2213.4633.6973.9224.1284.332
2.002.0902.2902.5062.7272.9633.1953.4243.6473.8554.063
2.501.5331.6371.7561.8882.0372.1972.3662.5432.7212.908
3.001.2791.3381.4041.4791.5631.6581.7631.8782.0012.135
3.501.1251.1711.2171.2661.3191.3771.4411.5121.5901.677
4.000.9981.0441.0871.1291.1711.2131.2581.3061.3581.414
5.000.7700.8210.8690.9140.9560.9951.0331.0691.1051.140
6.000.5770.6270.6770.7240.7690.8130.8530.8920.9290.964

ElementGaGeAsSeBrKrRbSrYZr
Z31323334353637383940
MethodRHFRHFRHFRHFRHFRHFRHFRHF*RHF*RHF
(sin [\theta])/λ (Å−1)          
0.0031.00032.00033.00034.00035.00036.00037.00038.00039.00040.000
0.0130.97131.97032.97033.97034.97135.97236.95237.94638.94739.949
0.0230.88331.87832.87933.88134.88335.88636.80937.78638.79239.800
0.0330.74031.72932.73033.73434.73935.74436.58337.53238.54339.559
0.0430.54631.52632.52733.53234.54035.54936.29137.19738.21239.237
0.0530.30831.27632.27433.28034.29135.30435.94836.80237.81638.847
0.0630.03130.98431.97732.98233.99535.01135.57136.36337.36938.403
0.0729.72430.65731.64232.64533.65834.67735.17135.89736.88937.921
0.0829.39130.30231.27632.27333.28434.30534.75835.41836.38737.412
0.0929.04029.92630.88431.87232.88033.89934.33634.93735.87636.887
0.1028.67529.53430.47331.44932.45033.46733.90734.45835.36436.356
0.1128.30229.13330.04931.00932.00033.01133.47333.98634.85535.824
0.1227.92428.72529.61630.55731.53532.53733.03433.52234.35435.296
0.1327.54328.31629.17930.09931.06032.05132.58833.06633.86134.775
0.1427.16227.90828.74229.63730.57831.55532.13732.61633.37834.262
0.1526.78327.50428.30729.17530.09531.05531.68132.17132.90433.758
0.1626.40627.10427.87728.71829.61330.55331.22031.73032.43733.263
0.1726.03326.70927.45428.26629.13630.05330.75731.29231.97732.776
0.1825.66326.32227.03927.82228.66429.55830.29330.85631.52332.298
0.1925.29725.94126.63327.38728.20229.07029.83030.42131.07531.827
0.2024.93525.56726.23526.96227.74928.59029.36829.98830.63131.363
0.2224.12124.83925.46926.14526.87627.66328.45929.12829.75830.454
0.2423.52024.13524.73925.37226.05226.78427.57628.28028.90429.572
0.2523.17423.79124.38625.00125.65826.36427.14827.86328.48529.141
0.2622.83023.45224.04124.64125.27625.95726.72927.45228.07128.716
0.2822.15122.78723.37023.94724.54525.18125.92226.64827.26327.889
0.3021.48122.13622.72423.28823.85724.45325.15825.87526.48327.092
0.3220.82021.49822.09722.65623.20623.77124.43725.13525.73426.327
0.3420.16920.87021.48622.04822.58723.12823.75824.43025.01825.596
0.3519.84720.56021.18521.75122.28822.82023.43224.09024.67325.243
0.3619.52720.25320.88821.45921.99522.52023.11623.76024.33624.899
0.3818.89719.64520.30120.88721.42521.94122.51023.12523.68724.236
0.4018.27819.04719.72520.32820.87421.38821.93422.52223.07123.606
0.4217.67318.45919.15919.78020.33820.85521.38621.95022.48523.008
0.4417.08317.88218.60219.24219.81620.33920.86021.40421.92822.439
0.4516.79417.59818.32618.97719.55820.08720.60521.14121.66022.166
0.4616.50817.31718.05418.71319.30419.83820.35420.88321.39821.899
0.4815.95016.76517.51618.19318.80119.34919.86620.38320.89021.384
0.5015.41016.22716.98917.68218.30718.87019.39119.90220.40420.892
0.5514.14214.94715.72116.44417.10717.70918.25218.76419.26319.745
0.6012.99613.77014.53515.26915.95816.59417.16717.69618.20418.693
0.6511.97412.70213.44014.16614.86515.52416.12516.67817.20317.706
0.7011.07311.74512.44213.14513.83714.50415.12615.70216.24616.767
0.809.60410.15110.74111.36212.00112.64513.27213.87214.44314.996
0.908.5108.9379.4119.92810.48011.05711.64512.23012.79813.361
1.007.7028.0288.3968.8099.2629.75210.27010.80611.33911.883
1.107.0997.3487.6317.9528.3128.7119.1479.61210.08810.588
1.206.6336.8307.0507.2997.5807.8988.2528.6409.0469.486
1.306.2546.4196.5976.7957.0167.2667.5487.8638.2008.574
1.405.9266.0766.2316.3956.5746.7736.9967.2497.5237.833
1.505.6275.7745.9176.0636.2166.3806.5626.7646.9857.238
1.605.3425.4935.6365.7755.9136.0566.2106.3766.5546.760
1.705.0655.2245.3725.5115.6455.7785.9136.0556.2056.375
1.804.7924.9615.1175.2625.3985.5285.6565.7855.9146.059
1.904.5234.7024.8675.0205.1625.2955.4205.5445.6625.790
2.004.2604.4474.6214.7824.9325.0715.2005.3235.4405.558
2.503.0973.2873.4753.6583.8364.0074.1684.3204.4604.590
3.002.2772.4282.5842.7452.9093.0743.2393.4013.5603.720
3.501.7721.8761.9882.1082.2352.3692.5072.6492.7802.920
4.001.4771.5451.6211.7031.7931.8901.9932.1032.2152.335
5.001.1761.2131.2511.2921.3371.3841.4361.4931.5501.620
6.000.9981.0301.0611.0921.1231.1541.1861.2191.2501.285

ElementNbMoTcRuRhPdAgCdInSn
Z41424344454647484950
Method*RHFRHF*RHF*RHF*RHF*RHFRHFRHFRHFRHF
(sin [\theta])/λ (Å−1)          
0.0041.00042.00043.00044.00045.00046.00047.00048.00049.00050.000
0.0140.95641.95842.95543.96044.96145.96846.96447.96248.95749.955
0.0240.82441.83142.82143.84244.84745.87446.85747.84848.82849.821
0.0340.61041.62542.60343.64944.66045.71846.68147.66048.61849.601
0.0440.32341.34642.30843.38644.40545.50346.44047.40448.33249.303
0.0539.97041.00341.94543.06144.08845.23246.13947.08547.98048.934
0.0639.56540.60641.52642.68143.71744.90845.78646.71047.57048.504
0.0739.11640.16441.05942.25443.29944.53545.38546.28747.11248.022
0.0838.63439.68640.55741.78942.84244.11944.94445.82246.61447.498
0.0938.12839.18140.02841.29242.35143.66344.46945.32446.08646.942
0.1037.60638.65639.48040.77041.83443.17243.96444.79745.53446.361
0.1137.07338.11738.92140.22941.29642.65143.43544.24844.96445.764
0.1236.53537.56938.35539.67440.74142.10542.88643.68344.38345.155
0.1335.99437.01637.78739.10840.17341.53842.32243.10443.79344.541
0.1435.45436.46137.22138.53639.59740.95441.74442.51743.19943.924
0.1534.91635.90736.65837.95939.01540.35741.15741.92342.60343.309
0.1634.38235.35536.10037.38138.42939.75040.56341.32542.00642.696
0.1733.85434.80635.54836.80337.84139.13739.96440.72641.41042.088
0.1833.33134.26335.00336.22837.25438.52039.36140.12640.81741.486
0.1932.81433.72534.46635.65536.66837.90238.75839.52740.22640.891
0.2032.30533.19533.93635.08836.08637.28638.15438.93039.63940.302
0.2231.31032.15732.90033.97134.93736.06436.95537.74638.47839.145
0.2430.34831.15331.89732.88633.81534.86835.77436.58137.33738.016
0.2529.88130.66531.40932.35633.26734.28335.19236.00736.77437.462
0.2629.42430.18830.93031.83732.72833.70834.61935.44036.21836.915
0.2828.53829.26329.99830.82931.68032.59233.49834.32935.12535.841
0.3027.69228.38229.10429.86630.67531.52332.41633.25134.05934.794
0.3226.88827.54328.25028.94929.71730.50531.37832.21033.02533.775
0.3426.12626.74927.43528.07928.80729.54030.38731.21032.02532.786
0.3525.76026.36827.04227.66228.37029.07729.91030.72531.53832.303
0.3625.40425.99826.66027.25727.94428.62829.44430.25231.06031.828
0.3824.72125.28925.92526.48027.13027.76928.55129.33830.13430.902
0.4024.07724.62025.22925.74926.36326.96127.70728.46829.24730.011
0.4223.46823.98924.57125.06225.64226.20226.91127.64428.40129.154
0.4422.89223.39423.94924.41524.96425.49126.16326.86527.59628.334
0.4522.61523.10923.65124.10624.64025.15325.80526.49227.20927.938
0.4622.34622.83223.36123.80724.32724.82525.45926.12926.83227.551
0.4821.82922.30022.80623.23523.72924.20124.80025.43626.10826.805
0.5021.33621.79622.28022.69623.16723.61724.18124.78425.42526.096
0.5520.19520.63821.08021.47621.90022.30722.79523.32023.88124.482
0.6019.15619.59520.01220.40320.79821.17721.60722.06322.55223.081
0.6518.18718.63519.04219.43819.82020.18620.57520.97821.40521.868
0.7017.26817.73218.14218.55118.93219.29619.66120.02720.40820.815
0.8015.53316.03616.47716.92217.32617.71118.06918.40518.73619.073
0.9013.91514.44814.92515.40515.84516.26616.65117.00017.32917.646
1.0012.42712.96813.46613.96814.44014.89315.31615.69816.05316.384
1.1011.09811.62112.11612.62013.10713.58014.03514.45114.84015.201
1.209.94510.43010.90011.38511.86612.34212.81313.25313.67014.062
1.308.9729.4049.83310.28210.74011.20011.66912.11612.54812.962
1.408.1698.5428.9199.3239.74310.17310.62311.06011.49211.913
1.507.5167.8318.1548.5068.8809.2709.68710.10110.51810.933
1.606.9697.2517.5217.8238.1488.4928.8699.2499.63910.034
1.706.5646.7807.0047.2587.5357.8338.1658.5058.8609.227
1.806.2166.3976.5826.7947.0287.2827.5697.8678.1848.516
1.905.9276.0806.2346.4126.6086.8247.0697.3267.6037.897
2.005.6805.8135.9466.0976.2626.4436.6516.8717.1107.367
2.504.7104.8274.9305.0405.1405.2405.3515.4615.5775.702
3.003.8603.9884.1104.2304.3504.4604.5664.6654.7614.853
3.503.0653.2173.3503.4853.6203.7403.8623.9774.0874.192
4.002.4052.5812.6902.8202.9403.0803.2073.3303.4493.565
5.001.6901.7661.8401.9252.0122.1002.2062.3042.4062.509
6.001.3271.3731.4201.4701.5201.5751.6351.6981.7461.835

ElementSbTeIXeCsBaLaCePrNd
Z51525354555657585960
MethodRHF*RHFRHFRHFRHFRHF*RHF*RHF*RHF*RHF
(sin [\theta])/λ (Å−1)          
0.0051.00052.00053.00054.00055.00056.00057.00058.00059.00060.000
0.0150.95551.95452.95553.95654.93255.92556.92657.92858.92959.931
0.0250.81951.81852.82053.82154.73255.70356.70857.71558.72259.728
0.0350.59651.59452.59753.60154.41755.35056.36057.37558.39259.404
0.0450.29351.28852.29253.29754.00854.88855.90056.92457.95658.977
0.0549.91550.90651.91152.91753.52754.34555.35156.38557.43958.468
0.0649.47450.45851.46052.46752.99653.74354.73655.77956.86157.899
0.0748.97749.95150.95051.95452.43053.10654.07655.12756.24257.288
0.0848.43449.39550.38751.38851.83952.45053.38854.44655.59956.651
0.0947.85648.80049.78150.77551.22951.78652.68753.75054.94356.000
0.1047.25048.17449.14250.12550.60351.12251.98253.04754.28155.342
0.1146.62547.52648.47649.44749.96350.46051.27852.34553.61754.680
0.1245.98846.86347.79348.74749.30949.80250.58051.64652.95254.017
0.1345.34446.19347.09948.03348.64549.14649.88850.95252.28853.354
0.1444.69945.51946.40047.31147.97148.49249.20250.26351.62352.689
0.1544.05644.84845.70246.58847.29147.83948.52349.57950.95752.022
0.1643.41944.18245.00845.86846.60647.18647.84948.90150.28951.353
0.1742.78943.52644.32345.15545.92146.53347.18248.22749.62050.682
0.1842.16842.87943.64844.45345.23745.88246.51947.55748.95050.009
0.1941.55642.24542.98743.76344.55945.23245.86246.89248.28049.334
0.2040.95541.62342.34043.08843.88844.58645.21246.23347.61048.660
0.2239.78340.41941.09141.78842.57843.30943.93244.93346.27847.317
0.2438.65239.26739.90440.55741.32042.06442.68643.66344.96745.989
0.2538.10038.70939.33339.96740.71341.45642.07843.04244.32345.336
0.2637.55638.16338.77639.39340.12140.85941.48142.43243.68844.690
0.2836.49537.10237.70238.29438.98239.70240.32141.24442.44843.428
0.3035.46536.07936.67537.25137.90438.59839.21240.10441.25642.210
0.3234.46435.09035.69036.25936.88137.54638.15339.01440.11341.040
0.3433.49134.13134.74135.31035.90936.54537.14537.97539.02239.920
0.3533.01633.66334.27934.85035.44036.06336.65937.47438.49639.379
0.3632.54733.20233.82434.39934.98135.59336.18536.98537.98238.851
0.3831.63132.29932.93633.52034.09434.68535.27036.04036.98937.830
0.4030.74531.42432.07532.67133.24133.81834.39735.13936.04236.854
0.4229.88830.57531.23831.84732.41932.98633.56234.27735.13735.922
0.4429.06329.75330.42731.04731.62432.18732.76033.45134.26935.029
0.4528.66329.35230.03030.65631.23631.79832.37033.05133.84934.596
0.4628.27028.95929.64030.27130.85431.41531.98832.65833.43734.171
0.4827.51128.19428.87729.51730.10730.67031.24331.89332.63533.347
0.5026.78427.45828.14128.78529.38229.94830.52331.15431.86232.553
0.5525.11325.74826.41227.05427.66128.23828.81729.40930.04030.683
0.6023.64624.22624.85125.47026.07226.65227.23127.79128.35828.960
0.6522.36622.88523.45924.03824.61925.18925.75926.28926.80327.367
0.7021.25321.71122.22822.75823.30323.85124.40124.90125.37025.899
0.8019.42419.78320.19320.61821.07221.54722.03122.46922.86723.325
0.9017.95818.26218.59918.94319.31019.70120.10620.48120.82421.214
1.0016.69616.98617.29317.59117.90018.22418.56118.88119.18219.513
1.1015.53715.84116.15016.43816.72217.00817.30017.58317.85418.139
1.2014.42914.75915.09015.39015.67615.95316.22716.49116.74517.003
1.3013.35513.71214.07214.39614.70014.98815.26515.52615.77616.024
1.4012.32112.69813.08213.43213.75914.06714.36214.63314.88815.138
1.5011.34111.72612.12512.49412.84513.17513.48913.77614.04214.303
1.6010.43110.81111.21411.59211.95612.30512.63612.93913.21813.493
1.709.6029.96610.36010.73611.10411.46111.80712.12312.41412.704
1.808.8619.2019.5769.94010.30310.66111.00911.33311.63111.932
1.908.2088.5188.8689.2129.5589.90710.25310.57610.87811.185
2.007.6427.9218.2398.5568.8819.2139.5509.86810.16610.473
2.505.8365.9806.1426.3156.5026.7046.9177.1177.3337.567
3.004.9455.0405.1325.2295.3325.4405.5505.6635.8005.930
3.504.2954.3904.4784.5664.6514.7354.8204.9105.0005.090
4.003.6783.7803.8913.9914.0874.1784.2704.3604.4454.525
5.002.6152.7222.8282.9353.0413.1463.2403.3403.4353.530
6.001.9091.9902.0672.1502.2372.3252.4102.4902.5802.670

ElementPmSmEuGdTbDyHoErTmYb
Z61626364656667686970
Method*RHF*RHFRHF*RHF*RHF*RHF*RHF*RHF*RHF*RHF
(sin [\theta])/λ (Å−1)          
0.0061.00062.00063.00064.00065.00066.00067.00068.00069.00070.000
0.0160.93261.93462.93663.93664.93865.93966.94067.94168.94369.944
0.0260.73461.74062.74663.74964.75565.76066.76367.76968.77369.777
0.0360.41761.42862.44163.44764.46165.47166.47667.49168.50069.509
0.0459.99861.01762.03663.04464.07165.08866.09367.12068.13669.151
0.0559.49760.52561.55262.55763.60364.62765.62766.67367.69668.717
0.0658.93659.97261.00762.00463.07364.10565.09666.16667.19568.223
0.0758.33359.37760.41961.40062.49963.53864.51365.61366.64967.684
0.0857.70358.75359.80160.76261.89462.94063.89565.02866.07067.112
0.0957.05758.11359.16660.10261.27062.32163.25164.42065.46866.516
0.1056.40357.46358.52159.42760.63461.68962.59163.79864.85265.904
0.1155.74456.80957.86958.74659.98961.04961.92163.16764.22465.281
0.1255.08456.15157.21458.06159.34060.40361.24762.52863.58964.650
0.1354.42255.49156.55557.37558.68659.75260.56961.88462.94864.012
0.1453.75854.82855.89356.69058.02959.09759.89161.23462.30163.368
0.1553.09154.16355.22856.00557.36658.43759.21260.57861.64862.718
0.1652.42253.49354.55955.32156.69957.77158.53259.91760.98962.062
0.1751.74952.82153.88654.63756.02857.10157.85159.24960.32461.399
0.1851.07452.14553.21053.95355.35156.42557.16958.57659.65360.729
0.1950.39851.46752.53053.27054.67055.74456.48657.89758.97560.053
0.2049.72050.78651.84752.58853.98555.05955.80357.21358.29259.371
0.2248.36749.42650.48051.22752.61053.68154.43555.83356.91257.992
0.2447.02648.07449.11949.87851.23452.30053.07054.44555.52156.601
0.2546.36447.40648.44449.20950.54951.61152.39053.75054.82555.903
0.2645.71046.74347.77548.54649.86850.92651.71453.05854.13055.206
0.2844.42745.44346.45847.24048.52349.57050.37551.68352.74853.817
0.3043.18644.18045.17645.96547.20848.24049.05950.32951.38452.444
0.3241.99142.96143.93544.72945.92946.94447.77249.00450.04651.095
0.3440.84441.78942.74043.53344.69045.68646.52047.71248.73949.774
0.3540.28941.22142.16042.95144.08745.07345.90847.08148.09949.127
0.3639.74740.66641.59142.38043.49644.47145.30546.45947.46948.488
0.3838.69739.58940.48941.27242.34643.29944.13145.24646.23747.239
0.4037.69438.55939.43340.20741.24142.17142.99644.07545.04646.029
0.4236.73537.57338.42139.18440.17941.08641.90342.94543.89644.859
0.4435.81536.62737.45138.20339.16040.04240.84941.85742.78643.728
0.4535.37036.16936.98037.72638.66539.53640.33741.32742.24643.178
0.4634.93335.72036.51937.25938.18039.03939.83440.80841.71542.637
0.4834.08534.84835.62336.35237.23738.07338.85639.79740.68241.583
0.5033.26934.00834.76135.47936.32937.14337.91438.82239.68640.565
0.5531.34932.03632.73733.42834.19934.95835.69936.53137.34238.169
0.6029.58130.22230.87731.54332.24332.95333.66434.42535.18735.964
0.6527.94828.54729.16129.80230.43831.10331.78632.48333.19833.929
0.7026.44227.00227.57628.19228.77229.39430.04930.68831.35932.045
0.8023.79624.28124.78125.33525.82226.36626.95827.49728.08628.690
0.9021.61622.03022.45922.94023.35323.82124.34324.80025.31125.837
1.0019.85320.20220.56520.97021.32321.72122.16722.55622.99523.447
1.1018.43018.72819.03519.37219.67520.01120.38520.71821.08921.474
1.2017.26217.52317.78918.07218.33818.62318.93419.22119.53519.860
1.3016.26616.50716.74716.99517.23417.48317.74617.99818.26618.542
1.4015.37815.61315.84116.07216.29616.52216.75316.98017.21517.454
1.5014.55114.79015.02015.24715.46515.68015.89516.10716.32116.536
1.6013.75514.00514.24514.47714.69714.91315.12315.32915.53315.735
1.7012.98013.24313.49413.74113.96814.19014.40614.61214.81515.013
1.8012.22012.49712.76313.02213.25913.49113.71813.92914.13714.338
1.9011.48111.76712.04412.31712.56412.80813.04713.26713.48313.691
2.0010.77311.06411.34511.63111.88612.14112.39212.62112.84713.064
2.507.8178.0838.3488.6838.9839.2679.5339.78310.03310.267
3.006.0886.2506.4356.5886.7756.9637.1637.3757.5887.788
3.505.1805.2805.3785.4905.6105.7205.8505.9806.1106.250
4.004.6004.6754.7504.8304.9155.0005.0905.1805.2805.380
5.003.6253.7203.8123.9053.9904.0754.1554.2354.3104.380
6.002.7702.8652.9653.0703.1703.2703.3553.4403.5203.600

ElementLuHfTaWReOsIrPtAuHg
Z71727374757677787980
Method*RHF*RHF*RHF*RHF*RHF*RHF*RHF*RHFRHFRHF
(sin [\theta])/λ (Å−1)          
0.0071.00072.00073.00074.00075.00076.00077.00078.00079.00080.000
0.0170.94471.94572.94673.94874.94975.95076.95177.95578.95779.556
0.0270.77871.78372.78873.79374.79775.80176.80677.82078.82679.819
0.0370.50971.51872.52973.53974.54875.53876.56777.59978.60979.595
0.0470.14871.16172.17773.19474.20975.22576.24077.29578.31179.286
0.0569.70770.72371.74572.76773.78874.81075.83276.91477.93678.899
0.0669.20270.21771.24272.26973.29574.32375.35276.46277.49178.439
0.0768.64669.65670.68071.71172.74073.77274.80675.94676.98177.913
0.0868.05169.05270.07271.10372.13273.16774.20675.37376.41477.330
0.0967.42968.41669.42870.45571.48272.51873.55874.75175.79776.696
0.1066.78967.75768.75869.77870.79971.83272.87274.08675.13576.018
0.1166.13767.08368.06969.07870.09171.11972.15673.38674.43775.303
0.1265.47766.40067.36768.36369.36570.38471.41672.65673.70674.559
0.1364.81365.71166.65867.63768.62569.63470.65871.90272.95073.790
0.1464.14665.01965.94466.90667.87868.87469.88771.13072.17373.001
0.1563.47864.32665.22966.17267.12668.10769.10870.34371.38072.198
0.1662.80763.63464.51565.43766.37267.33768.32469.54670.57571.385
0.1762.13462.94263.80264.70365.61966.56667.53868.74269.76170.564
0.1861.46062.25163.09063.97264.86865.79766.75267.93468.94169.740
0.1960.78361.56062.38263.24364.12165.03165.96967.12568.11968.914
0.2060.10360.87061.67562.51963.37864.26965.18966.31767.29668.088
0.2258.73959.49260.27161.08261.90662.76163.64564.70965.65766.447
0.2457.36958.11958.88059.66360.45761.27862.12763.12564.03964.828
0.2556.68357.43458.18958.96159.74260.54861.38062.34463.24164.029
0.2655.99856.75257.50258.26559.03459.82560.64161.57162.45263.239
0.2854.63455.39656.14156.88857.63758.40359.18960.05660.90261.687
0.3053.28254.05454.79955.53656.27057.01357.77358.58259.39560.177
0.3251.95052.73353.47954.21054.93255.65856.39557.15257.93558.711
0.3450.64251.43552.18552.91253.62754.33955.05655.76956.52357.292
0.3549.99850.79651.54852.27452.98653.69254.40155.09455.83556.600
0.3649.36350.16450.91851.64452.35453.05553.75654.43255.16055.920
0.3848.11748.92449.68350.40851.11451.80752.49653.14153.84654.595
0.4046.90647.71748.47949.20549.91050.59651.27451.89752.58153.318
0.4245.73146.54347.30848.03648.73949.42250.09150.69751.36352.088
0.4444.59345.40546.17146.90047.60348.28348.94649.54050.19150.902
0.4544.03844.84945.61546.34447.04847.72648.38748.97749.62250.326
0.4643.49244.30145.06845.79746.50147.17947.83748.42449.06349.761
0.4842.42743.23243.99844.72845.43246.10946.76547.34747.97648.661
0.5041.39842.19742.96243.69144.39645.07245.72646.30846.92947.601
0.5538.97039.75240.50841.23641.94042.61743.26943.86044.46945.113
0.6036.73337.49438.23838.96039.66240.34040.99441.60142.20742.829
0.6534.66635.40436.13236.84637.54438.22238.87839.50240.11040.718
0.7032.75233.46534.17534.87835.56936.24436.90137.53938.15338.753
0.8029.33429.99230.65831.32731.99332.65433.30533.95834.58135.176
0.9026.41327.00827.61828.23828.86529.49530.12530.76631.38731.980
1.0023.95024.47325.01625.57626.14826.73227.32327.93028.53029.112
1.1021.90222.35222.82323.31323.82124.34524.88225.43725.99826.554
1.2020.21920.59820.99821.41821.85622.31422.78923.28123.78924.303
1.3018.84219.15919.49419.84720.21920.61021.01921.44521.89222.354
1.4017.70917.97518.25618.55218.86419.19419.54119.90220.28720.692
1.5016.75916.98817.22817.47817.74218.01918.31218.61618.94319.290
1.6015.93916.14516.35616.57516.80117.03817.28717.54517.82118.116
1.7015.20815.40315.59815.79615.99816.20616.42216.64416.88017.131
1.8014.53414.72714.91615.10415.29315.48315.67815.87516.08116.298
1.9013.89414.09114.28214.46914.65314.83515.01815.20215.38815.581
2.0013.27713.48113.67913.87114.05714.23914.41814.59514.77014.949
2.5010.50010.73310.95011.16711.38311.58311.78311.98312.16812.360
3.008.0138.2388.4808.7068.9389.1639.4009.6209.82610.049
3.506.4006.5606.7406.9007.0807.2707.4607.6507.8788.081
4.005.4905.6005.7105.8405.9606.0806.2106.3406.4896.644
5.004.4504.5204.5854.6504.7154.7884.8604.9355.0105.090
6.003.6803.7553.8253.9003.9704.0354.1054.1754.2444.310

ElementTlPbBiPoAtRnFrRaAcTh
Z81828384858687888990
Method*RHFRHFRHF*RHF*RHFRHF*RHF*RHF*RHF*RHF
(sin [\theta])/λ (Å−1)          
0.0081.00082.00083.00084.00085.00086.00087.00088.00089.00090.000
0.0180.95081.94982.94783.94484.94485.94586.92287.91588.91589.916
0.0280.79981.79282.78483.77884.77685.77786.69487.66488.66489.669
0.0380.55381.53682.51883.50684.50285.50286.33287.26388.26089.269
0.0480.21781.18682.15483.13484.12585.12385.85486.73487.72388.735
0.0579.79880.75081.70082.66983.65484.64985.28686.10487.07788.085
0.0679.30580.23781.16782.12183.09884.08784.64785.39786.34687.344
0.0778.74879.65680.56381.50182.46683.44883.95584.63885.55386.533
0.0878.13479.01879.90180.81981.77082.74283.22283.84584.71985.672
0.0977.47378.33279.18980.08681.02081.97982.45783.03083.85984.779
0.1076.77377.60778.43879.31280.22681.16981.66682.20282.98583.867
0.1176.04276.85177.65778.50679.39880.32280.85281.36882.10582.946
0.1275.28476.07176.85277.67778.54579.44880.01880.52881.22582.025
0.1374.50775.27476.03276.83177.67478.55479.16779.68580.34881.107
0.1473.71574.46475.20275.97676.79477.64878.30378.83979.47480.196
0.1572.91273.64574.36575.11775.90876.73777.43077.99078.60579.294
0.1672.10172.82273.52774.25775.02375.82676.55077.13877.73978.400
0.1771.28571.99772.68973.40074.14374.92075.66776.28576.87977.516
0.1870.46771.17271.85572.54973.26974.02174.78575.43176.02376.642
0.1969.64870.34971.02671.70672.40573.13373.90774.57875.17275.777
0.2068.83069.53070.20370.87171.55372.25873.03573.72874.32674.922
0.2267.20567.90768.57869.23269.88570.55271.32072.04372.65473.242
0.2465.60066.31066.98767.63468.26968.90769.65370.38971.01471.602
0.2564.80765.52366.20466.85267.48168.10968.84169.57670.20870.798
0.2664.02264.74365.43066.08066.70667.32568.04368.77569.41270.005
0.2862.47863.21063.90964.56765.19365.80266.49167.21067.85568.454
0.3060.97061.71262.42563.09363.72564.33264.99665.69666.34566.951
0.3259.50360.25360.97761.65862.30162.91263.55664.23564.88465.497
0.3458.07958.83359.56660.26060.91561.53562.16762.82663.47364.091
0.3557.38358.13858.87559.57560.23660.86261.48962.14062.78563.405
0.3656.69857.45358.19358.89959.56660.19860.82361.46662.11062.731
0.3855.36256.11656.85957.57358.25358.89859.52060.15160.79261.416
0.4054.07254.82055.56356.28356.97457.63158.25658.87959.51760.143
0.4252.82653.56754.30655.02955.72856.39757.02657.64658.28258.910
0.44 51.62552.35653.08953.81154.51555.19455.82956.44857.08457.713
0.4551.04151.76652.49553.21553.92154.60455.24255.86256.49757.127
0.4650.46751.18751.91052.62953.33554.02154.66355.28455.91956.550
0.4849.35250.05850.77151.48352.18952.87953.52754.15154.78755.419
0.5048.27648.96949.66950.37351.07551.76752.42053.04853.68454.317
0.5545.75346.41147.07747.75248.43549.11949.77750.41351.05051.684
0.6043.44244.06944.70045.34345.99746.65947.31047.94848.58049.211
0.6541.31341.91442.51743.12743.75044.38445.01745.64646.26846.889
0.7039.33739.92140.50141.08541.67842.28142.89143.50444.11044.716
0.8035.75536.32236.87937.43037.98038.53339.09539.66440.22940.795
0.9032.56133.12733.68034.22034.75135.27735.80436.33536.86337.391
1.0029.68730.25230.80531.34431.87232.38932.90033.40833.91234.413
1.1027.10927.66228.20828.74429.27129.78730.29230.79031.28331.770
1.2024.82425.35025.87526.39726.91527.42627.92628.41828.90629.387
1.3022.82723.31323.80424.29824.79425.29125.77926.26326.74427.219
1.4021.11021.54621.99222.44622.90923.37923.84524.31224.77925.244
1.5019.65220.03420.42920.83621.25621.68922.12322.56423.00823.454
1.6018.42418.75419.09719.45319.82620.21520.60821.01421.42721.846
1.7017.39417.67417.96918.27718.60218.94419.29519.66020.03620.421
1.8016.52416.76417.01717.28117.56217.85918.16518.48818.82319.170
1.9015.78015.98916.20716.43516.67716.93417.19917.48117.77618.083
2.0015.13115.31715.51015.71115.92216.14316.37716.62316.88017.149
2.5012.53012.72412.89613.06013.23013.38613.55013.70013.86014.020
3.0010.27010.48210.69010.90011.09011.28211.46011.64011.81511.980
3.508.2908.4958.7048.9109.1209.3299.5309.7309.93010.130
4.006.8006.9737.1457.3207.5007.6867.8788.0708.2558.440
5.005.1755.2605.3515.4405.5405.6505.7555.8705.9336.118
6.004.3744.4414.5054.5674.6304.7024.7684.8404.9104.982

ElementPaUNpPuAmCmBkCf
Z9192939495969798
Method*RHFRHF*RHF*RHF*RHF*RHF*RHF*RHF
(sin [\theta])/λ (Å−1)        
0.0091.00092.00093.00094.00095.00096.00097.00098.000
0.0190.91991.92292.92293.92494.92695.92696.92897.929
0.0290.67891.68792.69193.70194.70695.70896.71397.718
0.0390.29091.30792.31893.34094.35295.35496.36597.375
0.0489.77290.79891.81792.85793.87794.87795.89596.912
0.0589.14490.18091.20892.27193.29994.29495.32096.344
0.0688.42789.47490.51091.60192.63893.62394.65695.688
0.0787.64488.69989.74290.86691.91092.87993.92094.961
0.0886.81387.87488.92390.08291.13192.08193.12994.176
0.0985.95087.01488.06789.26190.31591.24192.29493.347
0.1085.06686.13087.18688.41389.47090.37191.42992.486
0.1184.17085.23286.28887.54788.60589.47990.54091.601
0.1283.26984.32685.38086.66587.72388.57389.63590.699
0.1382.36683.41784.46785.77286.82987.65688.71889.783
0.1481.46382.50583.55084.87085.92486.73187.79388.858
0.1580.56381.59582.63283.96185.01185.80286.86287.926
0.1679.66580.68581.71583.04484.09084.86985.92686.989
0.1778.77179.77980.79982.12383.16383.93484.98886.048
0.1877.88178.87579.88581.19882.23182.99884.04785.103
0.1976.99577.97578.97380.27181.29682.06283.10584.157
0.2076.11577.08078.06679.34380.36081.12682.16383.210
0.2274.37575.30876.26777.49378.49079.26380.28581.318
0.2472.66873.56874.49675.66376.63677.41978.42179.437
0.2571.82972.71273.62474.75975.71976.50777.49878.504
0.2671.00171.86672.76373.86574.81175.60376.58277.577
0.2869.38070.21171.07472.11073.02773.82474.77775.749
0.3067.81068.60769.43670.40871.29372.09173.01673.960
0.3266.29467.05867.85368.76369.61570.40971.30372.219
0.3464.83265.56466.32667.17867.99768.78369.64570.531
0.3564.12164.83865.58466.40967.21267.99168.83869.707
0.3663.42364.12664.85765.65566.44167.21468.04568.898
0.3862.06662.74263.44364.19364.94765.70566.50367.325
0.4060.75861.40962.08362.78963.51364.25465.02065.810
0.4259.49560.12560.77561.44262.13762.85963.59564.354
0.4458.27458.88659.51460.14760.81661.51962.22662.954
0.4557.67958.28358.90159.51860.17560.86961.56262.276
0.4657.09357.68958.29858.90159.54660.23160.91061.610
0.4855.94856.53157.12457.70258.32558.99259.64660.319
0.5054.83655.41055.98956.54457.14857.79858.43059.078
0.5552.19152.74853.30353.81954.38554.99855.58156.176
0.6049.71950.26850.80851.30251.84252.42752.97453.528
0.6547.40547.95048.48348.96749.49050.05250.57451.098
0.7045.24145.78446.31246.79447.30747.85048.35448.858
0.8041.33341.86942.39042.87943.38043.89444.38044.859
0.9037.93038.45438.96639.46539.95840.44940.92641.395
1.0034.94635.45835.96136.46536.95237.42637.89838.361
1.1032.29232.79433.28933.79334.27634.74035.20935.671
1.2029.89730.39130.87931.37931.85832.31832.78633.247
1.3027.71428.19928.68029.17229.64830.10630.57231.033
1.4025.72026.19226.66227.14227.61128.06828.53028.989
1.5023.90524.36024.81325.27525.73326.18426.63927.093
1.6022.26622.69923.12823.56624.00624.44624.88925.332
1.7020.80721.20721.60922.01922.43522.85723.28123.708
1.8019.51819.88620.25320.63021.01821.41521.81522.221
1.9018.39418.72319.05519.39819.75420.12120.49620.872
2.0017.42317.71318.01218.31918.64018.97519.31519.665
2.5014.18014.34114.50314.66414.82614.98815.15015.311
3.0012.15012.29412.47512.65612.83813.01913.20013.381
3.5010.32010.49510.69510.89511.09511.29511.49511.695
4.008.6308.8239.0089.1939.3789.5639.7489.933
5.006.2506.3786.4896.6026.7136.8256.9377.049
6.005.0555.1365.2065.2755.3455.4145.4845.553

For a detailed study of the effect of changes in the electron density due to chemical bonding and lattice formation, a more general procedure is necessary, as described in Subsection 6.1.1.4[link]. The changes due to chemical bonding are small in absolute terms, and are relatively small except in the case of hydrogen.

A more approximate treatment is adequate for many purposes. An isotropic approximation to the scattering factor for bonded hydrogen, based on an analysis of the hydrogen molecule by Stewart, Davidson & Simpson (1965[link]), is listed in Table 6.1.1.2[link].

Table 6.1.1.2| top | pdf |
Spherical bonded hydrogen-atom scattering factors from Stewart, Davidson & Simpson (1965[link])

(sin [\theta])/λ−1)f
0.00001.0000
0.02150.9924
0.04290.9704
0.06440.9352
0.08590.8892
0.10730.8350
0.12880.7752
0.15030.7125
0.17180.6492
0.19320.5871
0.21470.5277
0.25760.4201
0.30060.3301
0.34350.2573
0.38640.1998
0.42940.1552
0.47230.1208
0.51530.0945
0.55820.0744
0.60110.0592
0.64410.0474
0.68700.0383
0.73000.0311
0.77290.0254
0.81580.0208
0.85880.0171
0.90170.0140
0.94470.0116
0.98760.0096
1.03050.0080
1.07350.0066
1.11640.0056
1.15930.0047
1.20230.0040
1.24520.0035
1.28820.0031
1.33110.0027
1.37400.0025
1.41700.0022
1.45990.0020
1.50290.0018
1.54580.0016
1.58870.0015
1.63170.0013
1.67460.0011
1.71760.0010

Scattering for ionic models of solids may be related to the scattering factors for the corresponding free ions. Values for some of the more chemically significant ions are listed in Table 6.1.1.3[link]. For H, Li+ and Be2+ these are based on the correlated electron calculations of Thakkar & Smith (1992[link]). For other ions lighter than rubidium, values are based on the Hartree–Fock calculations of Cromer & Mann (1968[link]), using the wavefunctions of Mann (1968b[link]). For the heavier ions, the calculations are by Cromer & Waber (1968[link]), based on relativistic Dirac–Slater wavefunctions, which are a good approximation to the corresponding relativistic Hartree–Fock wavefunctions. If ionic scattering factors are required for values of [(\sin\theta)/\lambda] greater than those shown in Table 6.1.1.3[link], the free-atom scattering factors of Table 6.1.1.1[link] can be used because high-angle scattering is dominated by core electrons and is therefore very little affected by ionicity.

Table 6.1.1.3| top | pdf |
Mean atomic scattering factors in electrons for chemically significant ions

Methods: C: correlated; HF: non-relativistic Hartree–Fock; RHF: relativistic Hartree–Fock; *DS: modified Dirac–Slater.

ElementH1−Li1+Be2+CvalO1−F1−Na1+Mg2+Al3+Sival
Z13468911121314
MethodCCCHFHFHFRHFRHFHFHF
(sin [\theta])/λ (Å−1)          
0.002.0002.0002.0006.0009.00010.00010.00010.00010.00014.000
0.011.9831.9991.9995.9898.9869.9889.9959.9979.99713.973
0.021.9331.9971.9995.9568.9459.9539.9819.9869.98913.894
0.031.8571.9941.9975.9038.8789.8959.9589.9699.97613.766
0.041.7631.9901.9955.8298.7859.8169.9259.9459.95713.593
0.051.6591.9841.9925.7388.6709.7169.8839.9149.93313.381
0.061.5501.9771.9885.6298.5349.5979.8339.8769.90413.138
0.071.4421.9681.9835.5078.3819.4619.7739.8329.87012.870
0.081.3381.9591.9785.3728.2119.3099.7059.7829.83112.586
0.091.2381.9481.9735.2278.0299.1449.6309.7259.78712.293
0.101.1451.9361.9665.0747.8368.9679.5469.6629.73811.995
0.111.0581.9231.9594.9167.6358.7819.4559.5949.68411.700
0.120.9781.9091.9524.7547.4298.5869.3579.5199.62511.410
0.130.9041.8941.9444.5917.2188.3869.2539.4409.56311.130
0.140.8361.8771.9354.4287.0058.1819.1429.3559.49510.862
0.150.7731.8601.9254.2676.7927.9739.0269.2659.42410.608
0.160.7151.8421.9154.1096.5797.7628.9049.1719.34910.368
0.170.6611.8231.9053.9546.3687.5518.7779.0729.27010.143
0.180.6121.8041.8943.8056.1607.3418.6478.9699.1879.933
0.190.5671.7831.8823.6615.9567.1318.5128.8629.1019.737
0.200.5261.7621.8703.5235.7566.9248.3748.7519.0119.553
0.220.4521.7181.8453.2665.3716.5178.0898.5218.8239.222
0.240.3901.6711.8173.0355.0086.1267.7958.2808.6238.931
0.250.3621.6471.8032.9304.8365.9377.6468.1568.5208.798
0.260.3371.6231.7882.8314.6705.7537.4968.0308.4148.671
0.280.2911.5731.7582.6514.3575.3997.1957.7748.1988.435
0.300.2531.5231.7262.4954.0685.0676.8947.5137.9758.214
0.320.2201.4711.6922.3583.8044.7566.5977.2517.7478.005
0.340.1921.4191.6582.2413.5644.4676.3046.9877.5157.803
0.350.1791.3941.6412.1883.4524.3306.1606.8567.3997.704
0.360.1681.3681.6232.1393.3454.1996.0186.7257.2827.606
0.380.1471.3161.5872.0503.1473.9515.7396.4657.0477.410
0.400.1291.2651.5511.9742.9693.7245.4716.2106.8137.215
0.420.1131.2151.5141.9072.8083.5145.2125.9596.5817.021
0.440.1001.1651.4761.8492.6633.3224.9645.7156.3506.826
0.450.0941.1411.4581.8222.5973.2334.8455.5956.2376.729
0.460.0891.1171.4391.7982.5333.1474.7285.4776.1246.632
0.480.0791.0691.4011.7522.4172.9874.5035.2475.9016.437
0.500.0701.0231.3641.7112.3132.8414.2905.0255.6836.244
0.550.05260.9141.2701.6242.0972.5313.8084.5085.1625.766
0.600.04010.8141.1791.5521.9342.2883.3954.0464.6815.303
0.650.03110.7241.0911.4881.8082.0963.0463.6414.2434.865
0.700.02430.6431.0071.4281.7101.9452.7533.2883.8514.455
0.800.01550.5070.8521.3151.5671.7292.3052.7243.1953.734
0.900.01020.4000.7171.2041.4631.5851.9972.3152.6933.150
1.000.00700.3170.6021.0961.3761.4811.7852.0232.3192.691
1.100.00490.2530.5050.9921.2961.3971.6351.8132.0412.338
1.200.00360.2030.4240.8941.2191.3221.5241.6621.8372.069
1.300.00260.1640.3570.8021.1431.2521.4381.5481.6851.867
1.400.00200.1330.3010.7181.0671.1841.3671.4601.5701.713
1.500.00150.1090.2550.6420.9941.1171.3041.3881.4791.595
1.600.00120.0900.216   1.2461.326  
1.700.00090.0750.184   1.1911.270  
1.800.00080.0620.157   1.1371.218  
1.900.00060.0530.135   1.0841.168  
2.000.00050.0440.116   1.0321.119  

ElementSi4+Cl1−K1+Ca2+Sc3+Ti2+Ti3+Ti4+V2+V3+
Z14171920212222222323
MethodHFRHFRHFRHFHFHFHFHFRHFHF
(sin [\theta])/λ (Å−1)          
0.0010.00018.00018.00018.00018.00020.00019.00018.00021.00020.000
0.019.99817.97217.98617.98917.99119.98818.99017.99220.98819.990
0.029.99117.88817.94317.95517.96319.95118.96217.96920.95219.961
0.039.98117.75117.87217.89917.91719.89118.91417.93020.89219.913
0.049.96617.56317.77417.82117.85319.80718.84817.87720.80819.846
0.059.94717.33017.64917.72117.77119.70118.76417.80820.70219.760
0.069.92417.05717.49917.60117.67219.57218.66217.72520.57319.657
0.079.89616.75017.32517.46217.55619.42318.54317.62820.42419.536
0.089.86516.41517.12917.30317.42419.25318.40717.51620.25519.398
0.099.82916.05816.91217.12717.27819.06518.25517.39220.06619.244
0.109.79015.68516.67716.93517.11618.86018.08917.25519.86119.075
0.119.74715.30116.42616.72716.94118.63917.90917.10619.63918.892
0.129.70014.91116.16016.50616.75418.40417.71616.94619.40218.695
0.139.64914.51915.88216.27216.55518.15617.51016.77519.15218.485
0.149.59514.13015.59416.02816.34517.89617.29416.59318.89018.265
0.159.53713.74715.29715.77416.12617.62617.06716.40318.61818.033
0.169.47613.37114.99415.51215.89817.34816.83216.20518.33617.793
0.179.41113.00614.68815.24415.66217.06216.58915.99818.04717.544
0.189.34312.65314.37814.97015.42116.77116.33915.78517.75117.287
0.199.27212.31314.06914.69215.17316.47516.08315.56617.45017.025
0.209.19911.98713.76014.41214.92216.17615.82215.34217.14616.757
0.229.04311.37913.15013.85014.41015.57415.29114.88116.52916.210
0.248.87710.83212.56013.29213.89314.97214.75214.40815.91015.653
0.258.79010.58012.27513.01713.63414.67314.48214.17015.60215.373
0.268.70110.34311.99712.74513.37714.37714.21313.93015.29615.093
0.288.5189.90811.46712.21712.86913.79713.68013.45214.69414.537
0.308.3279.52410.97211.71312.37413.23613.15712.97914.10713.989
0.328.1319.18410.51511.23511.89612.69712.65012.51513.54113.455
0.347.9298.88410.09710.78711.43812.18412.16212.06412.99812.938
0.357.8278.7469.90110.57511.21811.93811.92611.84412.73612.687
0.367.7248.6169.71510.37011.00411.69811.69611.62812.48112.441
0.387.5168.3779.3699.98410.59511.24211.25411.21111.99111.967
0.407.3068.1629.0569.62910.21210.81510.83710.81511.53011.517
0.427.0957.9658.7739.3039.85510.41710.44610.43911.09611.092
0.446.8847.7858.5189.0069.52410.04710.08010.08610.69210.692
0.456.7797.6998.3998.8679.3689.8739.9079.91710.50010.502
0.466.6747.6168.2878.7349.2189.7069.7409.75410.31510.318
0.486.4657.4578.0778.4878.9379.3919.4269.4459.9659.969
0.506.2597.3057.8868.2628.6789.1029.1359.1589.6419.645
0.555.7556.9457.4747.7818.1218.4778.5038.5298.9358.936
0.605.2776.6007.1257.3897.6707.9727.9908.0128.3598.354
0.654.8306.2596.8147.0587.2987.5607.5717.5887.8897.878
0.704.4185.9206.5236.7646.9827.2167.2227.2347.5017.485
0.803.7015.2485.9626.2316.4456.6566.6586.6646.8926.870
0.903.1244.6085.4065.7195.9616.1796.1826.1896.4076.384
1.002.6734.0244.8595.2095.4885.7285.7345.7455.9735.950
1.102.3263.5094.3364.7105.0175.2825.2915.3065.5535.531
1.202.0633.0703.8544.2324.5564.8404.8524.8705.1375.116
1.301.8642.7053.4233.7904.1154.4114.4254.4434.7274.705
1.401.7122.4053.0453.3903.7064.0044.0174.0354.3304.307
1.501.5952.1622.7223.0383.3353.6263.6383.6553.9523.929
1.60 1.9682.4492.732    3.600 
1.70 1.8112.2212.470    3.278 
1.80 1.6862.0332.250    2.989 
1.90 1.5851.8772.064    2.731 
2.00 1.5021.7491.909    2.505 

ElementV5+Cr2+Cr3+Mn2+Mn3+Mn4+Fe2+Fe3+Co2+Co3+
Z23242425252526262727
MethodHFHFHFRHFHFHFRHFRHFRHFHF
(sin [\theta])/λ (Å−1)          
0.0018.00022.00021.00023.00022.00021.00024.00023.00025.00024.000
0.0117.99321.98820.99022.98821.99020.99223.98922.99124.98923.990
0.0217.97421.95220.96122.95321.96120.96823.95422.96224.95423.962
0.0317.94121.89220.91322.89421.91320.92723.89522.91424.89723.914
0.0417.89521.80820.84522.81221.84620.87123.81422.84824.81823.848
0.0517.83721.70220.75922.70721.76020.79923.71122.76324.71623.764
0.0617.76621.57420.65522.58121.65620.71223.58722.66024.59323.661
0.0717.68221.42520.53422.43321.53420.61023.44122.53924.45023.541
0.0817.58721.25620.39522.26621.39520.49323.27622.40124.28723.404
0.0917.48021.06720.24022.08021.24020.36323.09122.24724.10423.250
0.1017.36220.86120.06921.87521.07020.21822.88922.07823.90423.081
0.1117.23420.63819.88421.65420.88420.06122.66921.89323.68722.896
0.1217.09520.40019.68521.41820.68419.89122.43521.69523.45522.698
0.1316.94620.14819.47421.16720.47219.71022.18521.48323.20722.486
0.1416.78919.88419.25020.90420.24719.51721.92321.25822.94622.261
0.1516.62219.60919.01620.62920.01119.31521.64821.02322.67322.024
0.1616.44819.32418.77220.34419.76519.10221.36320.77622.38921.777
0.1716.26619.03018.51920.05019.50918.88121.06820.52122.09521.520
0.1816.07818.72918.25819.74819.24618.65220.76520.25621.79121.253
0.1915.88318.42317.99119.44018.97518.41520.45519.98421.48120.978
0.2015.68318.11217.71819.12618.69718.17220.14019.70521.16420.696
0.2215.26817.48117.15718.48818.12717.66919.49419.13020.51420.114
0.2414.83916.84516.58517.84117.54317.14918.83818.53819.85019.513
0.2514.62016.52716.29717.51717.24716.88418.50818.23819.51619.207
0.2614.39916.21016.00817.19316.95116.61718.17817.93719.18018.899
0.2813.95515.58415.43116.55116.35716.07917.52017.33118.51018.280
0.3013.50914.97214.86215.92015.76815.54016.87116.72717.84517.659
0.3213.06714.37814.30315.30415.18715.00516.23416.13017.19117.043
0.3412.63113.80513.75914.70714.61914.47715.61415.54316.55016.435
0.3512.41713.52813.49414.41714.34114.21715.31215.25416.23616.135
0.3612.20513.25713.23414.13214.06813.96115.01414.97015.92715.838
0.3811.79212.73412.73013.58113.53613.45814.43614.41415.32415.258
0.4011.39212.23812.24813.05513.02412.97213.88113.87714.74314.694
0.4211.01011.77011.79012.55612.53612.50413.35213.36114.18614.151
0.4410.64411.33011.35712.08312.07212.05712.84812.86813.65313.629
0.4510.46911.12111.15011.85711.84811.84112.60612.63013.39613.376
0.4610.29810.91810.95011.63811.63211.63012.37012.39813.14613.129
0.489.97010.53310.56711.21911.21611.22511.91911.95312.66412.652
0.509.66210.17410.21010.82710.82610.84311.49411.53112.20712.200
0.558.9739.3869.4199.9549.9569.98210.54210.58111.17611.171
0.608.3968.7378.7649.2299.2239.2529.7379.77210.29310.286
0.657.9158.2058.2248.6268.6158.6419.0639.0929.5469.534
0.707.5157.7667.7798.1288.1118.1328.5018.5238.9178.900
0.806.8887.0917.0957.3657.3417.3527.6407.6517.9487.921
0.906.3996.5786.5806.8086.7796.7857.0237.0267.2577.224
1.005.9686.1436.1456.3606.3306.3346.5466.5486.7396.703
1.105.5565.7385.7425.9635.9335.9386.1446.1456.3206.283
1.205.1475.3415.3485.5855.5555.5625.7755.7785.9515.913
1.304.7414.9494.9585.2135.1835.1935.4195.4235.6055.566
1.404.3444.5644.5734.8464.8154.8265.0685.0745.2685.228
1.503.9654.1914.2024.4874.4544.4674.7224.7294.9364.895
1.60   4.140  4.3844.3924.609 
1.70   3.810  4.0584.0664.291 
1.80   3.502  3.7493.7573.985 
1.90   3.218  3.4593.4673.694 
2.00   2.960  3.1923.1993.421 

ElementNi2+Ni3+Cu1+Cu2+Zn2+Ga3+Ge4+Br1−Rb1+Sr2+
Z28282929303132353738
MethodRHFHFRHFHFRHFHFHFRHFRHFRHF
(sin [\theta])/λ (Å−1)          
0.0026.00025.00028.00027.00028.00028.00028.00036.00036.00036.000
0.0125.98924.99127.98726.98927.98927.99127.99235.96135.97735.981
0.0225.95524.96227.94626.95627.95727.96427.96935.84535.90835.923
0.0325.89924.91527.87826.90127.90327.91927.93135.65635.79435.827
0.0425.82124.85027.78326.82427.82827.85627.87735.39835.63535.694
0.0525.72124.76627.66326.72627.73227.77627.80835.07735.43535.524
0.0625.60024.66527.51826.60827.61527.67827.72434.70335.19535.320
0.0725.45924.54627.34926.46927.47927.56427.62534.28234.91735.084
0.0825.29924.41027.15726.31127.32327.43327.51233.82434.60534.816
0.0925.11924.25826.94426.13427.14927.28627.38633.33634.26234.520
0.1024.92124.09026.71125.93926.95827.12327.24532.82733.89134.198
0.1124.70723.90726.45925.72826.74926.94627.09132.30333.49633.851
0.1224.47723.70926.19025.50026.52526.75426.92431.77133.07933.484
0.1324.23223.49825.90525.25826.28626.54826.74531.23632.64633.098
0.1423.97323.27525.60625.00126.03226.33026.55430.70332.19932.696
0.1523.70223.03925.29424.73225.76626.09926.35130.17531.74032.281
0.1623.41922.79224.97224.45125.48825.85626.13729.65731.27531.854
0.1723.12622.53524.63924.15925.19825.60325.91329.14930.80531.420
0.1822.82422.26824.29723.85724.89925.33925.68028.65430.33330.979
0.1922.51321.99323.94923.54724.59125.06625.43728.17229.86230.535
0.2022.19521.71023.59423.22924.27524.78425.18527.70629.39330.089
0.2221.54321.12522.87222.57423.62224.19724.65826.81728.47129.198
0.2420.87520.51822.13921.90022.94923.58524.10425.98827.57928.322
0.2520.53620.20921.77021.55822.60623.27023.81825.59527.14727.892
0.2620.19719.89721.40121.21422.26122.95223.52625.21526.72627.469
0.2819.51619.26820.66620.52321.56622.30522.93124.49125.91626.647
0.3018.83918.63619.93919.83220.86921.64922.32123.81225.15025.861
0.3218.16918.00519.22419.14620.17520.98821.70223.17024.42825.113
0.3417.51017.38018.52418.46919.48820.32721.07722.55923.74924.404
0.3517.18717.07118.18018.13519.14919.99720.76422.26423.42424.064
0.3616.86716.76517.84217.80518.81219.66920.45121.97523.10923.734
0.3816.24216.16417.18017.15718.15019.01919.82621.41222.50323.100
0.4015.63715.57816.54116.52817.50418.37919.20520.86721.92922.500
0.4215.05415.01015.92515.91916.87617.75118.59320.33521.38121.931
0.4414.49514.46315.33315.33216.26917.13917.98919.81620.85721.389
0.4514.22414.19715.04715.04615.97416.83917.69219.56020.60321.128
0.4613.95913.93614.76714.76715.68316.54417.39819.30620.35320.872
0.4813.44813.43214.22514.22715.12015.96716.82118.80619.86520.376
0.5012.96212.95013.71013.71114.58015.40916.25918.31319.39119.898
0.5511.85411.84712.53012.52613.33114.10614.92917.11418.25318.765
0.6010.89510.88711.50211.49112.22712.93713.71615.96417.16917.700
0.6510.07510.06210.61410.59711.26311.90212.62514.87016.12716.684
0.709.3789.3609.8559.83110.42910.99511.65613.84015.12815.707
0.808.2928.2658.6598.6259.0979.52610.05812.00213.27313.875
0.907.5167.4827.7977.7578.1268.4418.85310.47911.64512.231
1.006.9446.9067.1657.1237.4147.6427.9569.26110.27010.805
1.106.4976.4576.6816.6376.8797.0457.2868.3119.1479.611
1.206.1196.0786.2856.2406.4556.5826.7747.5808.2518.638
1.305.7765.7345.9395.8926.0966.2036.3657.0167.5487.862
1.405.4505.4075.6175.5685.7755.8726.0216.5736.9977.249
1.505.1315.0865.3075.2565.4725.5695.7156.2166.5616.764
0.604.816 5.003 5.178  5.9136.2096.375
1.704.507 4.704 4.890  5.6455.9136.056
1.804.207 4.411 4.606  5.3985.6565.785
1.903.918 4.127 4.329  5.1625.4215.545
2.003.643 3.853 4.059  4.9325.2015.324

ElementY3+Zr4+Nb3+Nb5+Mo3+Mo5+Mo6+Ru3+Ru4+Rh3+
Z39404141424242444445
Method*DS*DS*DS*DS*DS*DS*DS*DS*DS*DS
(sin [\theta])/λ (Å−1)          
0.0036.00036.00038.00036.00039.00037.00036.00041.00040.00042.000
0.0135.98335.98537.98135.98738.98136.98635.98840.98039.98341.980
0.0235.93335.94237.92535.94838.92336.94635.95440.92239.93341.922
0.0335.85035.86937.83235.88438.82736.87835.89740.82439.84941.824
0.0435.73535.76837.70235.79538.69536.78335.81740.68939.73341.689
0.0535.58835.64037.53735.68138.52636.66335.71540.51739.58541.516
0.0635.41135.48437.33935.54338.32336.51735.59140.30939.40641.308
0.0735.20435.30237.10935.38138.08736.34735.44640.06739.19741.066
0.0834.97035.09636.84935.19737.82036.15235.28039.79338.95940.791
0.0934.71034.86536.56034.99137.52335.93635.09539.48938.69540.485
0.1034.42534.61236.24634.76537.20035.69734.89039.15638.40440.150
0.1134.11834.33835.90834.51936.85335.43834.66738.79838.09039.789
0.1233.79134.04535.54834.25436.48335.16034.42838.41637.75439.404
0.1333.44533.73435.17033.97336.09434.86534.17238.01237.39738.997
0.1433.08233.40634.77533.67535.68834.55333.90037.59037.02238.569
0.1532.70533.06434.36633.36335.26634.22633.61537.15136.63038.125
0.1632.31632.70833.94533.03834.83233.88633.31736.69836.22337.665
0.1731.91632.34133.51432.70134.38833.53333.00636.23335.80437.193
0.1831.50931.96433.07632.35333.93633.17032.68535.75835.37436.710
0.1931.09431.58032.63231.99733.47832.79832.35435.27634.93436.218
0.2030.67531.18832.18431.63233.01632.41832.01534.78934.48835.720
0.2229.83030.39231.28430.88532.08631.64031.31633.80433.57934.713
0.2428.98629.58630.38830.12131.15930.84730.59532.81932.65933.701
0.2528.56729.18229.94529.73630.70130.44830.22932.32932.19933.198
0.2628.15228.78129.50629.35130.24630.04829.86231.84431.74132.697
0.2827.33727.98528.64628.58229.35629.25229.12330.88930.83331.711
0.3026.54827.20527.81427.82128.49428.46528.38729.96229.94330.751
0.3225.78926.44727.01327.07427.66427.69527.65829.06729.07829.823
0.3425.06325.71626.24826.34626.87126.94426.94128.21028.24228.932
0.3524.71225.36025.87825.99026.48826.57826.58927.79627.83628.500
0.3624.37025.01225.51825.64026.11526.21826.24127.39227.43928.079
0.3823.71224.33924.82424.96025.39725.51825.56226.61426.67127.268
0.4023.08623.69624.16724.30624.71724.84724.90425.87825.94026.499
0.4222.49223.08323.54323.68024.07324.20524.27025.18125.24525.772
0.4421.92722.50022.95323.08123.46423.59223.66224.52424.58625.086
0.4521.65422.21822.66922.79223.17223.29623.36624.20924.27124.757
0.4621.38821.94422.39322.50922.88823.00723.07823.90423.96324.438
0.4820.87421.41421.86121.96322.34222.45022.51823.31923.37423.829
0.5020.38220.90721.35521.44221.82521.92021.98322.76722.81723.254
0.5519.23119.73120.18720.23520.63820.69720.74421.51621.54921.957
0.6018.16618.65819.12819.14219.57319.59919.62720.41620.43420.826
0.6517.16317.65918.14818.13718.59718.59818.60819.43019.43619.824
0.7016.20816.71617.22417.19817.68517.66817.66418.52818.52518.918
0.8014.41514.95215.49215.45815.98515.95515.93716.88416.87217.292
0.9012.78413.33313.88613.85814.40514.37714.35715.36715.35415.807
1.0011.34011.87312.41412.39512.93912.91812.90213.93913.92914.407
1.1010.10010.59211.09911.08811.60611.59311.58112.60512.59713.086
1.209.0679.5019.9589.95110.42710.41810.41111.38211.37811.859
1.308.2258.5958.9928.9889.4109.4059.40010.29110.28810.744
1.407.5487.8568.1938.1908.5548.5518.5479.3399.3389.756
1.507.0087.2617.5417.5397.8467.8437.8418.5288.5278.899
1.606.5756.7827.0137.0117.2677.2657.2637.8477.8468.171
1.706.2226.3946.5846.5836.7956.7936.7927.2827.2827.559
1.805.9276.0746.2346.2336.4096.4086.4076.8176.8177.051
1.905.6725.8025.9415.9406.0906.0896.0896.4336.4336.631
2.005.4435.5655.6895.6905.8205.8205.8206.1146.1146.281

ElementRh4+Pd2+Pd4+Ag1+Ag2+Cd2+In3+Sn2+Sn4+Sb3+
Z45464647474849505051
Method*DS*DS*DS*DS*DS*DS*DSRHFRHF*DS
(sin [\theta])/λ (Å−1)          
0.0041.00044.00042.00046.00045.00046.00046.00048.00046.00048.000
0.0140.98343.97741.98345.97444.97845.97845.98147.97545.98447.978
0.0240.93243.90941.93245.89444.91145.91245.92447.89845.93447.911
0.0340.84843.79641.84745.76444.79945.80245.82947.77145.85247.801
0.0440.73043.64041.72945.58244.64545.65045.69747.59645.73747.647
0.0540.58143.44141.57945.35344.44845.45645.52947.37345.59047.452
0.0640.40043.20141.39645.07644.21145.22245.32547.10645.41147.218
0.0740.18842.92341.18444.75743.93644.95045.08746.79745.20346.945
0.0839.94842.60840.94244.39743.62444.64144.81646.44944.96446.636
0.0939.68042.25840.67143.99943.27744.29844.51346.06644.69846.293
0.1039.38541.87740.37543.56742.89843.92344.18145.65044.40445.920
0.1139.06741.46740.05343.10542.49043.51743.82145.20644.08445.517
0.1238.72541.03139.70842.61642.05643.08543.43544.73643.73945.089
0.1338.36340.57239.34142.10341.59742.62843.02444.24443.37144.638
0.1437.98140.09238.95541.57041.11742.14842.59143.73342.98144.167
0.1537.58239.59538.55141.02040.61841.64942.13843.20642.57243.677
0.1637.16839.08338.13140.45740.10341.13441.66742.66742.14343.172
0.1736.74038.55837.69639.88339.57540.60341.18042.11741.69842.655
0.1836.30138.02437.24939.30139.03640.06140.67841.56041.23742.127
0.1935.85237.48336.79238.71338.48939.50940.16540.99840.76341.590
0.2035.39536.93636.32638.12237.93538.94939.64140.43140.27641.047
0.2234.46335.83635.37436.94036.81737.81638.57039.29639.27439.950
0.2433.51834.73934.40635.76835.69736.67737.48138.16438.24238.847
0.2533.04534.19533.92135.19135.14136.11036.93337.60437.71838.298
0.2632.57233.65733.43534.62034.58935.54536.38537.04737.19237.750
0.2831.63532.60132.47133.50333.50234.43135.29535.95036.13536.668
0.3030.71531.57731.52132.42432.44533.34434.22034.87835.08235.605
0.3229.81930.59230.59431.38931.42532.29133.16733.83634.04134.569
0.3428.95129.64929.69530.40030.44631.27632.14532.82633.01933.561
0.3528.53029.19429.25729.92429.97330.78531.64732.33332.51733.069
0.3628.11728.75128.82829.46029.51130.30531.15831.85032.02332.585
0.3827.31827.89927.99828.56928.62229.37930.20930.91031.05731.643
0.4026.55727.09327.20427.72727.78028.50029.30230.00830.12730.737
0.4225.83326.33326.45026.93326.98427.66728.43829.14429.23529.866
0.4425.14825.61725.73526.18626.23326.88127.61828.31828.38329.031
0.4524.81925.27525.39125.82925.87426.50527.22427.92027.97228.628
0.4624.49924.94425.05725.48425.52726.14026.84227.53227.57128.234
0.4823.88624.31124.41824.82524.86325.44326.10926.78526.80227.472
0.5023.30723.71623.81424.20624.23924.78825.41826.07526.07426.747
0.5521.99522.37822.45022.81722.83923.31923.86524.46424.43025.088
0.6020.85021.22121.26721.62321.63522.06122.53323.06723.01923.634
0.6519.83520.20520.22820.58320.58820.97421.38921.85921.81022.367
0.7018.91919.29519.30019.66019.66020.02120.39420.81020.76721.261
0.8017.28217.68317.66818.05118.04618.39218.72419.07419.05219.433
0.9015.79516.22916.20816.62216.61616.97917.31517.64917.64617.957
1.0014.39614.85914.84015.28415.27815.67316.03416.38616.39516.684
1.1013.07813.55713.54214.00614.00214.42514.81815.20315.21515.516
1.2011.85312.33112.32112.79012.78813.23013.64914.06314.07414.403
1.3010.74011.20111.19411.65411.65312.09912.53012.96212.97013.329
1.409.75410.18310.18010.61610.61611.05011.47911.91311.91712.300
1.508.8989.2889.2869.6889.68810.09810.51010.93210.93311.326
1.608.1708.5148.5138.8758.8769.2519.63710.03310.03310.422
1.707.5597.8587.8578.1768.1768.5138.8649.2279.2259.599
1.807.0517.3077.3067.5827.5827.8788.1918.5158.5138.863
1.906.6306.8476.8477.0837.0837.3397.6137.8977.8968.215
2.006.2816.4646.4646.6656.6656.8847.1227.3677.3667.652

ElementSb5+I1−Cs1+Ba2+La3+Ce3+Ce4+Pr3+Pr4+Nd3+
Z51535556575858595960
Method*DSRHFRHF*DS*DS*DS*DS*DS*DS*DS
(sin [\theta])/λ (Å−1)          
0.0046.00054.00054.00054.00054.00055.00054.00056.00055.00057.000
0.0145.98553.94353.96353.96753.97154.97253.97455.97254.97556.972
0.0245.94053.77253.85053.86953.88554.88653.89755.88854.89856.889
0.0345.86553.49353.66553.70853.74254.74553.76955.74854.77256.752
0.0445.76053.11453.40853.48453.54454.54953.59255.55554.59756.561
0.0545.62752.64653.08453.20053.29354.30053.36655.30954.37356.318
0.0645.46452.10152.69852.86152.99154.00153.09455.01354.10456.026
0.0745.27451.49252.25452.46852.64053.65452.77854.66953.79155.686
0.0845.05750.83451.75852.02752.24553.26152.42054.28053.43655.302
0.0944.81350.13651.21751.54351.80852.82752.02253.85053.04254.876
0.1044.54449.41350.63551.01851.33252.35551.58953.38152.61254.411
0.1144.25148.67250.02050.46050.82351.84851.12252.87852.14853.911
0.1243.93547.92449.37749.87250.28451.31050.62552.34351.65453.380
0.1343.59647.17548.71449.25949.71850.74550.10251.78151.13352.821
0.1443.23746.43248.03548.62749.13050.15849.55551.19550.58852.237
0.1542.85945.69847.34547.98048.52449.55148.98850.58950.02251.632
0.1642.46244.97846.65147.32247.90348.92848.40449.96649.43951.010
0.1742.04944.27345.95546.65747.27248.29447.80749.33148.84150.374
0.1841.62143.58545.26245.98946.63347.65147.19948.68648.23149.727
0.1941.17842.91644.57545.32145.98947.00246.58348.03447.61349.073
0.2040.72342.26543.89744.65745.34446.35145.96347.37846.98948.414
0.2239.78141.01942.57743.34844.06145.05244.71846.06645.73347.091
0.2438.80639.84141.31242.07742.80143.77143.48144.76744.48145.778
0.2538.30939.27640.70341.45942.18343.14242.87144.12843.86145.129
0.2637.80738.72640.11040.85541.57642.52242.26843.49743.24844.489
0.2836.79637.66538.97139.68840.39641.31541.08842.26642.04643.235
0.3035.78036.65037.89338.57939.26740.15739.95041.08040.88242.025
0.3234.77035.67636.87237.52538.19039.05038.85939.94539.76340.863
0.3433.77134.73535.90236.52537.16637.99637.81738.86038.69239.750
0.3533.27834.27635.43436.04336.67337.48837.31438.33738.17439.213
0.3632.79033.82434.97735.57436.19236.99236.82337.82637.66938.688
0.3831.83432.94134.09134.66835.26636.03735.87736.84236.69337.675
0.4030.90532.08233.24033.80234.38435.12734.97735.90335.76336.708
0.4230.00931.24832.41932.97233.54134.25834.11835.00734.87635.785
0.4429.14630.43731.62532.17332.73433.42733.29834.15034.02834.903
0.4528.72930.04031.23831.78532.34233.02532.90133.73633.61934.476
0.4628.32129.65030.85631.40331.95932.63032.51333.32933.21834.057
0.4827.53228.88730.11030.65931.21231.86331.75932.54132.44033.246
0.5026.78228.14929.38529.93930.49231.12431.03431.78231.69332.465
0.5525.07326.41827.66428.23128.78929.38229.32929.99629.93930.631
0.6023.59024.85526.07426.64927.21127.77127.75328.34828.32328.943
0.6522.31023.46024.62025.18925.74826.27826.29026.82226.82627.380
0.7021.20522.22723.30323.85424.39824.89924.93325.41125.43725.936
0.8019.39720.19121.07121.55522.03922.47922.53222.92722.97623.387
0.9017.94718.59819.30919.70920.11720.49520.54320.88120.92721.275
1.0016.69017.29217.90018.22718.56818.89218.92619.22219.25619.559
1.1015.52916.15016.72117.00317.29917.58517.60517.87417.89518.166
1.2014.41615.09115.67615.94116.21816.48516.49516.74916.76017.012
1.3013.33914.07214.70114.97015.24915.51315.51915.76915.77516.020
1.4012.30513.08213.76014.04814.34114.61414.62014.87514.88015.126
1.5011.32812.12612.84413.15413.46713.75413.76314.02714.03414.288
1.6010.42211.21411.95612.28512.61612.91912.93113.20713.21713.481
1.709.59710.36011.10411.44711.79112.10512.12012.40712.41912.695
1.808.8609.57710.30210.64910.99711.31911.33511.62911.64411.928
1.908.2138.8689.5599.90210.24610.56810.58510.88110.89711.186
2.007.6508.2398.8829.2139.5459.8609.87710.17110.18710.476

ElementPm3+Sm3+Eu2+Eu3+Gd3+Tb3+Dy3+Ho3+Er3+Tm3+
Z61626363646566676869
Method*DS*DS*DS*DS*DS*DS*DS*DS*DS*DS
(sin [\theta])/λ (Å−1)          
0.0058.00059.00061.00060.00061.00062.00063.00064.00065.00066.000
0.0157.97358.97360.97059.97360.97461.97462.97563.97564.97565.976
0.0257.89158.89260.88159.89460.89561.89662.89863.90064.90165.903
0.0357.75558.75960.73259.76260.76561.76762.77263.77564.77965.782
0.0457.56758.57360.52759.57960.58561.58862.59663.60264.60865.613
0.0557.32858.33760.26659.34760.35561.36062.37363.38264.39165.399
0.0657.03958.05259.95259.06660.07761.08662.10263.11564.12865.139
0.0756.70457.72159.58758.73959.75460.76661.78762.80463.82164.836
0.0856.32457.34559.17558.36859.38760.40361.42962.45163.47264.491
0.0955.90256.92958.71857.95658.98060.00061.03162.05863.08364.107
0.1055.44256.47358.22257.50558.53459.55960.59561.62662.65763.685
0.1154.94755.98257.68857.01958.05359.08260.12461.16062.19563.228
0.1254.42055.46057.12256.50157.53958.57459.62060.66061.70162.739
0.1353.86454.90856.52755.95456.99658.03659.08660.13161.17662.219
0.1453.28454.33055.90655.38056.42757.47158.52559.57460.62461.671
0.1552.68153.73155.26454.78455.83456.88357.94058.99360.04761.099
0.1652.06153.11254.60454.16855.22256.27457.33458.39159.44860.504
0.1751.42552.47853.93053.53654.59255.64756.71057.76958.83059.889
0.1850.77851.83153.24552.89053.94855.00656.07057.13258.19659.258
0.1950.12251.17552.55252.23453.29254.35355.41756.48157.54758.611
0.2049.46150.51251.85451.57052.62853.68954.75455.81956.88657.953
0.2248.13049.17550.45450.22851.28352.34453.40754.47155.54056.608
0.2446.80447.83949.06248.88449.93350.98952.04653.10754.17455.241
0.2546.14847.17648.37448.21649.26050.31251.36652.42453.48954.554
0.2645.49946.51947.69447.55348.59149.63950.68851.74252.80453.866
0.2844.22645.22846.36146.24647.27048.30649.34450.38951.44252.498
0.3042.99343.97545.06944.97345.98047.00148.02549.05750.09951.145
0.3241.80542.76443.82543.74144.72845.73146.73847.75548.78349.817
0.3440.66641.60042.62942.55343.51944.50145.48946.48947.50148.520
0.3540.11541.03642.05041.97742.93143.90244.88045.87146.87447.884
0.3639.57640.48441.48441.41242.35443.31444.28245.26346.25647.258
0.3838.53439.41640.38740.31941.23642.17243.11844.07845.05246.035
0.4037.54038.39539.33839.27140.16341.07541.99842.93643.88944.853
0.4236.59037.41838.33338.26839.13540.02140.92141.83742.76843.711
0.4435.68136.48337.37137.30738.14939.01039.88740.78041.68942.611
0.4535.24136.03136.90436.84237.67138.52039.38540.26741.16442.075
0.4634.81035.58736.44736.38637.20338.04038.89339.76440.64941.550
0.4833.97534.72835.56035.50336.29537.10837.93838.78639.64940.527
0.5033.17233.90234.70734.65335.42336.21237.01937.84438.68539.542
0.5531.28731.96532.70232.66333.37934.11334.86635.63736.42437.228
0.6029.55530.18830.86130.83831.50632.19132.89433.61534.35235.106
0.6527.95528.54729.16029.15529.77930.42031.07831.75332.44433.151
0.7026.47527.02927.58927.59928.18328.78429.40030.03230.68031.344
0.8023.85824.34224.81124.84025.35125.87626.41626.97027.54028.123
0.9021.68122.09822.49422.52822.96923.42423.89224.37424.87025.380
1.0019.90520.26020.59920.62621.00321.39221.79322.20722.63423.074
1.1018.46418.76819.06119.08019.40019.73020.07220.42420.78721.163
1.2017.27717.54417.80517.81518.09218.37318.66618.96619.27619.595
1.3016.26716.51216.75316.75817.00417.25217.50817.76818.03518.309
1.4015.37015.60715.83915.84016.07116.29816.53116.76417.00017.241
1.5014.53814.77815.01015.01115.23715.45715.67815.89616.11416.332
1.6013.74313.99314.23114.23314.46314.68514.90415.11815.32715.534
1.7012.97013.23213.48013.48313.72413.95314.17814.39414.60414.809
1.8012.21512.49012.74812.75313.00513.24513.47913.70313.91914.127
1.9011.48111.76512.03212.03912.30212.55412.79813.03213.25713.473
2.0010.77411.06311.33611.34411.61611.87812.13212.37612.61012.836

ElementYb2+Yb3+Lu3+Hf4+Ta5+W6+Os4+Ir3+Ir4+Pt2+
Z70707172737476777778
Method*DS*DS*DS*DS*DS*DS*DS*DS*DS*DS
(sin [\theta])/λ (Å−1)          
0.0068.00067.00068.00068.00068.00068.00072.00074.00073.00076.000
0.0167.97366.97667.97667.97967.98167.98271.97673.97272.97575.968
0.0267.89266.90467.90567.91567.92267.92971.90473.88972.90275.874
0.0367.75966.78567.78867.80967.82667.84071.78473.75272.78075.717
0.0467.57366.61967.62467.66167.69167.71671.61773.56172.61175.499
0.0567.33766.40767.41567.47267.51967.55771.40473.31872.39575.222
0.0667.05166.15167.16167.24367.30967.36571.14773.02472.13374.889
0.0766.71965.85166.86666.97667.06567.13970.84772.68271.82874.502
0.0866.34265.51166.52966.67066.78566.88170.50672.29471.48174.065
0.0965.92265.13166.15466.32966.47166.59270.12571.86371.09473.580
0.1065.46464.71465.74165.95366.12666.27269.70771.39270.66973.052
0.1164.96864.26265.29465.54465.74965.92369.25470.88370.20872.485
0.1264.43963.77764.81465.10365.34365.54668.76970.33969.71571.881
0.1363.87963.26264.30364.63464.90865.14268.25369.76469.19071.245
0.1463.29262.71963.76564.13864.44864.71367.71169.16268.63870.582
0.1562.67962.15163.20163.61663.96364.26067.14368.53468.06069.894
0.1662.04661.56162.61563.07163.45563.78566.55267.88467.46069.185
0.1761.39360.95062.00862.50562.92663.29065.94267.21566.83968.459
0.1860.72460.32161.38361.92162.37862.77565.31366.53066.20067.719
0.1960.04359.67860.74261.31961.81262.24264.67065.83265.54666.968
0.2059.35059.02260.08860.70361.23161.69364.01465.12364.87966.210
0.2257.94357.67958.74959.43360.02860.55362.67163.68463.51564.679
0.2456.52156.31257.38258.12758.78359.36761.30262.22862.12463.144
0.2555.80955.62456.69357.46558.14958.76060.61261.50061.42362.381
0.2655.09854.93556.00256.79957.50958.14659.92060.77360.72161.621
0.2853.68753.56054.62255.46056.21656.90158.53759.32859.31960.121
0.3052.29752.19853.25354.12354.91755.64357.16457.90557.92758.652
0.3250.93750.85851.90352.79653.62054.38155.80956.51056.55557.220
0.3449.61149.54850.58051.48752.33453.12254.47855.14855.20955.830
0.3548.96248.90449.93050.84251.69652.49653.82354.48154.54855.151
0.3648.32348.27049.28850.20351.06451.87353.17553.82353.89454.483
0.3847.07647.03048.03248.94749.81750.64151.90652.53852.61353.182
0.4045.87145.82846.81347.72348.59749.43050.67151.29351.36951.925
0.4244.70744.66745.63346.53447.40648.24449.47350.08950.16350.714
0.4443.58543.54544.49145.38146.24747.08648.31248.92648.99549.545
0.4543.03842.99943.93544.81845.68146.51847.74548.35948.42548.977
0.4642.50242.46343.38944.26545.12245.95747.18747.80247.86548.419
0.4841.45841.41942.32543.18444.03144.86046.09946.71746.77347.333
0.5040.45040.41241.29742.14042.97443.79545.04645.66845.71746.286
0.5538.08038.04638.88039.68040.47941.27142.56243.19743.22743.820
0.6035.90135.87436.65837.41938.18138.94240.27040.91840.93241.549
0.6533.89033.87334.61035.33536.06436.79338.14738.80538.80739.443
0.7032.02932.02232.71633.40934.10634.80636.17236.83536.83037.479
0.8028.70928.72229.33529.97030.61231.25832.60233.26133.24933.905
0.9025.88025.90426.44227.01827.60528.19929.47130.10430.09430.732
1.0023.50123.52723.99424.50625.03325.57226.73427.32427.31727.918
1.1021.52821.55121.95222.39622.85823.33624.36824.90224.89825.447
1.2019.90819.92620.26720.64521.04221.45622.35022.82122.82023.307
1.3018.58018.59118.88319.20219.53819.89020.65221.05721.05821.481
1.4017.48017.48617.73818.00918.29318.59219.23419.57919.58119.942
1.5016.55016.55316.77717.01117.25517.51018.05418.34718.34818.654
1.6015.74015.74115.94716.15816.37416.59717.06617.31517.31717.578
1.7015.00915.01015.20815.40615.60515.80816.22516.44316.44416.670
1.8014.33014.33014.52814.72214.91415.10615.49315.69115.69115.893
1.9013.68113.68213.88414.08114.27414.46314.83815.02415.02415.211
2.0013.05113.05313.26313.46713.66613.85814.23414.41714.41614.597

ElementPt4+Au1+Au3+Hg1+Hg2+Tl1+Tl3+Pb2+Pb4+Bi3+
Z78797980808181828283
Method*DS*DS*DS*DS*DS*DS*DS*DS*DS*DS
(sin [\theta])/λ (Å−1)          
0.0074.00078.00076.00079.00078.00080.00078.00080.00078.00080.000
0.0173.97577.96475.97278.96277.96879.96177.97579.96677.97579.969
0.0273.90177.85575.88878.85077.87579.84577.89179.86477.89979.878
0.0373.77877.67675.75078.66477.71979.65377.75379.69577.77479.727
0.0473.60677.42875.55778.40677.50379.38877.56079.46177.59979.516
0.0573.38777.11375.31178.08077.22979.05277.31479.16477.37679.249
0.0673.12376.73675.01577.68976.89778.65077.01778.80777.10678.926
0.0772.81476.29974.66977.23876.51278.18676.67078.39276.79078.550
0.0872.46275.80774.27676.73176.07677.66576.27677.92476.43078.124
0.0972.07075.26473.83976.17375.59177.09375.83677.40676.02877.651
0.1071.63974.67673.36175.57075.06276.47475.35576.84375.58677.134
0.1171.17374.04672.84374.92574.49275.81474.83376.23875.10676.577
0.1270.67373.38072.29074.24573.88475.11974.27575.59774.59075.983
0.1370.14172.68371.70573.53573.24374.39473.68374.92274.04175.355
0.1469.58171.95871.08972.79872.57173.64473.06074.22073.46174.698
0.1568.99571.21170.44872.04171.87472.87372.40973.49372.85374.014
0.1668.38670.44669.78371.26671.15372.08571.73372.74572.22073.308
0.1767.75669.66569.09770.47770.41371.28671.03571.98171.56372.581
0.1867.10768.87468.39569.67969.65870.47770.31971.20470.88571.839
0.1966.44368.07567.67868.87468.88969.66369.58670.41770.19071.083
0.2065.76667.27166.94968.06568.11168.84768.84169.62369.47970.317
0.2264.38065.65865.46666.44566.53667.21467.32068.02368.02068.764
0.2462.96864.05463.96564.83664.95265.59765.77666.42566.52767.199
0.2562.25663.26063.21364.04064.16264.79765.00165.63165.77266.416
0.2661.54362.47262.46263.25163.37664.00564.22664.84165.01565.636
0.2860.11960.92360.96961.69861.82162.44862.68563.28463.50164.090
0.3058.70759.41359.49960.18460.29660.93161.16361.75961.99562.569
0.3257.31557.94758.05858.71458.81059.45859.67060.27560.50961.081
0.3455.95156.52956.65357.29057.36758.03158.21458.83359.05259.631
0.3555.28155.83955.96556.59656.66357.33557.50258.12858.33658.922
0.3654.61955.16155.28855.91455.97256.65156.80057.43657.62958.223
0.3853.32353.84153.96754.58654.62555.31855.43256.08556.24756.858
0.4052.06552.57152.68953.30653.32754.03254.11054.78154.90855.538
0.4250.84751.34851.45752.07352.07952.79252.83753.52353.61454.263
0.4449.66950.17250.26950.88550.87951.59651.61352.30952.36753.033
0.4549.09549.60049.69150.30850.29651.01551.01851.71951.76252.435
0.4648.53149.04049.12449.74249.72550.44450.43551.14051.16751.847
0.4847.43147.95048.02148.64048.61549.33249.30450.01350.01450.704
0.5046.37046.89946.95847.57847.54848.26148.21748.92748.90549.602
0.5543.87144.43244.46445.08545.05045.74245.67746.37746.31847.018
0.6041.57342.16342.17542.79542.76443.42943.36444.04043.96944.653
0.6539.44740.06240.06040.67940.65641.29441.24141.88841.82242.481
0.7037.47038.10338.09338.70938.69639.31139.27539.89539.84440.473
0.8033.88534.53434.51835.13135.13335.71835.71436.29336.27836.857
0.9030.71331.35231.33831.94431.95232.52332.53833.09633.10833.657
1.0027.90528.51328.50429.09029.10029.65929.67930.22730.24930.784
1.1025.44026.00025.99626.54926.55727.09727.11427.64827.66928.194
1.2023.30523.80723.80624.31524.31924.82824.83925.34925.36425.871
1.3021.48221.92121.92322.37822.37922.84622.85023.32523.33223.811
1.4019.94520.32220.32520.72320.72221.13921.13821.56821.56822.009
1.5018.65818.97818.98119.32419.32219.68619.68220.06220.05820.453
1.6017.58017.85317.85618.14818.14618.46018.45418.78418.77819.124
1.7016.67216.90716.90917.16017.15717.42617.42017.70517.69717.997
1.8015.89416.10116.10216.32016.31916.55016.54616.79016.78417.043
1.9015.21115.40115.40115.59715.59615.80015.79716.01016.00516.229
2.0014.59614.77714.77714.95814.95815.14315.14115.33215.32915.527

ElementBi5+Ra2+Ac3+Th4+U3+U4+U6+Np3+Np4+Np6+
Z83888990929292939393
Method*DS*DS*DS*DS*DS*DS*DS*DS*DS*DS
(sin [\theta])/λ (Å−1)          
0.0078.00086.00086.00086.00089.00088.00086.00090.00089.00087.000
0.0177.97785.95785.96185.96588.96187.96585.97089.96288.96586.970
0.0277.90885.82985.84685.86088.84687.86085.88189.84788.86086.881
0.0377.79385.61685.65585.68688.65487.68685.73389.65788.68786.733
0.0477.63385.32385.39085.44488.38987.44485.52789.39388.44686.527
0.0577.42884.95185.05485.13788.05187.13785.26489.05888.14086.265
0.0677.18084.50684.65184.76787.64686.76684.94788.65487.77085.947
0.0776.88983.99384.18384.33787.17586.33584.57788.18587.34085.577
0.0876.55883.41783.65683.85186.64385.84784.15787.65686.85385.157
0.0976.18782.78383.07483.31386.05485.30583.68987.06986.31284.688
0.1075.77882.09982.44182.72585.41484.71483.17686.43085.72184.174
0.1175.33381.37181.76582.09484.72784.07782.62285.74485.08483.618
0.1274.85480.60581.04881.42383.99883.39982.02985.01584.40583.023
0.1374.34279.80880.29880.71783.23382.68581.40184.24983.68882.392
0.1473.80078.98579.51979.98182.43681.93880.74183.44982.93981.729
0.1573.23178.14278.71679.21881.61281.16380.05282.62382.16081.036
0.1672.63577.28577.89578.43380.76680.36479.33981.77381.35780.318
0.1772.01676.41877.05977.63179.90379.54678.60580.90480.53379.578
0.1871.37675.54676.21376.81579.02778.71277.85280.02179.69378.818
0.1970.71674.67375.36275.99078.14277.86677.08479.12978.84078.043
0.2070.03973.80374.50875.15877.25377.01376.30578.23077.97777.255
0.2268.64372.08072.80573.48875.47175.29474.72276.42676.23775.652
0.2467.20470.39671.12571.82773.70573.57873.12574.63474.49774.032
0.2566.47469.57270.30071.00672.83472.72772.32773.74873.63473.221
0.2665.73968.76269.48570.19371.97271.88471.53272.87272.77672.413
0.2864.26067.18467.89368.59870.28670.22769.95771.15471.08970.810
0.3062.78165.66366.35567.05068.65468.61668.41369.48969.44769.236
0.3261.31264.20064.87365.55467.08167.05766.90867.88267.85667.701
0.3459.86362.79163.44664.11265.56965.55565.44866.33766.32266.209
0.3559.14962.10562.75363.41064.83564.82564.73665.58765.57665.482
0.3658.44261.43262.07262.72264.11764.10964.03664.85364.84564.767
0.3857.05560.12060.74861.38462.72362.72062.67263.42963.42663.374
0.4055.70658.85059.47060.09461.38361.38461.35762.06262.06362.032
0.4254.39857.61958.23558.85060.09560.09960.09060.74960.75360.739
0.4453.13456.42457.03757.64658.85458.86158.86759.48759.49259.493
0.4552.51855.83956.45257.05958.25158.25958.27158.87358.88058.887
0.4651.91455.26255.87556.48157.65757.66757.68658.27158.27958.292
0.4850.74054.13054.74655.35056.50156.51356.54457.09757.10857.133
0.5049.61153.02853.64754.25255.38155.39755.43955.96455.97856.013
0.5546.97450.39651.02351.63352.72552.74952.81553.28353.30553.363
0.6044.58447.93248.56149.17650.25150.28250.36450.79550.82350.898
0.6542.40745.63246.25546.86947.93847.97248.06248.47448.50748.591
0.7040.40943.49044.10044.70645.77445.80745.89546.30646.33846.423
0.8036.83039.64940.22040.79441.86041.88241.94242.38442.40842.472
0.9033.66336.31836.85137.38738.44338.44938.46838.95838.96638.992
1.0030.80733.38933.89634.40235.44335.43535.41935.94835.94335.933
1.1028.21930.77131.26431.75332.77632.76232.72433.27233.25933.227
1.2025.89028.40428.89029.37030.37330.35730.31430.86130.84630.805
1.3023.82126.25626.73427.20628.18428.17028.13228.66528.65128.612
1.4022.01124.31424.77725.23826.18326.17326.14626.65226.64226.612
1.5020.44922.57423.01523.45624.35724.35224.33524.81024.80324.784
1.6019.11721.03321.44321.85822.70322.70122.69523.13323.13023.121
1.7017.98919.68520.05820.43921.21921.22021.22121.62121.62121.620
1.8017.03518.51618.84919.19419.90219.90419.91020.27220.27420.278
1.9016.22317.51017.80418.11118.74518.74818.75619.08019.08319.090
2.0015.52316.64616.90417.17417.73617.74017.74818.03618.03918.047

ElementPu3+Pu4+Pu6+
Z949494
Method*DS*DS*DS
(sin [\theta])/λ (Å−1)   
0.0091.00090.00088.000
0.0190.96289.96587.970
0.0290.84889.86187.881
0.0390.66089.68987.734
0.0490.39889.45087.528
0.0590.06689.14587.267
0.0689.66588.77786.950
0.0789.19988.34986.580
0.0888.67387.86386.160
0.0988.08987.32485.692
0.1087.45386.73485.178
0.1186.76986.09884.621
0.1286.04185.41984.025
0.1385.27584.70383.393
0.1484.47583.95282.727
0.1583.64683.17182.032
0.1682.79482.36581.310
0.1781.92181.53780.565
0.1881.03380.69179.800
0.1980.13479.83279.019
0.2079.22778.96278.224
0.2277.40377.20476.604
0.2475.58775.44174.963
0.2574.68874.56574.140
0.2673.79773.69573.320
0.2872.04871.97971.690
0.3070.35170.30570.088
0.3268.71168.68368.522
0.3467.13367.11666.999
0.3566.36766.35466.256
0.3665.61665.60765.525
0.3864.16164.15764.102
0.4062.76562.76562.731
0.4261.42561.42861.411
0.4460.13860.14360.140
0.4559.51359.51959.522
0.4658.90058.90758.916
0.4857.70857.71757.736
0.5056.55756.56956.598
0.5553.84553.86453.915
0.6051.33751.36351.430
0.6549.00449.03449.113
0.7046.82846.86046.942
0.8042.89842.92242.989
0.9039.46339.47439.506
1.0036.44536.44336.440
1.1033.76333.75233.724
1.2031.34631.33131.293
1.3029.14229.12829.090
1.4027.12127.10927.078
1.5025.26425.25725.235
1.6023.56723.56423.552
1.7022.03022.02922.025
1.8020.65020.65120.653
1.9019.42419.42719.433
2.0018.34618.34918.357

6.1.1.3.1. Scattering-factor interpolation

| top | pdf |

A general treatment of interpolation is complicated by possible difficulties resulting from singularities in tabulated functions. The interpolation of scattering factors does not involve such problems, however, and a more restricted treatment suffices.

An iterative method, applicable to a function f(x) tabulated at arbitrary values [x_0,x_1,\ldots,x_n] is due to Aitken. [f(x|x_0,x_1,\ldots,x_k)] is the polynominal that coincides with the tabulated values at [x_0,x_1,\ldots,x_k]. [\eqalignno{f(x|x_0,x_1)&={1\over x_1-x_0}\left\vert\matrix{f_0\,x_0-x\cr f_1\,x_1-x\cr} \right\vert\cr f(x|x_0,x_1,x_2)&={1\over x_2-x_1}\left\vert\matrix{f(x|x_0,x_1)&x_1-x\cr f(x|x_0,x_2)&x_2-x\cr} \right\vert\cr f(x|x_0,x_1,x_2,x_3)&={1\over x_3-x_2}\left\vert\matrix{f(x|x_0,x_1,x_2)&x_2-x\cr f(x|x_0,x_1,x_3)&x_3-x\cr} \right\vert.\cr & &(6.1.1.13)}]Iteration is continued until increasing k does not change the interpolated value significantly.

Another interpolation formula, due to Lagrange, is [f(x)=\textstyle\sum\limits^n_{i=0}l_i(x)\,f_i+R_n(x),]where [l_i(x)={\pi_n(x)\over(x-x_i)\pi_n'(x_i)}]and [R_n(x)=\pi_n(x)[x_0,x_1,\ldots,x_n,x].\eqno (6.1.1.14)][\pi_n(x)] is [(x-x_0)(x-x_1)\ldots(x-x_n)] and [\pi_n'(x)] is its derivative, so that [\eqalignno{\pi_n'(x_k)&=(x_k-x_0)(x_k-x_1)\ldots(x_k-x_{k-1})\cr &\quad \times(x_k-x_{k+1})\ldots(x_k-x_n)}]while [\eqalign{[x_0,x_1]&={f_0-f_1\over x_0-x_1}\cr [x_0,x_1,x_2]&={[x_0,x_1]-[x_1,x_2]\over x_0-x_2}\cr [x_0,x_1\ldots x_n]&=\sum^n_{k=0} {f_k\over\pi_n'(x_k)}.}]

For the scattering factors of Tables 6.1.1.1[link] and 6.1.1.3[link], the expansion [f(\sin\theta/\lambda)=\textstyle\sum\limits^4_{i=1}a_i\exp(-b_i\sin^2\theta/\lambda^2)+c\eqno (6.1.1.15)]has been found to be particularly effective. The coefficients listed in Table 6.1.1.4[link] give a close fit to the atomic scattering curves over the range [0\lt(\sin\theta)/\lambda\lt2.0\,{\rm \AA}^{-1}]. Table 6.1.1.4[link] also contains the maximum and minimum deviations from the true curve, and the mean of the magnitude of the deviation. For [2.0\,{\rm \AA}^{-1}\lt(\sin\theta)/\lambda\lt6.0\,{\rm \AA}^{-1}], Fox, Keefe & Tabbernor (1989[link]) have shown that (6.1.1.15)[link] is highly inaccurate, and they produced a `logarithmic polynomial' curve-fitting routine based on the equation [\ln\{\,f[(\sin\theta)/\lambda]\}=\textstyle\sum\limits^3_{i=0}a_is^i\eqno (6.1.1.16)]for these high angles. The [a_i] values listed in Table 6.1.1.5[link] give a close fit to the atomic scattering factor curves over the range [2.0\lt(\sin\theta)/\lambda\lt6.0\,{\rm\AA}^{-1}]. Because f varies slowly with [(\sin\theta)/\lambda] at these high angles, four parameters are all that is necessary for accurate fitting. Confirmation of this is given in Table 6.1.1.5[link] where the correlation coefficients, C, associated with each fit are also shown, and it can be seen that these are close to 1.0 in every case.

Table 6.1.1.4| top | pdf |
Coefficients for analytical approximation to the scattering factors of Tables 6.1.1.1[link] and 6.1.1.3[link]

  a1b1a2b2a3b3a4b4cMaximum error[\sin\theta/\lambda]−1)Mean error
HSDS0.49300210.51090.32291226.12570.1401913.142360.04081057.79970.0030380.0000.000.000
HHF0.48991820.65930.2620037.740390.19676749.55190.0498792.201590.0013050.0000.170.000
H1−HF0.89766153.13680.56561615.18700.415815186.5760.1169733.567090.0023890.0020.090.001
HeRHF0.8734009.103700.6309003.356800.31120022.92760.1780000.9821000.0064000.0011.010.000
LiRHF1.128203.954600.7508001.052400.61750085.39050.465300168.2610.0377000.0052.000.001
Li1+RHF0.6968004.623700.7888001.955700.3414000.6316000.15630010.09530.0167000.0011.780.000
BeRHF1.5919043.64271.127801.862300.539100103.4830.7029000.5420000.0385000.0030.560.001
Be2+RHF6.260300.0027000.8849000.8313000.7993002.275800.1647005.11460−6.10920.0011.970.000
BRHF2.0545023.21851.332601.021001.0979060.34980.7068000.140300−0.193200.0020.750.001
CRHF2.3100020.84391.0200010.20751.588600.5687000.86500051.65120.2156000.0062.000.001
CvalHF2.2606922.69071.561650.6566651.050759.756180.83925955.59490.2869770.0010.160.000
NRHF12.21260.0057003.132209.893302.0125028.99751.166300.582600−11.5290.0070.110.002
ORHF3.0485013.27712.286805.701101.546300.3239000.86700032.90890.2508000.0010.220.000
O1−HF4.1916012.85731.639694.172361.5267347.0179−20.307−0.0140421.94120.0111.500.004
FRHF3.5392010.28252.641204.294401.517000.2615001.0243026.14760.2776000.0010.010.000
F1−HF3.632205.277563.5105714.73531.260640.4422580.94070647.34370.6533960.0030.090.001
NeRHF3.955308.404203.112503.426201.454600.2306001.1251021.71840.3515000.0020.250.001
NaRHF4.762603.285003.173608.842201.267400.3136001.11280129.4240.6760000.0090.130.002
Na1+RHF3.256502.667103.936206.115301.399800.2001001.0032014.03900.4040000.0010.700.000
MgRHF5.420402.827502.1735079.26111.226900.3808002.307307.193700.8584000.0150.080.003
Mg2+RHF3.498802.167603.837804.754201.328400.1850000.84970010.14110.4853000.0011.340.000
AlRHF6.420203.038701.900200.7426001.5936031.54721.9646085.08861.115100.0182.000.005
Al3+HF4.174481.938163.387604.145531.202960.2287530.5281378.285240.7067860.0001.500.000
SivRHF6.291502.438603.0353032.33371.989100.6785001.5410081.69371.140700.0092.000.002
SivalHF5.662692.665203.0716438.66342.624460.9169461.3932093.54581.247070.0010.530.001
Si4+HF4.439181.641673.203453.437571.194530.2149000.4165306.653650.7462970.0001.500.000
PRHF6.434501.906704.1791027.15701.780000.5260001.4908068.16451.114900.0030.650.001
SRHF6.905301.467905.2034022.21511.437900.2536001.5863056.17200.8669000.0050.670.002
ClRHF11.46040.0104007.196401.166206.2556018.51941.6455047.7784−9.55740.0070.780.003
Cl1−RHF18.29150.0066007.208401.171706.5337019.54242.3386060.4486−16.3780.0070.760.003
ArRHF7.484500.9072006.7723014.84070.65390043.89831.6442033.39291.444500.0292.000.006
KRHF8.2186012.79497.439800.7748001.05190213.1870.86590041.68411.422800.0110.900.005
K1+RHF7.9578012.63317.491700.7674006.35900−0.002001.1915031.9128−4.99780.0110.910.005
CaRHF8.6266010.44217.387300.6599001.5899085.74841.02110178.4371.375100.0160.990.006
Ca2+RHF15.6348−0.007407.951800.6089008.4372010.31160.85370025.9905−14.8750.0172.000.004
ScRHF9.189009.021307.367900.5729001.64090136.1081.4680051.35311.332900.0141.070.006
Sc3+HF13.40080.2985408.027307.962901.65943−0.286041.5793616.0662−6.66670.0021.500.000
TiRHF9.759507.850807.355800.5000001.6991035.63381.90210116.1051.280700.0142.000.006
Ti2+HF9.114237.524307.621740.4575852.2793019.53610.08789961.65580.8971550.0061.500.001
Ti3+HF17.73440.2206108.738167.047165.25691−0.157621.9213415.9768−14.6520.0010.000.000
Ti4+HF19.51140.1788478.234736.670182.01341−0.292631.5208012.9464−13.2800.0021.500.000
VRHF10.29716.865707.351100.4385002.0703026.89382.05710102.4781.219900.0142.000.005
V2+RHF10.10606.881807.354100.4409002.2884020.30040.022300115.1221.229800.0152.000.004
V3+HF9.431416.395357.741900.3833492.1534315.19080.01686563.96900.6565650.0041.500.001
V5+HF15.68870.6790038.142085.401352.030819.97278−9.57600.9404641.714300.0000.340.000
CrRHF10.64066.103807.353700.3920003.3240020.26261.4922098.73991.183200.0112.000.004
Cr2+HF9.540345.660787.750900.3442613.5827413.30750.50910732.42240.6168980.0021.500.000
Cr3+HF9.680905.594637.811360.3343932.8760312.82880.11357532.87610.5182750.0021.500.000
MnRHF11.28195.340907.357300.3432003.0193017.86742.2441083.75431.089600.0092.000.004
Mn2+RHF10.80615.279607.362000.3435003.5268014.34300.21840041.32351.087400.0092.000.002
Mn3+HF9.845214.917977.871940.2943933.5653110.81710.32361324.12810.3939740.0011.500.000
Mn4+HF9.962534.848507.970570.2833032.7606710.48520.05444727.57300.2518770.0011.500.000
FeRHF11.76954.761107.357300.3072003.5222015.35352.3045076.88051.036900.0110.080.004
Fe2+RHF11.04244.653807.374000.3053004.1346012.05460.43990031.28091.009700.0082.000.002
Fe3+RHF11.17644.614707.386300.3005003.3948011.67290.07240038.55660.9707000.0082.000.002
CoRHF12.28414.279107.340900.2784004.0034013.53592.3488071.16921.011800.0130.080.004
Co2+RHF11.22964.123107.388300.2726004.7393010.24430.71080025.64660.9324000.0062.000.001
Co3+HF10.33803.909697.881730.2386684.767958.355830.72559118.34910.2866670.0001.500.000
NiRHF12.83763.878507.292000.2565004.4438012.17632.3800066.34211.03410.0140.080.004
Ni2+RHF11.41663.676607.400500.2449005.344208.873000.97730022.16260.8614000.0032.000.001
Ni3+HF10.78063.547707.758680.2231405.227467.644680.84711416.96730.3860440.0000.570.000
CuRHF13.33803.582807.167600.2470005.6158011.39661.6735064.81261.191000.0150.080.005
Cu1+RHF11.94753.366907.357300.2274006.245508.662501.5578025.84870.890000.0030.240.001
Cu2+HF11.81683.374847.111810.2440785.781357.987601.1452319.89701.144310.0010.260.000
ZnRHF14.07433.265507.031800.2333005.1652010.31632.4100058.70971.304100.0160.080.005
Zn2+RHF11.97192.994607.386200.2031006.466807.082601.3940018.09950.7807000.0010.620.000
GaRHF15.23543.066906.700600.2412004.3591010.78052.9623061.41351.718900.0250.080.008
Ga3+HF12.69202.812626.698830.2278906.066926.364411.0066014.41221.535450.0081.450.000
GeRHF16.08162.850906.374700.2516003.7068011.44683.6830054.76252.131300.0240.080.008
Ge4+HF12.91722.537186.700030.2058556.067915.479130.85904111.60301.455720.0000.320.000
AsRHF16.67232.634506.070100.2647003.4313012.94794.2779047.79722.531000.0190.090.008
SeRHF17.00062.409805.819600.2726003.9731015.23724.3543043.81632.840900.0162.000.006
BrRHF17.17892.172305.2358016.57965.637700.2609003.9851041.43282.955700.0122.000.004
Br1−RHF17.17182.205906.3338019.33455.575400.2871003.7272058.15353.177600.0162.000.006
KrRHF17.35551.938406.7286016.56235.549300.2261003.5375039.39722.825000.0082.000.002
RbRHF17.17841.788809.6435017.31515.139900.2748001.52920164.9343.487300.0280.120.008
Rb1+RHF17.58161.713907.6598014.79575.898100.1603002.7817031.20872.078200.0021.990.001
SrRHF17.56631.556409.8184014.09885.422000.1664002.66940132.3762.506400.0210.130.005
Sr2+RHF18.08741.490708.1373012.69632.5654024.5651−34.193−0.0138041.40250.0082.000.002
Y*RHF17.77601.4029010.294612.80065.726290.1255993.26588104.3541.912130.0280.070.006
Y3+*DS17.92681.354179.1531011.21451.7679522.6599−33.108−0.0131940.26020.0052.000.001
Zr*RHF17.87651.2761810.948011.91605.417320.1176223.6572187.66272.069290.0350.070.008
Zr4+*DS18.16681.2148010.056210.14831.0111821.6054−2.6479−0.102769.414540.0042.000.001
Nb*RHF17.61421.1886512.014411.76604.041830.2047853.5334669.79573.755910.0420.080.011
Nb3+*DS19.88120.01917518.06531.1330511.017710.16211.9471528.3389−12.9120.0062.000.002
Nb5+*DS17.91631.1244613.34170.02878110.79909.282060.33790525.7228−6.39340.0072.000.003
MoRHF3.702500.27720017.23561.0958012.887611.00403.7429061.65844.387500.0460.080.012
Mo3+*DS21.16640.01473418.20171.0303111.74239.536592.3095126.6307−14.4210.0092.000.003
Mo5+*DS21.01490.01434518.09921.0223811.46328.788090.74062523.3452−14.3160.0102.000.003
Mo6+*DS17.88711.0364911.17508.480616.578910.0588810.0000000.0000000.3449410.0140.000.006
Tc*RHF19.13010.86413211.09488.144874.6490121.57072.7126386.84725.404280.0612.000.011
Ru*RHF19.26740.80852012.91828.434674.8633724.79971.5675694.29285.378740.0412.000.006
Ru3+*DS18.56380.84732913.28858.371649.326020.0176623.0096422.8870−3.18920.0132.000.004
Ru4+*DS18.50030.84458213.17878.125344.713040.364952.1853520.85041.423570.0142.000.004
Rh*RHF19.29570.75153614.35018.217584.7342525.87491.2891898.60625.328000.0212.000.004
Rh3+*DS18.87850.76425214.12597.844383.3251521.2487−6.1989−0.0103611.86780.0142.000.004
Rh4+*DS18.85450.76082513.98067.624362.5346419.3317−5.6526−0.0102011.28350.0142.000.003
Pd*RHF19.33190.69865515.50177.989295.2953725.20520.60584476.89865.265930.0121.080.005
Pd2+*DS19.17010.69621915.20967.555734.3223422.50570.0000000.0000005.291600.0112.000.004
Pd4+*DS19.24930.68383914.79007.148332.8928917.9144−7.94920.00512713.01740.0142.000.003
AgRHF19.28080.64460016.68857.472604.8045024.66051.0463099.81565.179000.0161.140.007
Ag1+*DS19.18120.64617915.97197.191235.2747521.73260.35753466.11475.215720.0121.130.005
Ag2+*DS19.16430.64564316.24567.185444.3709021.40720.0000000.0000005.214040.0111.140.005
CdRHF19.22140.59460017.64446.908904.4610024.70081.6029087.48255.069400.0202.000.008
Cd2+*DS19.15140.59792217.25356.806394.4712820.25210.0000000.0000005.119370.0141.170.007
InRHF19.16240.54760018.55966.377604.2948025.84992.0396092.80294.939100.0272.000.009
In3+*DS19.10450.55152218.11086.324703.7889717.35950.0000000.0000004.996350.0222.000.007
SnRHF19.18895.8303019.10050.5031004.4585026.89092.4663083.95714.782100.0322.000.009
Sn2+RHF19.10940.50360019.05485.837804.5648023.37520.48700062.20614.786100.0322.000.009
Sn4+RHF18.93335.7640019.71310.4655003.4182014.00490.019300−0.758303.918200.0162.000.004
SbRHF19.64185.3034019.04550.4607005.0371027.90742.6827075.28254.590900.0352.000.009
Sb3+*DS18.97550.46719618.93305.221265.1078919.59020.28875355.51134.696260.0282.000.007
Sb5+*DS19.86855.4485319.03020.4679732.4125314.12590.0000000.0000004.692630.0302.000.008
Te*RHF19.96444.8174219.01380.4208856.1448728.52842.5239070.84034.352000.0382.000.009
IRHF20.14724.3470018.99490.3814007.5138027.76602.2735066.87764.071200.0372.000.009
I1−RHF20.23324.3579018.99700.3815007.8069029.52592.8868084.93044.071400.0382.000.009
XeRHF20.29333.9282019.02980.3440008.9767026.46591.9900064.26583.711800.0382.000.009
CsRHF20.38923.5690019.10620.31070010.662024.38791.49530213.9043.335200.0322.000.010
Cs1+RHF20.35243.5520019.12780.30860010.282123.71280.96150059.45653.279100.0372.000.009
BaRHF20.33613.2160019.29700.27560010.888020.20732.69590167.2022.773100.0322.000.009
Ba2+*DS20.18073.2136719.11360.28331010.905420.05580.7763451.74603.029020.0292.000.007
La*RHF20.57802.9481719.59900.24447511.372718.77263.28719133.1242.146780.0322.000.009
La3+*DS20.24892.9207019.37630.25069811.632317.82110.33604854.94532.408600.0282.000.007
Ce*RHF21.16712.8121919.76950.22683611.851317.60833.33049127.1131.862640.0262.000.008
Ce3+*DS20.80362.7769119.55900.23154011.936916.54080.61237643.16922.090130.0232.000.005
Ce4+*DS20.32352.6594119.81860.21885012.123315.79920.14458362.23551.591800.0262.000.007
Pr*RHF22.04402.7739319.66970.22208712.385616.76692.82428143.6442.058300.0210.120.007
Pr3+*DS21.37272.6452019.74910.21429912.132915.32300.97518036.40651.771320.0192.000.004
Pr4+*DS20.94132.5446720.05390.20248112.466814.81370.29668945.46431.242850.0212.000.005
Nd*RHF22.68452.6624819.68470.21062812.774015.88502.85137137.9031.984860.0240.130.007
Nd3+*DS21.96102.5272219.93390.19923712.120014.17831.5103130.87171.475880.0152.000.003
Pm*RHF23.34052.5627019.60950.20208813.123515.10092.87516132.7212.028760.0260.130.008
Pm3+*DS22.55272.4174020.11080.18576912.067113.12752.0749227.44911.194990.0122.000.002
Sm*RHF24.00422.4727419.42580.19645113.439614.39962.89604128.0072.209630.0290.130.009
Sm3+*DS23.15042.3164120.25990.17408111.920212.15712.7148824.82420.9545860.0092.000.002
EuRHF24.62742.3879019.08860.19420013.760313.75462.92270123.1742.574500.0310.140.010
Eu2+*DS24.00632.2778319.95040.17353011.803411.60963.8724326.51561.363890.0042.000.002
Eu3+*DS23.74972.2225820.37450.16394011.850911.31103.2650322.99660.7593440.0062.000.001
Gd*RHF25.07092.2534119.07980.18195113.851812.93313.54545101.3982.419600.0360.150.011
Gd3+*DS24.34662.1355320.42080.15552511.870810.57823.7149021.70290.6450890.0042.000.001
Tb*RHF25.89762.2425618.21850.19614314.316712.66482.95354115.3623.583240.0350.140.012
Tb3+*DS24.95592.0560120.32710.14952512.247110.04993.7730021.27730.6919670.0050.000.001
Dy*RHF26.50702.1802017.63830.20217214.559612.18992.96577111.8744.297280.0370.150.013
Dy3+*DS25.53951.9804020.28610.14338411.98129.349724.5007319.58100.6896900.0030.000.001
Ho*RHF26.90492.0705117.29400.19794014.558311.44073.6383792.65664.567960.0400.150.013
Ho3+*DS26.12961.9107220.09940.13935811.97888.800184.9367618.59080.8527950.0030.000.001
Er*RHF27.65632.0735616.42850.22354514.977911.36042.98233105.7035.920460.0400.150.015
Er3+*DS26.72201.8465919.77480.13729012.15068.362255.1737917.89741.176130.0030.000.001
Tm*RHF28.18192.0285915.88510.23884915.154210.99752.98706102.9616.756210.0410.150.016
Tm3+*DS27.30831.7871119.33200.13697412.33397.967785.3834817.29221.639290.0030.000.001
Yb*RHF28.66411.9889015.43450.25711915.308710.66472.98963100.4177.566720.0420.150.016
Yb2+*DS28.12091.7850317.68170.15997013.33358.183045.1465720.39003.709830.0080.000.003
Yb3+*DS27.89171.7327218.76140.13879012.60727.644125.4764716.81532.260010.0030.000.002
Lu*RHF28.94761.9018215.22089.9851915.10000.2610333.7160184.32987.976280.0430.160.016
Lu3+*DS28.46281.6821618.12100.14229212.84297.337275.5941516.35352.975730.0040.140.002
Hf*RHF29.14401.8326215.17269.5999014.75860.2751164.3001372.02908.581540.0470.080.016
Hf4+*DS28.81311.5913618.46010.12890312.72856.762325.5992714.03662.396990.0020.000.001
Ta*RHF29.20241.7733315.22939.3704614.51350.2959774.7649263.36449.243540.0490.080.017
Ta5+*DS29.15871.5071118.84070.11674112.82686.315245.3869512.42441.785550.0022.000.001
W*RHF29.08181.7202915.43009.2259014.43270.3217035.1198257.05609.887500.0510.090.017
W6+*DS29.49361.4275519.37630.10462113.05445.936675.0641211.19721.010740.0010.000.000
Re*RHF28.76211.6719115.71899.0922714.55640.3505005.4417452.086110.47200.0520.090.017
Os*RHF28.18941.6290316.15508.9794814.93050.3826615.6758948.164711.00050.0510.090.017
Os4+*DS30.41901.3711315.26376.8470614.74580.1651915.0679518.00306.498040.0060.290.003
Ir*RHF27.30491.5927916.72968.8655315.61150.4179165.8337745.001111.47220.0500.090.017
Ir3+*DS30.41561.3432315.86207.1090913.61450.2046335.8200820.32548.279030.0090.280.004
Ir4+*DS30.70581.3092315.55126.7198314.23260.1672525.5367217.49116.968240.0060.290.003
Pt*RHF27.00591.5129317.76398.8117415.71310.4245935.7837038.610311.68830.0460.100.016
Pt2+*DS29.84291.3292716.72247.3897913.21530.2632976.3523422.94269.853290.0140.000.006
Pt4+*DS30.96121.2481315.98296.6083413.73480.1686405.9203416.93927.395340.0060.140.003
AuRHF16.88190.46110018.59138.6216025.55821.482605.8600036.395612.06580.0450.100.015
Au1+*DS28.01091.3532117.82047.7395014.33590.3567526.5807726.404311.22990.0230.120.009
Au3+*DS30.68861.2199016.90296.8287212.78010.2128676.5235418.65909.096800.0090.140.004
HgRHF20.68090.54500019.04178.4484021.65751.572905.9676038.324612.60890.0460.100.017
Hg1+*DS25.08531.3950718.49737.6510516.88830.4433786.4821628.226212.02050.0270.120.011
Hg2+*DS29.56411.2115218.06007.0563912.83740.2847386.8991220.748210.62680.0130.000.006
Tl*RHF27.54460.65515019.15848.7075115.53801.963475.5259345.814913.17460.0590.090.021
Tl1+*DS21.39851.4711020.47230.51739418.74787.434636.8284728.848212.52580.0280.120.011
Tl3+*DS30.86951.1008018.34816.5385211.93280.2190747.0057417.21149.802700.0080.010.004
PbRHF31.06170.69020013.06372.3576018.44208.618005.9696047.257913.41180.0602.000.021
Pb2+*DS21.78861.3366019.56820.48838319.14066.772707.0110723.813212.47340.0202.000.008
Pb4+*DS32.12441.0056618.80036.1092612.01750.1470416.9688614.71408.084280.0050.310.002
BiRHF33.36890.70400012.95102.9238016.58778.793706.4692048.009313.57820.0652.000.020
Bi3+*DS21.80531.2356019.50266.2414919.10530.4699997.1029520.318512.47110.0152.000.006
Bi5+*DS33.53640.91654025.09460.3904219.24975.714146.9155512.8285−6.79940.0030.000.001
Po*RHF34.67260.70099915.47333.5507813.11389.556427.0258847.004513.67700.0662.000.018
At*RHF35.31630.68587019.02113.974589.4988711.38247.4251845.471513.71080.0622.000.015
RnRHF35.56310.66310021.28164.069108.0037014.04227.4433044.247313.69050.0542.000.012
Fr*RHF35.92990.64645323.05474.1761912.143923.10522.11253150.64513.72470.0552.000.017
Ra*RHF35.76300.61634122.90643.8713512.473919.98873.21097142.32513.62110.0372.000.012
Ra2+*DS35.21500.60490921.67003.576707.9134212.60107.6507829.843613.54310.0292.000.006
Ac*RHF35.65970.58909223.10323.6515512.597718.59904.08655117.02013.52660.0300.060.009
Ac3+*DS35.17360.57968922.11123.414378.1921612.91877.0554525.944313.46370.0212.000.004
Th*RHF35.56450.56335923.42193.4620412.747317.83094.8070399.172213.43140.0310.070.008
Th4+*DS35.10070.55505422.44183.244989.7855413.46615.2944423.953313.37600.0142.000.002
Pa*RHF35.88470.54775123.29483.4151914.189116.92354.17287105.25113.42870.0330.060.010
URHF36.02280.52930023.41283.3253014.949116.09274.18800100.61313.39660.0350.070.010
U3+*DS35.57470.52048022.52593.1229312.216512.71485.3707326.339413.30920.0092.000.002
U4+*DS35.37150.51659822.53263.0505312.029112.57234.7984023.458213.26710.0072.000.001
U6+*DS34.85090.50707922.75842.8903014.009913.17671.2145725.201713.16650.0032.000.001
Np*RHF36.18740.51192923.59643.2539615.640215.36224.1855097.490813.35730.0370.070.011
Np3+*DS35.70740.50232222.61303.0380712.989812.14495.4322725.492813.25440.0062.000.002
Np4+*DS35.51030.49862622.57872.9662712.776611.94844.9215922.750213.21160.0052.000.001
Np6+*DS35.01360.48981022.72862.8109914.388412.33001.7566922.658113.11300.0022.000.001
Pu*RHF36.52540.49938423.80833.2637116.770714.94553.47947105.98013.38120.0380.140.013
Pu3+*DS35.84000.48493822.71692.9611813.580711.53315.6601624.399213.19910.0052.000.001
Pu4+*DS35.64930.48142222.64602.8902013.359511.31605.1883121.830113.15550.0032.000.001
Pu6+*DS35.17360.47320422.71812.7384814.763511.55302.2867820.930313.05820.0011.360.001
Am*RHF36.67060.48362924.09923.2064717.341514.31363.49331102.27313.35920.0400.070.013
Cm*RHF36.64880.46515424.40963.0899717.399013.43464.2166588.483413.28870.0410.070.013
Bk*RHF36.78810.45101824.77363.0461917.891912.89464.2328486.003013.27540.0420.070.014
Cf*RHF36.91850.43753325.19953.0077518.331712.40444.2439183.788113.26740.0430.070.014

Table 6.1.1.5| top | pdf |
Coefficients for analytical approximation to the scattering factors of Table 6.1.1.1[link] for the range 2.0 < (sin [\theta])/λ < 6.0 Å−1 [equation (6.1.1.16)[link]]

[Z]Symbol[a_0][a_1][a_2] (×10)[a_3] (×100)[C]
2He0.52543−3.433004.80070−2.547601.0000
3Li0.89463−2.436602.32500−0.719491.0000
4Be1.25840−1.945901.30460−0.042971.0000
5B1.66720−1.855601.60440−0.659811.0000
6C1.70560−1.567601.18930−0.427151.0000
7N1.54940−1.201900.510640.024721.0000
8O1.30530−0.83742−0.167380.475001.0000
9F1.16710−0.63203−0.402070.543521.0000
10Ne1.09310−0.50221−0.536480.609570.9995
11Na0.84558−0.26294−0.878840.769741.0000
12Mg0.71877−0.13144−1.209000.827381.0000
13Al0.67975−0.08756−0.954310.722941.0000
14Si0.70683−0.09888−0.983560.556311.0000
15P0.85532−0.21262−0.373900.207311.0000
16S1.10400−0.403250.20094−0.260581.0000
17Cl1.42320−0.639360.84722−0.761350.9995
18Ar1.82020−0.927761.59220−1.325100.9995
19K2.26550−1.245302.38330−1.912900.9990
20Ca2.71740−1.556703.13170−2.456700.9990
21Sc3.11730−1.813803.71390−2.853300.9990
22Ti3.45360−2.011504.13170−3.117100.9995
23V3.71270−2.139204.34610−3.220400.9995
24Cr3.87870−2.190004.38670−3.175201.0000
25Mn3.98550−2.188504.27960−3.021501.0000
26Fe3.99790−2.110803.98170−2.719901.0000
27Co3.95900−1.996503.60630−2.370501.0000
28Ni3.86070−1.886903.12390−1.942901.0000
29Cu3.72510−1.655002.60290−1.497600.9995
30Zn3.55950−1.451002.03390−1.021600.9995
31Ga3.37560−1.239101.46160−0.554710.9995
32Ge3.17800−1.022300.89119−0.098840.9995
33As2.97740−0.810380.348610.322310.9995
34Se2.78340−0.61110−0.147310.698370.9995
35Br2.60610−0.43308−0.573811.009500.9995
36Kr2.44280−0.27244−0.955701.270700.9995
37Rb2.30990−0.14328−1.226001.453201.0000
38Sr2.21070−0.04770−1.411001.554101.0000
39Y2.142200.01935−1.522401.596301.0000
40Zr2.126900.08618−1.491901.518201.0000
41Nb2.121200.05381−1.500701.501501.0000
42Mo2.18870−0.00655−1.253401.240101.0000
43Tc2.25730−0.05737−1.074501.066301.0000
44Ru2.37300−0.15040−0.776940.790600.9995
45Rh2.50990−0.25906−0.447190.494430.9995
46Pd2.67520−0.39137−0.058940.154040.9995
47Ag2.88690−0.561190.42189−0.256590.9990
48Cd3.08430−0.714500.84482−0.609900.9990
49In3.31400−0.896971.35030−1.039100.9990
50Sn3.49840−1.029901.68990−1.298600.9990
51Sb3.70410−1.182702.08920−1.616400.9990
52Te3.88240−1.309802.41170−1.864200.9990
53I4.08010−1.450802.76730−2.139200.9990
54Xe4.24610−1.563303.04200−2.342900.9990
55Cs4.38910−1.654203.25450−2.492200.9995
56Ba4.51070−1.725703.41320−2.595900.9995
57La4.60250−1.770703.49970−2.640500.9995
58Ce4.69060−1.817903.60280−2.706700.9995
59Pr4.72150−1.813903.56480−2.651800.9995
60Nd4.75090−1.808003.51970−2.590101.0000
61Pm4.74070−1.766003.37430−2.442101.0000
62Sm4.71700−1.714103.20800−2.281701.0000
63Eu4.66940−1.641402.98580−2.074601.0000
64Gd4.61010−1.557502.73190−1.840400.9995
65Tb4.52550−1.455202.43770−1.579500.9995
66Dy4.45230−1.364402.17540−1.345500.9990
67Ho4.37660−1.274601.92540−1.130900.9990
68Er4.29460−1.181701.67060−0.914670.9990
69Tm4.21330−1.090601.42390−0.708040.9990
70Yb4.13430−1.003101.18810−0.511200.9990
71Lu4.04230−0.905180.92889−0.298200.9990
72Hf3.95160−0.809780.68951−0.096200.9990
73Ta3.85000−0.705990.411030.118420.9990
74W3.76510−0.618070.185680.297870.9990
75Re3.67600−0.52688−0.047060.481800.9995
76Os3.60530−0.45420−0.225290.617000.9995
77Ir3.53130−0.37856−0.411740.759670.9995
78Pt3.47070−0.31534−0.564870.874920.9995
79Au3.41630−0.25987−0.690300.962240.9995
80Hg3.37350−0.21428−0.790131.028501.0000
81Tl3.34590−0.18322−0.849111.059701.0000
82Pb3.32330−0.15596−0.898781.083801.0000
83Bi3.31880−0.14554−0.901981.068501.0000
84Po3.32030−0.13999−0.893331.043801.0000
85At3.34250−0.15317−0.833500.976411.0000
86Rn3.37780−0.17800−0.743200.885101.0000
87Fr3.41990−0.20823−0.640000.783540.9995
88Ra3.47530−0.25005−0.506600.658360.9995
89Ac3.49020−0.25109−0.496510.643400.9995
90Th3.61060−0.35409−0.189260.368490.9995
91Pa3.68630−0.41329−0.011920.208780.9995
92U3.76650−0.475420.168500.050600.9990
93Np3.82870−0.519550.29804−0.065660.9990
94Pu3.88970−0.562960.42597−0.180800.9990
95Am3.95060−0.605540.54967−0.291120.9985
96Cm4.01470−0.650620.67922−0.405880.9985
97Bk4.07780−0.694760.80547−0.517290.9985
98Cf4.14210−0.739770.93342−0.629810.9980

6.1.1.4. Generalized scattering factors

| top | pdf |

For bound atoms, it may be necessary to account for the perturbation of the electron density by interaction with other atoms, and to analyse its effect on the scattering.

The generalized scattering factor is obtained from the Fourier transform of a perturbed atomic electron-density function. The exponential factor in the transform may be written as an expansion in terms of Legendre polynomials [P_l(\cos\theta).]1 [\exp(i{\bf S}\cdot{\bf r})=\sum^\infty_{l=0}(2l+1)i^lj_l(Sr)P_l\bigg[\cos\bigg(\displaystyle{{\bf S\cdot r}\over Sr}\bigg)\bigg],]where [j_l] is a spherical Bessel function of order l and S = |S|. The addition theorem enables this to be expressed as [\exp(i{\bf S}\cdot{\bf r})=4\pi\textstyle\sum\limits_{l=0}i^lj_l(Sr)\sum\limits^l_{m=-l}Y_{lm}(\theta_S,\varphi_S)Y_{lm}^*(\theta,\varphi).\eqno (6.1.1.17)]The [Y_{lm}(\theta,\varphi)] are spherical (surface) harmonics [\eqalignno{Y_{lm}(\theta,\varphi)&=\bigg[{(2l+1)(l+m)!\over4\pi(l-m)!}\bigg]^{1/2}{(-)^le^{im\varphi}\over2^ll!(\sin\theta)^m}\cr &\quad\times{{\rm d}^{l-m}\over{\rm d}(\cos\theta)^{l-m}}\,(\sin\theta)^{2l}\cr &=\bigg[{(2l+1)(l-m)!\over4\pi(l+m)!}\bigg]^{1/2}(-)^me^{im\varphi}P_l^m(\cos\theta)\quad m\ge0,\cr & & (6.1.1.18)}]where [P^m_l(\cos\theta)] is an associated Legendre polynomial.

With this definition of the spherical harmonics, [Y_{l-m}=(-)^mY^*_{lm}.\eqno (6.1.1.19)]

Spherical harmonics with alternative phase conventions can be defined. The relationship between those in common use is given by Normand (1980[link]). With the convention given in (6.1.1.18)[link], the spherical harmonics up to fourth order are [\eqalign{Y_{0\,0}&=(4\pi){}^{-1/2}\cr Y_{1\,\pm1}&=\mp(3/8\pi){}^{1/2}\sin\theta\, e^{\pm i\varphi}\cr Y_{1\,0}&=(3/4\pi){}^{1/2}\cos\theta\cr Y_{2\,\pm2}&=\bigg({15\over32\pi}\bigg)^{1/2}\sin^2\theta\, e^{\pm2i\varphi}\cr Y_{2\,\pm1}&=\mp\bigg({15\over8\pi}\bigg)^{1/2}\sin\theta\cos\theta\, e^{\pm i\varphi}\cr Y_{2\,0}&=\bigg({5\over16\pi}\bigg)^{1/2}(3\cos^2\theta-1)\cr Y_{3\,\pm3}&=\mp\bigg({35\over64\pi}\bigg)^{1/2}\sin^3\theta\, e^{\pm3i\varphi}\cr Y_{3\,\pm2}&=\bigg({105\over32\pi}\bigg)^{1/2}\cos\theta\sin^2\theta\, e^{\pm2i\varphi}\cr Y_{3\,\pm1}&=\mp\bigg({21\over64\pi}\bigg)^{1/2}\sin\theta(4-5\sin^2\theta)\, e^{\pm i\varphi}\cr Y_{3\,0}&=\bigg({7\over16\pi}\bigg)^{1/2}\cos\theta(2-5\sin^2\theta)\cr Y_{4\,\pm4}&=\bigg({315\over512\pi}\bigg)^{1/2}\sin^4\theta\, e^{\pm4i\varphi}\cr Y_{4\,\pm3}&=\mp\bigg({315\over64\pi}\bigg)^{1/2}\cos\theta\sin^3\theta\, e^{\pm3i\varphi}\cr Y_{4\,\pm2}&=\bigg({45\over128\pi}\bigg)^{1/2}\sin^2\theta(6-7\sin^2\theta)\, e^{\pm2i\varphi}\cr Y_{4\,\pm1}&=\mp\bigg({45\over64\pi}\bigg)^{1/2}\cos\theta\sin\theta(4-7\sin^2\theta)\, e^{\pm i\varphi}\cr Y_{4\,0}&=\bigg({9\over256\pi}\bigg)^{1/2}(3-30\sin^2\theta+35\sin^4\theta). }\eqno(6.1.1.20)]The perturbed electron density may be written as a multipole expansion in spherical polar coordinates [r,\theta,\varphi], each term having the form [\specialfonts\rho_{lm\pm}(r)=\rho_{lm\pm}(r){\bsf y}(\theta,\varphi),\eqno (6.1.1.21)]where [\specialfonts{\bsf y}] is a suitably normalized real function of the polar coordinates. A common choice is the real form of the spherical harmonics [Y_{lm\pm(\theta,\,\varphi)}=\bigg[{(2l+1)(l-m)!\over2\pi(l+m)!(1+\delta_{0m})}\bigg]^{1/2}P_l^m(\cos\theta)\matrix{\cos m\varphi\cr \sin m\varphi},\eqno (6.1.1.22)]where [m=0,1,2,\ldots].

These harmonics can also be expressed in terms of Cartesian components of a unit vector [q_x,q_y,q_z].

The normalization in (6.1.1.17)[link] is appropriate to wavefunctions. The physical significance of the normalization for the spherical harmonics depends on the context in which they are utilized. The implications for density functions are not the same as those for wavefunctions. A normalizing condition on the real form of the spherical harmonics that expresses the properties of the functions under integration is [\textstyle\int|y(\theta,\varphi)|\,{\rm d}(\cos\theta)\,{\rm d}\varphi=2-\delta_{l0}.\eqno (6.1.1.23)]We assume the radial function to be constant in sign, and normalized to unity. The scalar function, with l = 0, does not change sign. Integration over the angular coordinates gives the electron content of the scalar function. The multipole terms with l > 0 integrate to zero. Taking the modulus of the angular function, and then integrating, gives twice the electron transfer from the electron-deficient to the electron-enriched volume for that multipole. With this normalization, the angle-dependent factors in the expansion, in terms of the associated Legendre polynomials and in terms of direction cosines, are given in Table 6.1.1.6[link]. For the alternative normalization such that [\textstyle\int|y_{lmp}|{}^2\,{\rm d}(\cos\theta)\,{\rm d}\varphi=1,]the factor multiplying the angle-dependent term is as given in (6.1.1.22)[link].

Table 6.1.1.6| top | pdf |
Angle dependence of multipole functions, normalized as in equation (6.1.1.23)[link]; ω = cos [\theta] and S, D, Q, O, H denote scalar, dipole, quadrupole, octupole, and hexadecapole terms, respectively

PoleReal spherical harmonicCartesian representation
S 1[{1\over4\pi}P^0_0(\omega)][{1\over4\pi}]
D 1[{1\over\pi}P^1_1(\omega)\cos\varphi][{1\over\pi}q_x]
D 2[{1\over\pi}P^1_1(\omega)\sin\varphi][{1\over\pi}q_y]
D 3[{1\over\pi}P^0_1(\omega)][{1\over\pi}q_z]
Q 1[{1\over8}P^2_2(\omega)\cos2\varphi][{3\over8}(q^2_x-q^2_y)]
Q 2[{1\over8}P^2_2(\omega)\sin2\varphi][{3\over4}q_xq_y]
Q 3[{1\over4}P^1_2(\omega)\cos\varphi][{3\over4}q_xq_z]
Q 4[{1\over4}P^1_2(\omega)\sin\varphi][{3\over4}q_yq_z]
Q 5[{3\surd3\over4\pi}P^0_2(\omega)][{9\surd2\over8\pi}(q^2_z-\textstyle{1\over3})]
O 1[{4\over45\pi}P^3_3(\omega)\cos3\varphi][{4\over3\pi}(q^2_x-3q^2_y)q_x]
O 2[{4\over45\pi}P^3_3(\omega)\sin3\varphi][{4\over3\pi}(3q^2_x-q^2_y)q_y]
O 3[\textstyle{1\over15}P^2_3(\omega)\cos2\varphi][(q^2_x-q^2_y)q_z]
O 4[\textstyle{1\over15}P^2_3(\omega)\sin2\varphi][2q_xq_yq_z]
O 5[\textstyle{2\over3}\bigg[\tan^{-1}2+\displaystyle{14\over5}-{\pi\over4}\bigg]^{-1}P^1_3(\omega)\cos\varphi][\bigg[\tan^{-1}2+\displaystyle{14\over5}-{\pi\over4}\bigg]^{-1}(5q^2_z-1)q_x]
O 6[\textstyle{2\over3}\bigg[\tan^{-1}2+\displaystyle{14\over5}-{\pi\over4}\bigg]^{-1}P^1_3(\omega)\sin\varphi][\bigg[\tan^{-1}2+\displaystyle{14\over5}-{\pi\over4}\bigg]^{-1}(5q^2_z-1)q_y]
O 7[{20\over13\pi}P^0_3(\omega)][{10\over13\pi}(5q^2_z-3)q_z]
H 1[{\textstyle{1\over224}}P^4_4(\omega)\cos4\varphi][{\textstyle{105\over224}}(q^4_x-6q^2_xq^2_y+q^4_y)]
H 2[{\textstyle{1\over224}}P^4_4(\omega)\sin4\varphi][{\textstyle{420\over224}}(q^2_x-q^2_y)q_xq_y]
H 3[{\textstyle{1\over84}}P^3_4(\omega)\cos3\varphi][{\textstyle{105\over84}}(q^2_x-3q^2_y)q_xq_z]
H 4[{\textstyle{1\over84}}P^3_4(\omega)\sin3\varphi][{\textstyle{105\over84}}(3q^2_x-q^2_y)q_yq_z]
H 5[\bigg({7\surd7\over272+56\surd7}\bigg)P^2_4(\omega)\cos2\varphi][{15\over2}\bigg({7\surd7\over272+56\surd7}\bigg)(7q^2_z\!-\!1)(q^2_x\!-\!q^2_y)]
H 6[\bigg({7\surd7\over272+56\surd7}\bigg)P^2_4(\omega)\sin2\varphi][{15\over2}\bigg({7\surd7\over272+56\surd7}\bigg)(7q^2_z\!-\!1)q_xq_y]
H 7[\bigg({21\surd7\over256+14\surd7}\bigg)P^1_4(\omega)\cos\varphi][{5\over2}\bigg({21\surd7\over256+14\surd7}\bigg)(7q^2_z-3)q_xq_z]
H 8[\bigg({21\surd7\over256+14\surd7}\bigg)P^1_4(\omega)\sin\varphi][{5\over2}\bigg({21\surd7\over256+14\surd7}\bigg)(7q^2_z-3)q_xq_z]
H 9[0.55534 P^0_4(\omega)][\textstyle{5\over8}(0.55534)(7q^4_z-6q^2_z+{3\over5})]
[H_{\rm cubic}][{160\over27\surd3\pi}\bigg[{1\over420}P^4_4(\omega)\cos4\varphi+\textstyle{2\over5}P^0_4(\omega)\bigg]][{160\over27\surd3\pi}(q^4_x+q^4_y+q^4_z-3/5)]
[H_{\rm cubic}] is the fourth-order hexadecapole appropriate to cubic site symmetry.

The site symmetry of the atom restricts multipole terms to those that are invariant under the operations of the relevant point group. The restrictions for the 27 non-cubic crystallographic point groups are given in Table 6.1.1.7[link].

Table 6.1.1.7| top | pdf |
Indices allowed by the site symmetry for the real form of the spherical harmonics [Y_{lmp(\theta,\varphi)}]; λ, μ and j are integers such that l, m ≥ 0; (−)n implies p = − for n odd and p = + for n even

Site symmetryCoordinate axesIndices
1AnyAll [(l,m,p)]
[\bar1]Any[(2\lambda,m,p)]
2[2\parallel x][(l,m,(-)^{l-m})]
[2\parallel y][(l,m,(-)^{l})]
[2\parallel z][(l,2\mu,p)]
m[m\,\bot\, x][(l,m,(-)^{m})]
[m\,\bot\, y][(l,m,+)]
[m\,\bot\, z][(l,l-2j,p)]
[2/m][2\parallel x,m\,\bot\,x][(2\lambda ,m,(-)^{m})]
[2\parallel y,m\,\bot\,y][(2\lambda,m,+)]
[2\parallel z,m\,\bot\,z][(2\lambda,2\mu,p)]
222[2\parallel z,2\parallel y][(l,2\mu,(-)^l)]
[mm2][2\parallel x,m\,\bot\,z][(l,l-2j,+)]
[2\parallel y,m\,\bot\,z][(l,l-2j,(-)^l)]
[2\parallel z,m\,\bot\,y][(l,2\mu,+)]
[mmm][m\,\bot\,z,m\,\bot\,y,m\,\bot\,z][(2\lambda,2\mu,+)]
4[4\parallel z][(l,4\mu,p)]
[\bar4][\bar4\parallel z][(l,2l-4j,p)]
[4/m][4\parallel z,m\,\bot\,z][(2\lambda,4\mu,p)]
422[4\parallel z,2\parallel y][(l,4\mu,(-)^l)]
[4mm][4\parallel z,m\,\bot\,y][(l,4\mu,+)]
[\bar42m][\bar4\parallel z,2\parallel x][(l,2l-4j,(-)^l)]
[\bar4\parallel z,m\,\bot\,y][(l,2l-4j,+)]
[4/mmm][4\parallel z,m\,\bot\,z,m\,\bot\,x][(2\lambda,4\mu,+)]
3[3\parallel z][(l,3\mu,p)]
[\bar3][\bar3\parallel z][(2\lambda,3\mu,p)]
32[3\parallel z,2\parallel y][(l,3\mu,(-)^l)]
[3\parallel z,2\parallel x][(l,3\mu,(-)^{l-m})]
[3m][3\parallel z,m\,\bot\,y][(l,3\mu,+)]
[3\parallel z,m\,\bot\,x][(l,3\mu,(-)^m)]
[\bar3m][\bar3\parallel z,m\,\bot\,y][(2\lambda,3\mu,+)]
[\bar3\parallel z,m\,\bot\,x][(2\lambda,3\mu,(-)^m)]
6[6\parallel z][(l,6\mu,p)]
[\bar6][\bar6\parallel z][(m+2j,3\mu,p)]
[6/m][6\parallel z,m\,\bot\,z][(2\lambda,6\mu,p)]
622[6\parallel z,2\parallel y][(l,6\mu,(-)^l)]
[6mm][6\parallel z,m\,\bot\,y][(l,6\mu,+)]
[\bar6m2][\bar6\parallel z,m\,\bot\,y][(m+2j,3\mu,+)]
[\bar6\parallel z,m\,\bot\,x][(m+2j,3\mu,(-)^l)]
[6/mmm][6\parallel z,m\,\bot\,z,m\,\bot\,y][(2\lambda,6\mu,+)]

For the five cubic point groups, the functions allowed are the linear combinations of the [Y_{lmp}(\theta,\varphi)] known as the cubic harmonics [K_{l\,j}(\theta,\varphi)] (Altmann & Cracknell, 1965[link]). These are listed in Table 6.1.1.8[link]. The normalization constant [N^2_{l\,j}] is given by [N^2_{l\,j}=\int K^2_{l\,j}\,{\rm d}(\cos\theta)\,{\rm d}\varphi.]The derivation of Tables 6.1.1.7[link] and 6.1.1.8[link] is described by Kurki-Suonio (1977[link]).

Table 6.1.1.8| top | pdf |
Cubic harmonics [K_{lj}(\theta,\,\varphi)] for cubic site symmetries

[K_{lj}(\theta,\varphi)][N_{l^{2}j}]Site symmetry
23m3432[{\bar 4}3m]m3m
[K_0 = Y_{00+} = 1][4\pi]×××××
[K_3 = Y_{32-}][\displaystyle{{240\pi}\over{7}}]×  × 
[K_4 = Y_{40+} + {{1}\over{168}} \, Y_{44+}][\displaystyle{{16\pi}\over{21}}]×××××
[K_{6,1} = Y_{60+} - {{1}\over{360}}\,Y_{64+}][\displaystyle{{32\pi}\over{13}}]×××××
[K_{6,2} = Y_{62+} - {{1}\over{792}}Y_{66+}][\displaystyle{{512\pi}\over{13}} \cdot {{105}\over{11}}]××   
[K_7 = Y_{72-} + {{1}\over{1560}}Y_{76-}][\displaystyle{{256\pi}\over{15}} \cdot {{567}\over{13}}]×  × 
[K_8 = Y_{80+} + {{1}\over{5940}}\,\,(Y_{84+} + {{1}\over{672}}Y_{88+})][\displaystyle{{256\pi}\over{17 \cdot 33}}]×××××
[K_{9,1} = Y_{92-} - {{1}\over{2520}}Y_{96-}][\displaystyle{{512\pi}\over{19}} \cdot 165]×  × 
[K_{9,2} = Y_{94-} - {{1}\over{4080}}Y_{98-}][\displaystyle{{2048\pi}\over{19}} \cdot {{243 \cdot 5005}\over{17}}]× ×  
[K_{10,1} = Y_{10,0+} - {{1}\over{5460}}(Y_{10,4} + {{1}\over{4320}}Y_{10,8+})][\displaystyle{{512\pi}\over{21}} \cdot {{3}\over{65}}]×××××
[K_{10,2} = Y_{10,2+} + {{1}\over{43680}} (Y_{10,6+} + {{1}\over{456}}Y_{10,10+})][\displaystyle{{2048\pi}\over{21}} \cdot {{4455}\over{247}}]××   

The generalized scattering factor for a particular multipole involves evaluating the Fourier transform of the density [\textstyle\int\exp(i{\bf S}\cdot{\bf r})\rho_{lm\pm}(r)Y_{lm\pm}(\theta,\varphi)\,{\rm d}{\bf r}=f_{lm\pm}(S)Y_{lm}(\theta_S,\varphi_S),]where the right-hand side is obtained by substituting (6.1.1.17)[link] and integrating over the angular coordinates for the direct-space variables. The term [f_{lm\pm}(S)=\textstyle\int\limits^\infty_0j_l(Sr)\rho_{lm\pm}(r)r^2\,{\rm d}r\eqno (6.1.1.24)]gives the radial variation of the generalized scattering factor.

The density function [\rho_{lm\pm}(r_a)] may be derived from atomic basis functions, which asymptotically have the form of simple exponential functions [A_nr^n\exp(-\alpha r)]. Expansions in terms of Gaussian functions [B_nr^n\exp(-\beta r^2)] or of Laguerre functions [C_nr^lL_n^{2l+2}\exp(-\gamma r/2)], where L is a Laguerre polynomial of order n and degree [2l+2], are also convenient for some purposes. [A_n], [B_n] and [C_n] are normalizing factors, which, when specified as [\eqalignno{&A_n={\alpha^{l+n+3}\over4\pi(l+n+2)!},\quad B_n={2^{\beta(l+n+3)/2}\over{\Gamma}[(l+n+3)/2]},\cr &\qquad \qquad \quad C_n={(-)^n n!(\gamma/2)^{2l+3}\over4\pi(2l+n+2)!},& (6.1.1.25)}]impose the normalization condition (Stewart, 1980a[link]) [\textstyle\int\limits^\infty_0\rho_{lm}(r_a)r_a^{l+2}\,{\rm d}r_a=1.\eqno (6.1.1.26)]With this normalization, the Fourier–Bessel transforms are, for the simple exponential, [\eqalignno{f_{nl}(\alpha,S)&={S\over(2l+1)!![1+(S/\alpha)^2]^{n+2}}\cr &\quad\times {_2F_1}\bigg[{l-n-1\over2},{l-n\over2};l+{3\over2};-(S/\alpha)^2\bigg]; \cr&&(6.1.1.27)}]for the Gaussian function, [g_{nl}(\beta,S)={S^1\over(2l+1)!!}\exp(-S^2/4\beta)_1F_1\bigg[{l-n\over2};l+{3\over2};{S^2\over4\beta}\bigg];\eqno (6.1.1.28)]and, for the Laguerre function, [h_{nl}(\gamma,S)={(-)^nn!2^nS^l\over[2(l+n)+1]!![1+(2S/\gamma){}^2]{}^{l+2}}P_n^{(l+{3\over2},l+{1\over2})}(t);]where the Jacobi polynomial is given by [\eqalign{P_n^{(a,b)}(x)&=2^{-n}\sum^n_{m=0}\bigg(\matrix{n+a\cr m\cr} \bigg)\bigg(\matrix{n+b\cr n-m\cr} \bigg)(x-1)^{n-m}(x+1)^m\cr &={{\Gamma}(a+n+1)\over n!{\Gamma}(a+b+n+1)}\cr &\quad\times\sum^n_{m=0}\bigg(\matrix{n\cr m\cr}\bigg)\displaystyle{{\Gamma}(a+b+n+m+1)\over2^m{\Gamma}(a+m+1)}(x-1)^m\cr &=\bigg(\matrix{n+a\cr n\cr}\bigg)\,{_2F_1}\bigg(-n,n+a+b+1;a+1;{1-x\over2}\bigg) \cr&\kern145pt\hfill a\ge-1,b\ge a}]and [t={[(2S/\gamma){}^2-1]\over[(2S/\gamma){}^2+1]}.\eqno (6.1.1.29)]Further details are given by Stewart (1980a[link]).

In the case of Slater-type orbitals, a simpler form of the radial term may be obtained via the recurrence relations (Avery & Watson, 1977[link]) [\eqalign{(S^2+\alpha^2) &f_{\mu+1,\nu}+(\mu+\nu)(\mu-\nu-1) f_{\mu-1,\nu}=2\nu \alpha f_{\mu\nu}\cr &S f_{\mu,\nu-1}+(\mu-\nu-1) f_{\mu-1,\nu}=\alpha f_{\mu\nu}.}]Thus, for the lower-order Slater-type functions, we obtain the values listed in Table 6.1.1.9[link].

Table 6.1.1.9| top | pdf |
fnl(α, S) = ∫0rn exp(−αr)jl(Sr) dr

nl1234
0 [\displaystyle{1\over(S^2+\alpha^2)}][\displaystyle{2\alpha\over(S^2+\alpha^2)^2}][\displaystyle{2(3\alpha^2-S^2)\over(S^2+\alpha^2)^3}][\displaystyle{24\alpha(\alpha^2-S^2)\over(S^2+\alpha^2)^4}]
1  [\displaystyle{2S\over(S^2+\alpha^2)^2}][\displaystyle{8S\alpha\over(S^2+\alpha^2)^3}][\displaystyle{8S(5\alpha^2-S^2)\over(S^2+\alpha^2)^4}]
2   [\displaystyle{8S^2\over(S^2+\alpha^2)^3}][\displaystyle{48S^2\alpha\over(S^2+\alpha^2)^4}]
3    [\displaystyle{48S^3\over(S^2+\alpha^2)^4}]

Atomic wavefunctions, in the form of sets of orbital contributions using Slater-type functions, are tabulated by Clementi & Roetti (1974[link] ). Basis sets for Gaussian orbitals are described by Veillard (1968[link]), Roos & Siegbahn (1970[link]), Huzinaga (1971[link]), van Duijneveldt (1971[link]), Dunning & Jeffrey-Hay (1977[link]), and by McLean & Chandler (1979[link], 1980[link]). The application of these basis sets to molecular calculations is reviewed by Ahlrichs & Taylor (1981[link]).

6.1.1.5. The temperature factor

| top | pdf |

The atoms in a solid vibrate about their equilibrium positions, with an amplitude that increases with temperature. As a result of this vibration, the amplitude for coherent scattering is modulated by the Fourier transform of the probability distribution for the vibrating atom, known as the temperature factor. The reduction in the intensity of the coherent scattering is accompanied by thermal diffuse scattering, for which the phase relationship between the incident and diffracted beams is altered by the thermal wave, or phonon.

The first term in an expansion of the probability density [\rho({\bf u})] for displacement u about an equilibrium position at the origin is [\rho_o({\bf u})={{\rm det\,{\bf \boldsigma_u}^{-1/2}}\over8\pi^3}\exp(-\textstyle{1\over2}{\bf u}^T\cdot{\bf \boldsigma_u}^{-1}\cdot{\bf u}), \eqno (6.1.1.30)]where [{\bf\boldsigma_u}] is the dispersion matrix describing the second moments of the displacements about the mean position. The corresponding expression for the temperature factor is [T_o({\bf S})=\exp(-\textstyle{1\over2}{\bf S}^T\cdot{\boldsigma}_{\bf u}\cdot{\bf S}),\eqno (6.1.1.31)]which is the Fourier transform of [\rho_o({\bf u})].

The mean-square displacement of the atom from its mean position in the direction of the vector v is given by [\langle{\bf u}^2\rangle_{\bf v}={\bf v}^T{\bf g}^T{\boldsigma}_{\bf u}{\bf g}{\bf v}/({\bf v}^T{\bf g}{\bf v}),\eqno (6.1.1.32)]where [g_{ij}] is the covariant metric tensor with the scalar products of the unit-cell vectors [{\bf a}_i\cdot{\bf a}_j] as components.

The thermal motion for atoms in crystals is often displayed as surfaces of constant probability density. The surface for the thermal displacement u is defined by [{\bf u}^T{\boldsigma}^{-1}_{\bf u}{\bf u}=C^2.\eqno (6.1.1.33)]The square of the distance from the origin to the equiprobability surface in the direction v is [C^2{\bf v}^T{\bf g}{\bf v}/({\bf v}^T{ \boldsigma}_{\bf u}^{-1}{\bf v}).\eqno (6.1.1.34)]This is equal to (6.1.1.32)[link] for C unity only if v coincides with a principal axis of the vibration ellipsoid.

The probability that a displacement falls within the ellipsoid defined by C is [(2/\pi){}^{1/2}\textstyle\int\limits^C_0q^2\exp(-q^2/2)\,{\rm d}q.\eqno (6.1.1.35)]

6.1.1.6. The generalized temperature factor

| top | pdf |

The Gaussian model of the probability density function (p.d.f.) [\rho_o({\bf u})] for atomic thermal motion defined in (6.1.1.30)[link] is adequate in many cases. Where anharmonicity or curvilinear motion is important, however, more elaborate models are needed.

In the classical (high-temperature) regime, the generalized temperature factor is given by the Fourier transform of the one-particle p.d.f: [\rho({\bf u})=N^{-1}\exp[-V({\bf u})/kT],\eqno (6.1.1.36)]where [N=\textstyle\int\exp[-V({\bf u})/kT]\,{\rm d}{\bf u} \eqno (6.1.1.37)]

In the cases where the potential function V(u) is a close approximation to the Gaussian (harmonic) potential, series expansions based on a perturbation treatment of the anharmonic terms provide a satisfactory representation of the temperature factors. That is, if the deviations from the Gaussian shape are small, approximations obtained by adding higher-order corrections to the Gaussian model are satisfactory.

In an arbitrary coordinate system, the number of significant high-order tensor coefficients for the correction is large. It may be helpful to choose coordinates parallel to the principal axes for the harmonic approximation so that [V({\bf u})/kT=1/2\textstyle\sum\limits^3_{i=1}(B_iu_i){}^2,\eqno (6.1.1.38)]in which case (6.1.1.36)[link] may be written as [\rho_o({\bf u})={1\over N_0}\exp\bigg[-1/2\sum_i(B_iu_i){}^2\bigg],\eqno (6.1.1.39)]where [N_0={B_1B_2B_3\over8\pi^3}.\eqno (6.1.1.40)]The harmonic temperature factor is [T_o({\bf S})=\exp\bigg[-1/2\textstyle\sum\limits_i(b_iS_i){}^2\bigg],\eqno (6.1.1.41)]where [b_i] and [B_i] are related by the reciprocity condition [b_iB_i=1. \eqno (6.1.1.42)]

6.1.1.6.1. Gram–Charlier series

| top | pdf |

In the Gram–Charlier series expansion (Kuznetsov, Stratonovich & Tikhonov, 1960[link]), the general p.d.f. [\rho({\bf u})] is approximated by [\bigg[1-c\,^jD_j+{c\, ^{jk}\over2!}D_jD_k-\ldots+(-)^p{c\,^{jk\ldots\zeta}\over p!}D_\alpha D_\beta\ldots D_\zeta\bigg]\rho_o({\bf u}).\eqno (6.1.1.43)]The operator [D_\alpha D_\beta\ldots D_\zeta] is the pth partial (covariant) derivative [\partial\,^p/\partial u_\alpha\partial u_\beta\ldots\partial u_\zeta], and [c\,^{jk\ldots\zeta}] is a contravariant component of the coefficient tensor. The quasi-moment coefficient tensors are symmetric for all permutations of indices. The first four have three, six, ten, and fifteen unique components for site symmetry 1. The third- and fourth-order terms describe the skewness and the kurtosis of the p.d.f., respectively.

The Gram–Charlier series may be rewritten using general multidimensional Hermite polynomial tensors, defined by [\eqalignno{H_{\alpha\beta\ldots\zeta}({\bf u})&=(-){}^p\exp(\,\textstyle{1\over2}\sigma_{jk}^{-1}u\,^ju^k)\cr &\quad\times D_\alpha D_\beta\ldots D_\zeta\exp(-\textstyle{1\over2}\sigma_{jk}^{-1}u\,^ju^k).& (6.1.1.44)}]For [w_j=\sigma_{jk}^{-1}u^k], and with [\sigma_{jk}^{-1}=\sigma_{kj}^{-1}] and [w_jw_k=w_kw_j], the first few general Hermite polynomials may be expressed as [\eqalign{^0H({\bf u})&=1\cr ^1H_j({\bf u})&=w_j\cr ^2H_{jk}({\bf u})&=w_jw_k-\sigma_{jk}^{-1}\cr ^3H_{jk}({\bf u})&=w_jw_kw_l-w_j\sigma_{kl}^{-1}-w_k\sigma_{l\,j}^{-1}-w_l\sigma_{jk}^{-1}\cr &=w_jw_kw_l-3w_{(\,j}\sigma^{-1}_{kl)}\cr ^4H_{jklm}({\bf u})&=w_jw_kw_lw_m-6w_{(\,j}w_k\sigma^{-1}_{lm)}+3\sigma^{-1}_{j(k}\sigma^{-1}_{lm)}.} (6.1.1.45)]Indices in parentheses indicate terms to be averaged over all unique permutations of those indices.

The Gram–Charlier series is then [\rho_o({\bf u})\bigg[1+{1\over3!}c\,^{jkl}H_{jkl}({\bf u})+{1\over4!}c\,^{jklm}H_{jklm}({\bf u})+\ldots\bigg],\eqno (6.1.1.46)]in which the mean and the dispersion of [\rho_o({\bf u})] have been chosen to make [c\,^j] and [c\,^{jk}] vanish.

The Fourier transform, after truncating at the quartic term, gives an approximation to the generalized temperature factor: [T({\bf S})=T_o({\bf S})\bigg[1+{i^3\over3!}c\,^{jkl}S_jS_kS_l+{i^4\over4!}c\,^{jklm}S_jS_kS_lS_m\bigg],\eqno (6.1.1.47)]i.e. the Fourier transform of the Hermite polynomial expansion about the Gaussian p.d.f. is a power-series expansion about the Gaussian temperature factor with even-order terms real and odd-order terms imaginary.

Because of the symmetry of the relationship between the Fourier transform of a real function and its inverse, the functional form of the p.d.f. and that of the temperature factor can be interchanged. Exchanging the role of the Hermite polynomials and the power series from the Gram–Charlier expansion has been studied by Scheringer (1985[link]), with the objective of obtaining the one-particle potentials more directly.

6.1.1.6.2. Fourier-invariant expansions

| top | pdf |

When truncated, an expression for a multipole expansion, p.d.f. or temperature factor must retain those terms essential to the accuracy required of the expansion. Some authors (e.g. Stewart, 1980b[link]) strongly favour classes of truncated expansion that retain symmetry properties appropriate to particular classes of transformation, such as rotation or Fourier inversion. Others, emphasizing simplicity, retain the minimum set of terms required to preserve the accuracy needed in the expansion. In either case, it is desirable for the expansion to converge rapidly, and to have a form related to physical theory.

In principle, the one-particle potential may be expanded in any complete set of functions. Harmonic oscillator functions simplify simultaneous interpretation of the probability distribution in real and reciprocal space because their form does not change under Fourier inversion (Kurki-Suonio, Merisalo & Peltonen, 1979[link]).

If both anharmonicity and anisotropy are small, the p.d.f. may be expressed as a rapidly converging expansion in spherical polar coordinates [u,\theta,\varphi]: [\rho({\bf u})=\rho_o({\bf u}){N_0\over N}\bigg[1-\sum_{n,l,m,p}a_{nlmp}R_{nl}(Bu)Y_{lmp}(\theta,\varphi)\bigg]\eqno (6.1.1.48)]for non-cubic and [\rho({\bf u})=\rho_o({\bf u}){N_0\over N}\bigg[1-\sum_{n,l,\,j}a_{nlj}R_{nl}(Bu)K_{l\,j}(\theta,\varphi)\bigg]\eqno (6.1.1.49)]for cubic site symmetry. The radial term may be written as [R_{nl}(x)=x^lL^{l+1/2}_{(n-l)/2}(x^2),\eqno (6.1.1.50)]where the associated Laguerre polynomial is [L_k^\alpha(t)=\sum^k_{\nu=0}\bigg(\matrix{k+\alpha\cr k-\alpha\cr}\bigg)\displaystyle{(-t){}^\nu\over\nu!}\eqno (6.1.1.51)]with [\bigg(\matrix{p\cr q\cr}\bigg)={{\Gamma}(p+1)\over[{\Gamma}(q+1){\Gamma}(p-q+1)]}\eqno (6.1.1.52)]and the normalizing factor [N={8\pi^3\over B^3}\bigg[1-\sum_\nu(-)^\nu\displaystyle{(2\nu+1)!\over2^{2\nu}(\nu!)^2}a_{2\nu00+}\bigg].\eqno (6.1.1.53)]

The real spherical harmonics [Y_{lmp}(\theta,\varphi)] and the cubic harmonics [K_{lj}(\theta,\varphi)] are as defined in Subsection 6.1.1.4[link]. As in the case of multipole expansions, the non-zero coefficients in these expressions are limited by the site symmetry. The restrictions on the temperature factor are identical to those for the generalized scattering factor listed in Tables 6.1.1.7[link] and 6.1.1.8[link].

From the Fourier invariance of harmonic oscillator functions, [\eqalignno{T({\bf S})&={N_0\over N}\exp(-b^2S^2/2)\cr &\quad\times\bigg[1-\sum_{n,l,m,p}a_{nlmp}i^nR_{nl}(bS)Y_{lmp}(\theta_S,\varphi_S)\bigg]& (6.1.1.54)}]and [\eqalignno{T({\bf S})&={N_0\over N}\exp(-b^2S^2/2)\cr &\quad\times\bigg[1-\sum_{n,l,\,j}a_{nlj}i^nR_{nl}(bS)K_{l\,j}(\theta_S,\varphi_S)\bigg]& (6.1.1.55)}]for non-cubic and cubic site symmetries, respectively. [\theta_S] and [\varphi_S] are polar coordinates in reciprocal space.

With an appropriate choice of origin, the first-order (110+) and (111[\pm]) terms vanish. The isotropic harmonic (200+) and constant (000+) terms have been removed from the summation. If coordinate axes are chosen coincident with the principal axes for the harmonic approximation, (221[\pm]) and (222−) vanish. (220+) indicates the prolateness and (222+) the non-axiality in the harmonic approximation (Kurki-Suonio, 1977[link]). Terms with [n\ge2] describe the anharmonicity.

The approximations in (6.1.1.48)[link] to (6.1.1.55)[link] fail if the anisotropy, indicated by the size of the (220+) and (222+) terms, or the anharmonicity is large. If the anharmonicity and non-axiality are small, one can invoke Fourier-invariant expansions in cylindrical polar coordinates [u_r,u_z,\varphi]: [\specialfonts\eqalignno{\rho({\bf u})&=\rho_o({\bf u}){N_0\over N}\cr &\quad\times\bigg[1-\sum_{n_z,n,m,p}b_{n_znmp}H_{n_z}(B_zu_z){\bsf P}_{nm}(B_ru_r)\Phi_{mp}(\varphi)\bigg]\cr&& (6.1.1.56)}]and [\specialfonts\eqalignno{T(S)&={N_0\over N}\exp[-\textstyle{1\over2}(b^2_rS^2_r+b^2_zS^2_z)]\cr &\quad\times\bigg[1-\sum_{n_z,n,m,p}b_{n_znmp}H_{n_z}(b_zS_z){\bsf P}_{nm}(b_rS_r)\Phi_{mp}(\varphi_S)\bigg],\cr&&(6.1.1.57)}]where [S_r,S_z,\varphi_S] are cylindrical coordinates for S. [\specialfonts{\bsf P}_{nm}(x)= x^mL^m_{(n-m)/2}(x^2),\quad\Phi_{m\pm}(\varphi)=\matrix{\cos m\varphi\cr \sin m\varphi\cr} \eqno (6.1.1.58)]and [N={8\pi^3\over B^2_rB_z}\bigg[1-\sum_{\mu\nu}(-)^\nu\displaystyle{(2\mu)!\over\mu!}b_{2\mu2\nu0+}\bigg].\eqno (6.1.1.59)]The indices allowed for the site symmetrical basis are as indicated in Table 6.1.1.10[link].

Table 6.1.1.10| top | pdf |
Indices nmp allowed by the site symmetry for the functions [H_n(z)\Phi_{mp}(\varphi)]; μ, ν and j are integers such that m, n ≥ 0; (−)n implies p = − for n odd and p = + for n even

Site symmetryCoordinate axesIndices
1Any[{\rm All}\,\,(n,m,p)]
[\bar1]Any[(n,n+2j,p)]
2[2\parallel x][(n,m,(-)^{n})]
[2\parallel y][(n,m,(-)^{n-m})]
[2\parallel z][(n,2\nu,p)]
m[m\,\bot\, x][(n,m,(-)^{m})]
[m\,\bot\, y][(n,m,+)]
[m\,\bot\, z][(2\mu,m,p)]
[2/m][2\parallel x,m\,\bot\,x][(m+2j ,m,(-)^{m})]
[2\parallel y,m\,\bot\,y][(m+2j,m,+)]
[2\parallel z,m\,\bot\,z][(2\mu,2\nu,p)]
222[2\parallel z,2\parallel y][(n,2\nu,(-)^n)]
[mm2][2\parallel x,m\,\bot\,z][(2\mu,m+)]
[2\parallel y,m\,\bot\,z][(2\mu,m,(-)^m)]
[2\parallel z,m\,\bot\,y][(n,2\nu,+)]
[mmm][m\,\bot\,z,m\,\bot\,y,m\,\bot\,z][(2\mu,2\nu,+)]
4[4\parallel z][(n,4\nu,p)]
[\bar4][\bar4\parallel z][(n,2n+4j,p)]
[4/m][4\parallel z,m\,\bot\,z][(2\mu,4\nu,p)]
422[4\parallel z,2\parallel y][(n,4\nu,(-)^n)]
[4mm][4\parallel z,m\,\bot\,y][(n,4\nu,+)]
[\bar42m][\bar4\parallel z,2\parallel x][(n,2n+4j,(-)^n)]
 [\bar4\parallel z,m\,\bot\,y][(n,2n+4j,+)]
[4/mmm][4\parallel z,m\,\bot\,z,m\,\bot\,x][(2\mu,4\nu,+)]
3[3\parallel z][(n,3\nu,p)]
[\bar3][\bar3\parallel z][(m+2j,3\nu,p)]
32[3\parallel z,2\parallel y][(n,3\nu,(-)^{n-m})]
 [3\parallel z,2\parallel x][(n,3\nu,(-)^{n})]
[3m][3\parallel z,m\,\bot\,y][(n,3\nu,+)]
 [3\parallel z,m\,\bot\,x][(n,3\nu,(-)^m)]
[\bar3m][\bar3\parallel z,m\,\bot\,y][(m+2j,3\nu,+)]
[\bar3\parallel z,m\,\bot\,x][(m+2j,3\nu,(-)^m)]
6[6\parallel z][(n,6\nu,p)]
[\bar6][\bar6\parallel z][(2\mu,3\nu,p)]
[6/m][6\parallel z,m\,\bot\,z][(2\mu,6\nu,p)]
622[6\parallel z,2\parallel y][(n,6\nu,(-)^n)]
[6mm][6\parallel z,m\,\bot\,y][(n,6\nu,+)]
[\bar6m2][\bar6\parallel z,m\,\bot\,y][(2\mu,3\nu,+)]
[\bar6\parallel z,m\,\bot\,x][(2\mu,3\nu,(-)^m)]
[6/mmm][6\parallel z,m\,\bot\,z,m\,\bot\,y][(2\mu,6\nu,+)]

Again, the first-order (100+) and (011[\pm]) terms vanish with the appropriate choice of origin. For coordinate axes coinciding with the principal axes of the harmonic approximation, (111[\pm]) and (022−) vanish. (020+), (200+), and (000+) have been removed from the summation.

Equations (6.1.1.56)[link] and (6.1.1.57)[link] apply accurately to non-cubic symmetries with rotation axes higher than twofold where non-axiality vanishes. Where non-axiality is large, it is preferable to use the Cartesian Fourier invariant expansion [\eqalignno{\rho({\bf u})&={N_0\over N}\exp\bigg[-1/2\sum_iB^2_iu^2_1\bigg]\cr &\quad\times\bigg[1-\sum_{n_x,n_y,n_z}c_{n_xn_y,n_z}H_{n_x}(B_xu_x)H_{n_y}(B_yu_y)H_{n_z}(B_zu_z)\bigg]\cr && (6.1.1.60)}]and [\eqalignno{T({\bf S})&={N_0\over N}\exp\bigg[-1/2\sum_ib^2_iu^2_1\bigg]\cr &\quad\times\bigg[1-\sum_{n_x,n_y,n_z}c_{n_xn_y,n_z}H_{n_x}(b_xu_x)H_{n_y}(b_yu_y)H_{n_z}(b_zu_z)\bigg], \cr&&(6.1.1.61)}]where [N={8\pi^3\over B_xB_yB_z}\bigg[1-\sum_{\lambda\mu\nu}\displaystyle{(2\lambda)!(2\mu)!(2\nu)!\over\lambda!\mu!\nu!}c_{2\lambda2\mu2\nu}\bigg].\eqno (6.1.1.62)]The indices allowed under the site symmetry are listed in Table 6.1.1.11[link].

Table 6.1.1.11| top | pdf |
Indices nx, ny, nz allowed for the basis functions Hnx(Ax)Hny(By)Hnz(Cz); λ, μ and ν are non-negative; conditions for other choices of axes are derived by cyclic permutation

SymmetryCoordinate axesAllowed indices
1Any[{\rm All}\,\,(n_x,n_y,n_z)]
[\bar1]Any[n_x+n_y+n_z=2\lambda]
2[2\parallel z][n_x+n_y=2\lambda]
m[m\,\bot\, z][n_z=2\nu]
[2/m][2\parallel z,m\,\bot\,z][n_x+n_y=2\lambda,n_z=2\nu]
222[2\parallel z,2\parallel y][n_x,n_y,n_z] all even or all odd
mm2[2\parallel z,m\,\bot\,y][n_x=2\lambda,n_y=2\mu]
mmm[m\,\bot\,z,m\,\bot\,y,m\,\bot\,z][n_x=2\lambda,n_y=2\mu,n_z=2\nu]

The first-order terms vanish with suitable choice of origin. (110), (101), and (011) vanish if the coordinates coincide with the principal axes for the harmonic approximation, and (200), (020), (002), and (000) are removed from the summation. Only anharmonic terms remain.

6.1.1.6.3. Cumulant expansion

| top | pdf |

In a cumulant expansion (Johnson & Levy, 1974[link]), the entire series is expressed in exponential form. The cumulant expansion about S = 0 for the generalized temperature factor is [\eqalignno{T({\bf S})&=\exp\bigg[1+i\kappa^jS_j+{i^2\over2!}\kappa^{jk}S_jS_k+{i^3\over3!}\kappa^{jkl}S_jS_kS_l\cr &\quad+{i^4\over4!}\kappa^{jklm}S_jS_kS_lS_m+\ldots\bigg],& (6.1.1.63)}]where the coefficient tensor [\kappa^{\alpha\beta\ldots\zeta}], a symmetric tensor of order p, is the pth-order cumulant. The inverse Fourier transform is the Edgeworth expansion around the Gaussian p.d.f. Cumulants can be expressed in terms of moments and vice versa. The pth moment [\mu^{\alpha\beta\ldots\zeta}] (if it exists) of a general p.d.f., ρ(x), is a symmetric tensor defined as [\mu^{\alpha\beta\ldots\zeta}({\bf x})=\textstyle\int\limits^\infty_{-\infty}x^\alpha x^\beta\ldots x^\zeta\rho({\bf x})\,{\rm d}{\bf x}.\eqno (6.1.1.64)]The relations between the lower-order moments and cumulants are [\eqalign{\mu^j&=\kappa^j\cr \mu^{jk}&=\kappa^{jk}+\kappa^j\kappa^k\cr \mu^{jkl}&=\kappa^{jkl}+\kappa^j\kappa^{kl}+\kappa^k\kappa^{lj}+\kappa^l\kappa^{jk}+\kappa^j\kappa^k\kappa^l\cr &=\kappa^{jkl}+3\kappa^{(j}\kappa^{kl)}+\kappa^j\kappa^k\kappa^l\cr \mu^{jklm}&=\kappa^{jklm}+3\kappa^{j(k}\kappa^{lm)}+4\kappa^{(j}\kappa^{klm)}\cr &\quad+6\kappa^{(j}\kappa^k\kappa^{lm)}+\kappa^j\kappa^k\kappa^l\kappa^m} \eqno(6.1.1.65)]and, conversely, [\eqalign{\kappa^j&=\mu^j\cr \kappa^{jk}&=\mu^{jk}-\mu^j\mu^k\cr \kappa^{jkl}&=\mu^{jkl}-3\mu^{(j}\mu^{kl)}+2\mu^j\mu^k\mu^l\cr \kappa^{jklm}&=\mu^{jklm}-3\mu^{j(k}\mu^{lm)}-4\mu^{(j}\mu^{klm)}\cr &\quad+12\mu^{(j}\mu^k\mu ^{lm)}-6\mu^j\mu^k\mu^l\mu^m.} \eqno(6.1.1.66)]In the Gram–Charlier and Fourier-invariant expansions, the Fourier-transform relationship between the p.d.f. and the temperature factor to given order can be made exact. Each cumulant [\mu^{jkl}] contributes to all higher-order quasi-moment terms and vice versa. Hence, a given cumulant expansion is to an extent arbitrarily truncated (Kuhs, 1983[link]). Care is required when interpreting the coefficients (Zucker & Schulz, 1982[link]).

On the other hand, the cumulant expansion has the advantage of yielding tractable expressions for the one-particle potential in the quantum regime (Mair, 1980a[link]). In that regime, equation (6.1.1.36)[link] for the one-particle potential is invalid, and the expressions relating V(u) to ρ(u) in the Gram–Charlier and Fourier-invariant expansions are cumbersome (Mair & Wilkins, 1976[link]).

Coefficients obtained by applying least-squares methods to structure-factor equations related to the truncated cumulant expansions do not necessarily yield non-negative p.d.f.'s nor are the linear-term coefficients necessarily faithful representations of the mean. Caution must be exercised in interpreting the results.

All the methods are satisfactory in the case of rapidly converging potential series. The methods are equivalent up to λ2 in the van Hove order parameter (Mair, 1980b[link]). Difficulties are encountered with convergence of the series in the case of strong anharmonicity, in which case numerical or alternative analytical models may be necessary. If the anharmonicity is such that the difference between the expansions is significant, it may be preferable to evaluate the Fourier transforms directly, as recommended by Mackenzie & Mair (1985[link]).

6.1.1.6.4. Curvilinear density functions

| top | pdf |

For groups of atoms moving on the surface of a circle or sphere, perturbation expansions in Cartesian coordinates may converge slowly. Methods of representing curvilinear density functions that are multimodal or have large amplitude are described by Press & Hüller (1973[link]).

For atoms constrained to rotate about a single axis, [a({\bf u})={1\over2\pi\tau}\delta(r-\tau)\delta(z) f(\varphi),\eqno (6.1.1.67)]where [r,z,\varphi] are cylindrical coordinates for the displacement u. Setting [f(\varphi)=\textstyle\sum\limits_{m=0}c_m\exp(im\varphi)+c_m^*(-im\varphi)\eqno (6.1.1.68)]and [\exp(i{\bf S}\cdot{\bf r})=\exp(iS_zz)\exp[iS_rr\cos(\varphi_S-\varphi)]\eqno (6.1.1.69)]and using [\exp[iS_rr\cos(\varphi_S-\varphi)]=\textstyle\sum\limits_{l=0}\,(2-\delta_{l0})i^lJ_l(S_rr)\cos[l(\varphi_S-\varphi)]\eqno (6.1.1.70)]yields [T({\bf S})=\textstyle\sum\limits_{l=0}i^lJ_l(S_r\tau)[c_l\exp(il\varphi_S)+c_l^*\exp(-il\varphi_S)]. \eqno (6.1.1.71)]

For atoms moving on the surface and a sphere, the density function may be written [\rho({\bf u})=\textstyle\sum\limits^\infty_{l=0}\sum\limits^{2l+1}_{j=1}a_{l\,j}(u)K_{l j}(\theta,\varphi),\eqno (6.1.1.72)]where [u,\theta,\varphi] are spherical polar displacement coordinates and the [K_{l j}] are cubic harmonics. Thus, for a rigid molecule, the density function for nuclei confined to move on a spherical shell of radius τ is [a_{l j}({\bf u})=c_{l j}\delta(u-\tau)/u^2.\eqno (6.1.1.73)]Expansion of [\exp(i{\bf S}\cdot{\bf r})] in cubic harmonics [\exp(i{\bf S}\cdot{\bf r})=4\pi\textstyle\sum\limits_{l,j}i^lj_l(Sr)K_{l j}(\theta_S,\varphi_S)K_{l j}(\theta,\varphi)\eqno (6.1.1.74)]leads to [T({\bf S})=4\pi\textstyle\sum\limits_{l,j}i^lc_{l j} j_l(S\tau)K_{l j}(\theta_S,\varphi_S).\eqno (6.1.1.75)]

Equations (6.1.1.71)[link] and (6.1.1.75)[link] are useful when the p.d.f.'s (6.1.1.67)[link] and (6.1.1.72)[link] can be approximated by a limited number of significant terms. They are readily adapted to the case of oscillations about axes of symmetry (Press & Hüller, 1973[link]).

6.1.1.6.5. Model-based curvilinear density functions

| top | pdf |

For rotational oscillations, which are the curvilinear coordinate analogues of the p.d.f.'s approximating harmonic rectilinear motion, techniques for evaluating the temperature factor are described by Johnson & Levy (1974[link]).

The p.d.f. for an atom in a group of atoms undergoing large-amplitude rotational oscillation (libration) can sometimes be approximated satisfactory by a standard p.d.f. on the circle or on the sphere. The closest analogues of the rectilinear Gaussian p.d.f. are the Brownian-diffusion p.d.f.'s defined on the closed spaces of the circle and the sphere. For statistical analysis, two other p.d.f.'s, the von Mises `circular normal' and the Fisher `spherical normal', are often substituted for the Brownian-diffusion density functions because of their simpler forms.

The p.d.f. for Brownian diffusion on a circle, also called the `wrapped normal' p.d.f. (Feller, 1966[link]; Lévy, 1938[link]), is given by [\rho(\theta)={1\over(2\pi){}^{1/2}\sigma}\sum^\infty_{n=-\infty}\exp[-(\theta-2n\pi)^2/2\sigma^2],\eqno (6.1.1.76)]which may be transformed (Bellman, 1961[link]) into [\rho(\theta)={1\over2\pi}\sum^\infty_{m=0}(2-\delta_{m0})\exp(-m^2\sigma^2/2)\cos(m\theta).\eqno (6.1.1.77)]The von Mises p.d.f. (Gumbel, Greenwood & Durand, 1953[link]; Mardin, 1972[link]; von Mises, 1918[link]) is [\rho(\theta)={\exp(k_c\cos\theta)\over2\pi I_o(k_c)}={1\over2\pi}\sum^\infty_{m=0}(2-\delta_{m0})\displaystyle{I_m(k_c)\over I_0(k_c)}\cos(m\theta).\eqno (6.1.1.78)][I_m(x)] is the mth-order Bessel function of the first kind with imaginary argument. The parameter [\sigma^2] is the variance; [k_c] is a measure of concentration such that when [k_c] is zero the probability density is uniformly distributed over the circle, and when [k_c] is large the density is concentrated around the modal vector at θ = 0. An approximate relation between [\sigma^2] and [k_c] can be obtained by equating expressions for the centres of mass of the circular Brownian diffusion and von Mises p.d.f.'s (Stephens, 1963[link]), [\exp(-\sigma^2/2)={I_1(k_c)\over I_0(k_c)}.\eqno (6.1.1.79)]For small [\sigma^2] (large [k_c]), we find that [\sigma^2\simeq1/k_c.\eqno (6.1.1.80)]

Equations (6.1.1.76)[link] to (6.1.1.78)[link] can be generalized to describe multimodal density functions with modes (maxima) arranged symmetrically about the circle. The p.d.f. for the s-modal Brownian-diffusion p.d.f. with one of the s modes at θ = θ0 is [\eqalignno{\rho(\theta)&={1\over\sqrt{2\pi} s\sigma}\sum^\infty_{m=-\infty}\exp[-(\theta-\theta_0-2\pi m/s)^2/2\sigma^2]\cr &={1\over2\pi}\sum^\infty_{m=0}(2-\delta_{m0})\exp[-(ms\sigma)^2/2]\cos[ms(\theta-\theta_0)]. \cr&&(6.1.1.81)}]The two-dimensional Fourier transform (Chidambaram & Brown, 1973[link]) of the last equation in terms of the polar coordinates [(S,\theta)] of the reciprocal-space vector S relative to an origin at the centre of the circle is [T({\bf S})=\textstyle\sum\limits^\infty_{j=0}(2-\delta_{j 0})i^{js}J_{js}(Sr)\exp[-(js\sigma)^2/2]\cos js\theta_0,\eqno (6.1.1.82)]where [J_n(x)] is the Bessel function of the first kind of order n with real argument. Corresponding equations for the von Mises s-modal density function (Atoji, Watanabe & Lipscomb, 1953[link]; King & Lipscomb, 1950[link]; Mardin, 1972[link]) are [\eqalignno{\rho(\theta)&={1\over2\pi I_o(K_c)}\exp[K_c\cos s(\theta-\theta_0)]\cr &={1\over2\pi}\sum^\infty_{m=0}(2-\delta_{m0})\displaystyle{I_m(K_c)\over I_o(K_c)}\cos ms(\theta-\theta_0)\cr&&(6.1.1.83)}]and [T({\bf S})=\sum^\infty_{j=0}(2-\delta_{j 0})i ^{js}J_{js}(Sr)\displaystyle{I_j(K_c)\over I_0(K_c)}\cos js\theta_0,\eqno (6.1.1.84)]where [K_c], a measure of concentration over 1/sth of the circle about [\theta_0], is substituted for the [k_c] parameter of the unimodal von Mises density function and [K_c] is related to [k_c] approximately by [I_1(k_c)/I_0(k_c)=I_s(K_c)/I_0(K_c).\eqno (6.1.1.85)]

For symmetrical Brownian diffusion on a sphere (Furry, 1957[link]; Lévy, 1938[link]; Mardin, 1972[link]; Perrin, 1928[link]), the p.d.f. in terms of the angular displacement θ from the pole is [\rho(\theta)=\sum^\infty_{n=0}\displaystyle{2n+1\over4\pi}\exp[-n(n+1)V]P_n(\cos\theta)\sin\theta,\eqno (6.1.1.86)]where [P_n(x)] is the nth-order Legendre polynomial. The Fisher (1953[link]) `spherical normal' p.d.f. (Mardin, 1972[link]) is a similar density function given by [\eqalignno{\rho(\theta)&={k_s\over4\pi\sinh k_s}\exp(k_s\cos\theta)\sin\theta\cr &=\sum^\infty_{n=0}\displaystyle{(2n+1)\over 4\pi}{I_{n+1/2}(k_s)\over I_{1/2}(k_s)}P_n(\cos\theta)\sin\theta.& (6.1.1.87)}]The parameters V (variance) and [k_s] are measures of concentration analogous to those for the circle and may be related (Roberts & Ursell, 1960[link]) by an equation analogous to (6.1.1.79)[link], [\exp(-V/2)=\coth k_s-{1\over k_s}={I_{3/2}(k_s)\over I_{1/2}(k_s)},\eqno (6.1.1.88)]the small V approximation being [V\simeq2/k_s.\eqno (6.1.1.89)]Equations (6.1.1.86)[link] and (6.1.1.87)[link] are generalized to place the mode of the density at [(r,\theta',\varphi')] by replacing [\cos\theta] by [\cos\theta\cos\theta'+\sin\theta\sin\theta'\cos(\varphi-\varphi')] and by replacing [P_n(\cos\theta)] by [\eqalign{&P(\cos\theta)P_n(\cos\theta')+2\sum^n_{m=1}\displaystyle{(n-m)!\over(n-m)!}\cr &\quad\times P^m_n(\cos\theta)P^m_n(\cos\theta')\cos m(\varphi-\varphi').}]

The three-dimensional Fourier transform of the generalized form of (6.1.1.86)[link] in terms of S in spherical coordinates [(S,\theta_S,\varphi_S)] is [\eqalignno{T({\bf S})&=\sum^\infty_{q=0}i^q {(2q+1)\over r^2}\exp[-q(q+1)V]\cr &\quad\times\sum^\infty_{s=0}{4\over2p+1}Y_{qs+}(\theta',\varphi')Y_{qs+}(\theta_S,\varphi_S)j_q(Sr),& (6.1.1.90)}]where r is the radius of the sphere, and [j_n] is the nth-order spherical Bessel function of the first kind. The real spherical harmonics [Y_{lmp}] are normalized as in (6.1.1.22)[link].

The Fourier transform of the generalized form of (6.1.1.87)[link] is identical to (6.1.1.90)[link] except that the term [\exp[-q(q+1)V]] in (6.1.1.90)[link] is replaced by [I_{q+1/2}(k_s)/I_{1/2}(k_s).]

The foregoing equations describe isotropic distributions on a sphere. The p.d.f. for general anisotropic Brownian diffusion (or rotation) on a sphere is not available in a convenient form. However, some of the results of Perrin (1934[link]) and Favro (1960[link]) on rotational Brownian motion are applicable to thermal motion. For example, the centre of mass of a p.d.f. resulting from anisotropic diffusion on a sphere is given by equation (6.8) of Favro (1960[link]). The following equation valid in Cartesian coordinates is obtained if the diffusion tensor D of Favro's equation is replaced by the substitution L = 2D [\eqalignno{\langle{\bf x}\rangle&=\exp[-\textstyle{1\over2}({\rm tr}({\bf L}){\bf I}-{\bf L})]{\bf r}\cr &={\bf r}-\textstyle{1\over2}[{\rm tr}({\bf L}){\bf I}-{\bf L}]{\bf r}+{1\over8}[{\rm tr}({\bf L}){\bf I}-{\bf L}]^2{\bf r}-\ldots, & (6.1.1.91)}]where r is the vector from the centre of the sphere to the mode of the p.d.f. on the sphere and [\langle{\bf x}\rangle] is the vector to the centre of mass. This equation, which is valid for all amplitudes of libration L, can be used to describe the apparent shrinkage effect in molecules undergoing librational motion.

6.1.1.6.6. The quasi-Gaussian approximation for curvilinear motion

| top | pdf |

The p.d.f.'s defined by (6.1.1.77)[link], (6.1.1.78)[link], (6.1.1.86)[link] and (6.1.1.87)[link], and their Fourier transforms given in §6.1.1.6.5[link] may be considered `inverted series' since zero-order terms describe uniform distributions. The inverted series converge slowly if the density is concentrated near the mode. If [\sigma^2] in (6.1.1.76)[link] is sufficiently small, the cyclic overlap on the circle becomes unimportant and the summation for [n\ne0] can be neglected. In this limiting case, the p.d.f. assumes the same form as a one-dimensional rectilinear Gaussian density function except that the variable is the angle [\varphi]. A similar relation must exist between the p.d.f. on the sphere and the two-dimensional Gaussian function. This `quasi-Gaussian' approximation is the basis for a number of structure-factor equations for atoms with relatively small amplitude components of curvilinear motion (Dawson, 1970[link]; Kay & Behrendt, 1963[link]; Kendall & Stuart, 1963[link]; Maslen, 1968[link]; Pawley & Willis, 1970[link]).

6.1.1.7. Structure factor

| top | pdf |

The amplitude of coherent scattering from the contents of one unit cell in a crystalline material is the structure factor [F({\bf S})=\textstyle\int\rho({\bf r})\exp(i{\bf S}\cdot{\bf r})\,{\rm d}r,\eqno (6.1.1.92)]where the integration extends over the unit cell. If there are N atoms in the cell, this may be expressed as [F({\bf S})=\textstyle\sum\limits^N_{j=1}\,f_jT_j\exp(i{\bf S}\cdot{\bf r}_j),\eqno (6.1.1.93)]where [{\bf r}_j] is the mean position and [T_j] is the temperature factor of the jth atom. In an ideal model of the scattering process in which (6.1.1.93)[link] is exact, [f_j] is the atomic scattering factor derived from (6.1.1.7)[link]. In practice, there are wavelength-dependent changes to the amplitude and phase of the atom's scattering due to dispersion or resonance. To correct for this, each scattering factor may be written [f=f^0+f'+if'',\eqno (6.1.1.94)]where [f^0] is the kinematic scattering factor and f′ and f′′ are real and imaginary corrections for dispersion.

6.1.1.8. Reflecting power of a crystal

| top | pdf |

The reflecting power of a small crystal of volume ΔV, rotated at angular velocity ω through a Bragg reflection, defined as the ratio of ω times the reflected energy to the incident-beam intensity, is [r^2_e\bigg({1+\cos^22\theta\over2\sin2\theta}\bigg)\lambda^3{F({\bf S})^2\over V^2_C}\Delta V,\eqno (6.1.1.95)]where [V_c] is the unit-cell volume. This expression, which assumes negligible absorption, shows that the integrated intensity is proportional to the crystal volume. The maximum intensity is proportional to (ΔV)2, but the angular width of the reflecting region varies inversely as ΔV.

In the kinematic theory of diffraction, it is assumed that the crystal is comprised of small domains of perfect crystals for which the intensities are additive. In that case, (6.1.1.95)[link] applies also to finite crystals.

6.1.2. Magnetic scattering of neutrons

| top | pdf |
P. J. Browna

6.1.2.1. Glossary of symbols

| top | pdf |

[m_n] Neutron mass
[m_e] Electron mass
γ Neutron magnetic moment in nuclear magnetons (−1.91)
[\mu_B] Bohr magneton
[\mu_N] Nuclear magneton
[r_e] Classical electron radius [\mu_Be^2/4\pi m_e]
[\specialfonts{\bsf P}_i] Electron momentum operator
[\specialfonts{\bsf S}_e] Electron spin operator
[\specialfonts{\bsf S}_n] Neutron spin operator
[\specialfonts{\bsf M}(r)] Magnetization density operator
k Scattering vector (H/2π)
[{\hat{\bf k}}] A unit vector parallel to k
[{\bf r}_n] A lattice vector
g A reciprocal-lattice vector (h/2π)
[\boldtau] Propagation vector for a magnetic structure
[{\bf \bar s}_n] A unit vector parallel to the neutron spin direction
q , q Initial and final states of the scatterer
σ, σ Initial and final states of the neutron
Eq Energy of the state q

6.1.2.2. General formulae for the magnetic cross section

| top | pdf |

The cross section for elastic magnetic scattering of neutrons is given in the Born approximation by [\eqalignno{{{\rm d}\sigma\over{\rm d}\Omega}&=\bigg({m_n\over2\pi\hbar}\bigg)^2\bigg|\bigg\langle q'\sigma'\bigg|\int V({\bf R})\exp(i{\bf k}\cdot{\bf R})\,{\rm d}{\bf R}^3\bigg| q\sigma\bigg\rangle\bigg|^2\cr &\quad\times\delta(E_q-E_{q '}).&(6.1.2.1)}]V(R) is the potential of a neutron at R in the field of the scatterer. If the field is due to N electrons whose positions are given by [{\bf r}_i,i=1,\,N], then [\specialfonts\eqalignno{V({\bf R})&=4\gamma\mu_B\mu_N\bigg\{\sum^N_{i=1}\displaystyle{({\bf R}-{\bf R}_i){\bsf P}_i\over|{\bf R}-{\bf r}_i|^3}{{\bsf S}_i\over|{\bf R}-{\bf r}_i|^3}\cr &\quad+{3{\bsf S}_i\cdot({\bf R}-{\bf r}_i)\over|{\bf R}-{\bf r}_i|^5}+8\pi{\bsf S}_i\delta({\bf R}-{\bf r}_i)\bigg\}\cdot{\bsf S}_n.& (6.1.2.2)}]V(R) is more simply written in terms of a magnetization density operator [\specialfonts{\bsf M}({\bf r})], which gives the magnetic moment per unit volume at r due to both the electron's spin and orbital motions. The potential of (6.1.2.2)[link] can then be written (Trammell, 1953[link]) [\specialfonts\eqalignno{V({\bf R})&={2\gamma\mu_N{\bf S}_n\over\pi^2}\cdot\bigg\{\int\limits^\infty_0\!\!\int\limits^\infty_0[{\hat{\bf k}}\times{\bsf M}({\bf r})\times {\hat{\bf k}}]\cr &\quad\times\exp[i{\bf k}\cdot({\bf R}-{\bf r})]\,{\rm d}{\bf k}^3\,{\rm d}{\bf r}^3\bigg\},& (6.1.2.3)}]giving for the cross section, from (6.1.2.1)[link], [\specialfonts\eqalignno{{{\rm d}\sigma\over{\rm d}\Omega}&=(\gamma r_e)^2\bigg|\bigg\langle q\sigma'\bigg|{\bf S}_n\cdot\int [{\hat{\bf k}}\times{\bsf M}({\bf r})\times {\hat{\bf k}}]\cr &\quad\times\exp(i{\bf k}\cdot{\bf r})\,{\rm d}{\bf r}^3\bigg| q\sigma\bigg\rangle\bigg|^2. & (6.1.2.4)}]The unit-cell magnetic structure factor M(k) is defined as [\specialfonts M({\bf k})=\bigg\langle q\textstyle\int\limits_{\rm unit\; cell}{\bsf M}(r)\exp(i{\bf k}\cdot{\bf r})\,{\rm d}{\bf r}^3\bigg| q\bigg\rangle.\eqno (6.1.2.5)]For periodic magnetic structures, [\specialfonts{\bsf M}({\bf r})=\textstyle\sum\limits_{\rm lattice\; vectors}{\bf P}({\bf r}_n\cdot{\boldtau})\cdot {\bsf M}_u({\bf r}-{\bf r}_n),]where P is a periodic function with a period of unity, which describes how the magnitude and direction of the magnetization density, defined within one chemical unit cell by [\specialfonts{\bsf M}_u({\bf r})], propagates through the lattice. The magnetic structure factor m(k) is then given by [{\bf m}({\bf k})=(g-j{\boldtau}){\bf A}(j)\cdot{\bf M}({\bf k}),\eqno (6.1.2.6)] where [{\bf A}(j)] is the jth term in the Fourier expansion of P defined by [{\bf P}({\bf r}\cdot{\boldtau})=\textstyle\sum\limits^\infty_{j=-\infty}{\bf A}(j)\exp\{i(j{\boldtau}\cdot{\bf r})\}\eqno (6.1.2.7)]and the scattering cross section given in terms of the magnetic interaction vector [Q({\bf k})], [Q({\bf k})=\hat {\bf k}\times{\bf m}({\bf k})\times\hat {\bf k},\eqno (6.1.2.8)]is [\specialfonts{\rm d\sigma\over{\rm d}\Omega}=(\gamma r_e){}^2|\langle\sigma'|{\bsf S}_n\cdot{\bf Q}({\bf k})|\sigma\rangle|{}^2.\eqno (6.1.2.9)]Equation (6.1.2.9)[link] leads to two independent scattering cross sections: one for scattering of the neutron with no change in spin state (σ′ = σ) proportional to [\specialfonts|{\bsf S}_n\cdot{\bf Q}({\bf k})|^2], and the other to scattering with a change of neutron spin (`spin flip scattering') proportional to [\specialfonts|{\bsf S}_n\times{\bf Q}({\bf k})|^2]. The sum over all final spin states gives [{\rm d\sigma\over{\rm d}\Omega}=(\gamma r_e){}^2|{\bf Q}({\bf k})|{}^2.\eqno (6.1.2.10)]

6.1.2.3. Calculation of magnetic structure factors and cross sections

| top | pdf |

If the magnetization within the unit cell can be assigned to independent atoms so that each has a total moment [\mu_i] aligned in the direction of the axial unit vector [\hat{\bf m}_i], then the unit-cell structure factor can be written [\specialfonts{\bf M}({\bf k})=\textstyle\sum\limits_j\sum\limits_i{\bsf T}_j{\bsf R} _j\cdot\hat{\bf m} _i\mu_i f_i(k)\exp[i{\bf k}\cdot({\bsf R} _j{\bf r}_i+{\bf t} _j)].\eqno (6.1.2.11)][\specialfonts{\bsf R} _j] and [{\bf t} _j] are the rotations and translations associated with the jth element of the space group and [\specialfonts{\bsf T}_j] is an operator that reverses all the components of moment whenever the element j includes time reversal in the magnetic space group. [f_i(k)] is the magnetic form factor of the ith atom (see Subsection 6.1.2.3[link]).

The vector part of the magnetic structure factor can be factored out so that [{\bf m}({\bf k})\quad{\rm becomes}\quad\hat{\bf m}[m({\bf k})],]where [m({\bf k})] is now a scalar. For collinear structures, all the atomic moments are either parallel or antiparallel to [\hat{\bf m}], which in this case is independent of k. The intensity of a magnetic Bragg reflection is proportional to [|{\bf Q}({\bf k})|^2] and [\eqalignno{|{\bf Q}({\bf k})|{}^2&=1-(\hat{\bf m}\cdot\hat{\bf k}){}^2|m({\bf k})|{}^2\cr &=\sin^2\alpha|m({\bf k})|{}^2\cr &=q^2|m({\bf k})|{}^2,& (6.1.2.12)}]where α is the angle between the moment direction [\hat{\bf m}] and the scattering vector k. The factor [1-(\hat{\bf m}\cdot\hat{\bf k}){}^2], often referred to as [q^2], is the means by which the moment direction in a magnetic structure can be determined from intensity measurements. If the intensities are obtained from measurements on polycrystalline samples then the average of [q^2] over all the different k contributing to the powder line must be taken. [\specialfonts\overline {q^2}=1-{1\over n_g}\sum_j({\bsf R}_j\hat{\bf k}\cdot\hat{\bf m})^2,\eqno (6.1.2.13)]the sum being over all [n_g] rotations [\specialfonts{\bsf R}_j] of the point group. [\overline{q^2}] is given for different crystal symmetries by Shirane (1959[link]). For uniaxial groups, the result is [\overline{q^2}=1-\textstyle{1\over2}(\sin{^2}\Psi\sin{^2}\varphi-\cos{^2}\Psi\cos{^2}\varphi),\eqno (6.1.2.14)]where ψ and [\varphi] are the angles between the unique axis and the scattering vector and moment direction, respectively. For cubic groups [{\overline{q^2}}=2/3] independent of the moment direction and of the direction of k.

6.1.2.4. The magnetic form factor

| top | pdf |

The magnetic form factor introduced in (6.1.2.11)[link] is determined by the distribution of magnetization within a single atom. It can be defined by [\specialfonts f({\bf k})={\big\langle q\big|\int{\bsf M}({\bf r})\exp(i{\bf k}\cdot{\bf r})\,{\rm d}r^3\big|q\big\rangle\over\big\langle q\big|\int{\bsf M}({\bf r})\,{\rm d}r^3\big|q\big\rangle},\eqno (6.1.2.15)]where q now represents a state of an individual atom.

In the majority of cases, the magnetization of an atom or ion is due to a single open atomic shell: the d shell for transition metals, the 4f shell for rare earths, and the 5f shell for actinides. Magnetic form factors are calculated from the radial wavefunctions of the electrons in the open shells. The integrals from which the form factors are obtained are [\langle \, j_l(k)\rangle=\textstyle\int\limits^\infty_0U^2(r)\,j_l(kr)4\pi r^2\,{\rm d}r,\eqno (6.1.2.16)]where U(r) is the radial wavefunction for the atom and [j_l(kr)] is the lth-order spherical Bessel function. Within the dipole approximation (spherical symmetry), the magnetic form factor is given by [f(k)=\langle \, j_0(k)\rangle+(1 - 2/g)\langle\, j_2(k)\rangle,\eqno (6.1.2.17)]where g is the Landé splitting factor (Lovesey, 1984[link]). Higher approximations are needed if the orbital contribution is large and to describe departures from spherical symmetry. They involve terms in [\langle \, j_4\rangle\langle\, j_6\rangle] etc. Fig. 6.1.2.1[link] shows the integrals [\langle\, j_0\rangle,\langle\, j_2\rangle], and [\langle\, j_4\rangle] for Fe2+ and in Fig. 6.1.2.2[link] the spherical spin-only form factors [\langle\, j_0\rangle] for 3d, 4d, 4f, and 5f electrons are compared. Tables of magnetic form factors are given in Section 4.4.5[link] .

[Figure 6.1.2.1]

Figure 6.1.2.1| top | pdf |

The integrals 〈j0〉, 〈j2〉, and 〈j4〉 for the Fe2+ ion plotted against [(\sin\theta)/\lambda]. The integrals have been calculated from wavefunctions given by Clementi & Roetti (1974[link]).

[Figure 6.1.2.2]

Figure 6.1.2.2| top | pdf |

Comparison of 3d, 4d, 4f, and 5f form factors. The 3d form factor is for Co, and the 4d for Rh, both calculated from wavefunctions given by Clementi & Roetti (1974[link]). The 4f form factor is for Gd3+ calculated by Freeman & Desclaux (1972[link]) and the 5f is that for U3+ given by Desclaux & Freeman (1978[link]).

6.1.2.5. The scattering cross section for polarized neutrons

| top | pdf |

The cross section for scattering of neutrons with an arbitrary spin direction is obtained from (6.1.2.9)[link] but adding also nuclear scattering given by the nuclear structure factor [F({\bf k})], which is assumed to be spin independent. In this case, [\specialfonts{\rm d\sigma\over{\rm d}\Omega}=\langle\sigma|(\gamma r_e){\bsf S}_n\cdot{\bf Q}({\bf k})+F({\bf k})|\sigma\rangle^2,\eqno (6.1.2.18)]the scattering without change of spin direction is [\eqalignno{I^{++}&\propto|F'({\boldkappa})|^2+|\hat {\bf s}_n\cdot{\bf Q}({\bf k})|{}^2\cr &\quad+\hat{\bf s}_n\cdot[{\bf Q}^*({\bf k})F'({\bf k})+{\bf Q}({\bf k})F'^*({\bf k})],& (6.1.2.19)}]and, for the spin flip scattering, [I^{+-}\propto[\hat{\bf s}_n\times{\bf Q}({\bf k})]\cdot[\hat{\bf s}_n\cdot{\bf Q}^*({\bf k})]+\hat {\bf s}_n\cdot[{\bf Q}({\bf k})\times{\bf Q}^*({\bf k})]\eqno (6.1.2.20)]with [F'({\bf k})=F({\bf k})/(\gamma r_e)].

The cross section I++ implies interference between the nuclear and the magnetic scattering when both occur for the same k. This interference is exploited for the production of polarized neutrons, and for the determination of magnetic structure factors using polarized neutrons.

In the classical method for determining magnetic structure factors with polarized neutrons (Nathans, Shull, Shirane & Andresen, 1959[link]), the `flipping ratio' R, which is the ratio between the cross sections for oppositely polarized neutrons, is measured: [R={|F'({\bf k})|{}^2+2P\hat{\bf s}_n\cdot[{\bf Q}({\bf k})F'^*({\bf k})+{\bf Q}^*({\bf k})F'({\bf k})]+|{\bf Q}({\bf k})|{}^2\over|F'({\bf k})|{}^2-2Pe\hat{\bf s}_n\cdot[{\bf Q}({\bf k})F'^*({\bf k})+{\bf Q}^*({\bf k})F'({\bf k})]+|{\bf Q}({\bf k})|{}^2}.\eqno (6.1.2.21)]In this equation, [\hat{\bf s}_n] is a unit vector parallel to the polarization direction. P is the neutron polarization defined as [P=(\langle S^+\rangle-\langle S^-\rangle)/(\langle S^+\rangle+\langle S^-\rangle),]where [\langle S^+\rangle] and [\langle S^-\rangle] are the expectation values of the neutron spin parallel and antiparallel to [\hat{\bf s}_n] averaged over all the neutrons in the beam. e is the `flipping efficiency' defined as e = (2f − 1), where f is the fraction of the neutron spins that are reversed by the flipping process. Equation (6.1.2.21)[link] is considerably simplified when both [F({\bf k})] and [{\bf Q}({\bf k})] are real and the polarization direction is parallel to the magnetization direction, as in a sample magnetized by an external field. The `flipping ratio' then becomes [R={1+2Py\sin^2\rho+y^2\sin^2\rho\over1-2Pey\sin^2\rho+y^2\sin^2\rho},\eqno (6.1.2.22)]with [y=(\gamma r_e)M({\bf k})/F({\bf k})], ρ being the angle between the magnetization direction and the scattering vector. The solution to this equation is [\eqalignno{y&=\{P\sin\rho(Re+1)\pm[P^2\sin^2\rho(Re+1){}^2-(R-1){}^2]{}^{1/2}\}\cr &\quad\times[(R-1)\sin\rho]{}^{-1};& (6.1.2.23)}]the relative signs of [F({\bf k})] and [M({\bf k})] are determined by whether R is greater or less than unity. The uncertainty in the sign of the square root in (6.1.2.23)[link] corresponds to not knowing whether [F({\bf k}) > M({\bf k})] or vice versa.

6.1.2.6. Rotation of the polarization of the scattered neutrons

| top | pdf |

Whenever the neutron spin direction is not parallel to the magnetic interaction vector Q(k), the direction of polarization is changed in the scattering process. The general formulae for the scattered polarization are given by Blume (1963[link]). The result for most cases of interest can be inferred by calculating the components of the scattered neutron's spin in the x, y, and z directions for a neutron whose spin is initially parallel to z. For simplicity, y is taken parallel to k; x and z define a plane that contains Q(k). From (6.1.2.18)[link], [\eqalign{S_x&=\textstyle{1\over2}\{[Q_z({\bf k})+F'({\bf k})]Q^*_x({\bf k})\cr &\quad+[Q^*_z({\bf k})+F'^*({\bf k})]Q_x({\bf k})\}/N\cr S_y&={1\over2i}\{[Q_z({\bf k})+F'({\bf k})]Q^*_x({\bf k})\cr &\quad-[Q^*_z({\bf k})+F'^*({\bf k})]Q_x({\bf k})\}/N\cr S_z&=\textstyle{1\over2}\{[Q_z({\bf k})+F'({\bf k})][Q^*_z({\bf k})+F'^*({\bf k})]\}/N\cr N&=|Q_z({\bf k})+F'({\bf k})|{}^2+|Q_x({\bf k})|{}^2.} (6.1.2.24)]

It is clear from this set of equations that [S_x] and [S_y] are zero if [Q_x({\bf k})=0]. Three simple cases may be taken as examples of the use of (6.1.2.24)[link]:

  • (a) A magnetic reflection from a simple antiferromagnet for which Q(k) is real, F(k) = 0; under these conditions, [\eqalign{S_x&=Q_x({\bf k})[Q_z({\bf k})]/|{\bf Q}({\bf k})|{}^2\cr S_y&=0\cr S_z&=\textstyle{1\over2}[Q_z({\bf k}){}^2-Q_x({\bf k}){}^2]/|{\bf Q}({\bf k})|{}^2,}]showing that the direction of polarization is turned through an angle [2\varphi] in the xy plane where [\varphi] is the angle between Q(k) and the initial polarization direction.

  • (b) A satellite reflection from a magnetic structure described by a circular helix for which [Q_x({\bf k})] = [iQ_z({\bf k}),F'({\bf k})] = 0; in this case, [\eqalign{S_x&=0\cr S_y&=Q^2_z({\bf k})/|{\bf Q}({\bf k})|{}^2=\textstyle{1\over2}\cr S_z&=0}]and the scattered polarization is parallel to the scattering vector independent of its initial direction.

  • (c) A mixed magnetic and nuclear reflection from a Cr2O3-type antiferromagnet for which Q(k) is imaginary, [{\bf Q}({\bf k})=] [-{\bf Q}^*({\bf k})], [F({\bf k})] is real. Then, [\eqalign{S_x&=Q_x({\bf k})Q_z({\bf k})/[F'({\bf k}){}^2+|{\bf Q}({\bf k})|{}^2]\cr S_y&=iF({\bf k})Q_x({\bf k})/[F'({\bf k}){}^2+|{\bf Q}({\bf k})|{}^2]\cr S_z&=\textstyle{1\over2}[|Q_z({\bf k})+F'({\bf k})|{}^2-|Q_x({\bf k})|{}^2]\cr &\quad\times[F'({\bf k}){}^2+|{\bf Q}({\bf k})|{}^2]{}^{-1}}]so that in this case the final polarization has components along all three directions.

6.1.3. Nuclear scattering of neutrons

| top | pdf |
B. T. M. Willisd

6.1.3.1. Glossary of symbols

| top | pdf |

b Bound nuclear scattering length
b free Free nuclear scattering length
[b_0] Potential scattering length
b ′, b′′ Real and imaginary parts of resonant scattering length
b coh Coherent scattering length
F (h) Structure factor for nuclear Bragg scattering
2πh Reciprocal-lattice vector
H Scattering vector [(={\bf k}-{\bf k}_0)]
I Nuclear spin
k Wavevector of scattered neutron
[{\bf k}_0] Wavevector of incident neutron
M Nuclear mass
[m_n] Neutron mass
N Number of unit cells in crystal
V Volume of unit cell
[W_j] Exponent of temperature factor [\exp(-W_j) ] of jth atom
[w_{+}] Weight of spin state [I+{1\over2}]
[w_{-}] Weight of spin state [I-{1\over2}]
[\sigma _{\rm coh}] Coherent scattering cross section
[\sigma _{\rm inc}] Incoherent scattering cross section
[\sigma _{\rm tot}] Total scattering cross section [(=\sigma _{\rm coh}+\sigma _{\rm inc})]
[\displaystyle \bigg({{\rm d}\sigma \over{\rm d}\Omega}\bigg) _{\rm coh,el}] Differential coherent elastic scattering cross section
[\displaystyle \bigg ({{\rm d}\sigma\over{\rm d}\Omega}\bigg) _{\rm inc,el}] Differential incoherent elastic scattering cross section

The nucleus is the fundamental unit involved in the scattering of neutrons by atoms. For magnetic materials, electronic scattering takes place as well (see Section 6.1.2[link]). Apart from these two main interactions, there are a number of subsidiary ones (Shull, 1967[link]) that are extremely weak and can be ignored in nearly all diffraction studies.

In this section, we discuss the neutron–nucleus interaction only, starting from scattering by a single nucleus, then scattering by an atom, and finally scattering by a single crystal. For a more detailed account, see Bacon (1975[link]).

6.1.3.2. Scattering by a single nucleus

| top | pdf |

The nuclear forces giving rise to the scattering of neutrons have a range of 10−14 to 10−15 m. This is much smaller than the wavelength of thermal neutrons, and so (from elementary diffraction theory) the neutron wave scattered by the nucleus is spherically symmetrical. Unlike magnetic scattering, there is no `form-factor' dependence of nuclear scattering on the scattering angle.

The incident neutron beam can be represented by the plane wave [\psi _{0}=\exp(i{\bf k}_0\cdot {\bf r}),]with [{\bf k}_0] denoting the wavevector of the neutron and r its position relative to the nucleus. Then, for a nucleus of zero spin, the wavefunction of the scattered neutron is [\psi _{s}=- {b\over r}\exp (ik_0r).]b is the bound nuclear scattering length or nuclear scattering amplitude, and the negative sign ensures that b is positive for hard-sphere or potential scattering.

If the nucleus is free to recoil under the impact of the neutron, as in a gas, the scattering must be treated in the centre-of-mass system. The free scattering length is related to the bound scattering length b in condensed matter by [ b_{\rm free}= {M\over m_n+M}b,]where M is the nuclear mass and [m_n] the mass of the neutron. For hydrogen, 1H, the free scattering length is one half the bound scattering length, but the difference between the two rapidly diminishes for heavier nuclei.

In general, b is a complex quantity: [b=b_{0}+b^{\prime }+ib^{\prime \prime }. \eqno (6.1.3.1)][b_{0}] is the scattering length associated with potential scattering, i.e. scattering in which the nucleus behaves like an impenetrable sphere. b′ and b′′ are the real and imaginary parts of the resonance scattering that takes place with the formation of a compound nucleus (nucleus plus neutron). Resonance scattering is only significant when the excitation energy of the neutron is close to an energy level of the compound nucleus. This occurs for relatively few nuclei, e.g. 113Cd, 149Sm, 157Gd, 176Lu, and b then varies rapidly with wavelength (Fig. 6.1.3.1[link] ). The phenomenon of resonance scattering has been used to phase neutron reflections (Schoenborn, 1975[link]), but one difficulty is the strong absorption arising from the imaginary component b′′. For the majority of nuclei, the compound nucleus is not formed near resonance: the imaginary component is small, and the scattering length is independent of the neutron wavelength.

[Figure 6.1.3.1]

Figure 6.1.3.1| top | pdf |

Dependence on neutron wavelength of the coherent scattering length of 113Cd. b0 is the potential scattering component, and b′ and b′′ the real and imaginary components of the resonance scattering. The resonance wavelength is 0.68 Å.

There is confusion in the literature regarding the appropriate signs for the real and imaginary parts of the scattering amplitude (Ramaseshan, Ramesh & Ranganath, 1975[link]). The scattering-length curves in Fig. 6.1.3.1[link] have been drawn to be consistent with the structure-factor formulae in Volume A (IT A, 2005[link]).

Consider now the scattering from a nucleus with non-zero spin I. The neutron has spin [{1\over2}], and the spin of the combined nucleus–neutron system is either [I+{1\over2}] or [I-{1\over2}]. Each spin state has its own scattering length, b+ or b, and the weights of these states (for scattering unpolarized neutrons) are [w_{+}={I+1\over2I+1} \eqno (6.1.3.2a)]and [w_{-}={I\over{2I+1}}. \eqno (6.1.3.2b)]Values of b+ and b have been determined experimentally for just a few nuclei with non-zero spin: 1H, 2H, 23Na, 59Co, ….

6.1.3.3. Scattering by a single atom

| top | pdf |

For a single element containing several isotopes, each isotope has its own characteristic scattering length(s). The mean value of the scattering length of the atom is obtained by averaging (where necessary) over the two spin states of the isotope: [ \langle b \rangle _{\rm isotope}=w_{+}b_{+}+w_{-}b_{-},]where the angle brackets indicate a mean and [w_{+}] and [w_{-}] are given by (6.1.3.2)[link][link]; [\left \langle b\right \rangle _{\rm isotope}] is then averaged over all isotopes, taking into account their relative abundance. The resultant quantity, [\left \langle b\right \rangle _{\rm isotopes}^{\rm all}], is known as the coherent scattering length of the atom, denoted bcoh. bcoh plays the same role in neutron scattering as the atomic scattering factor f in X-ray scattering. Table 4.4.4.1[link] lists the coherent scattering lengths for the atoms in the Periodic Table.

The coherent scattering cross section of an atom is [\sigma _{\rm coh}=4\pi b_{\rm coh}^2.]

It represents that part of the total scattering cross section, σtot, that gives interference effects with other atoms. The total cross section is [\sigma _{\rm tot}=4\pi \langle b^2 \rangle _{\rm isotopes}^{\rm all},]and the incoherent scattering cross section, σinc, is the difference between σtot and σcoh: [\sigma _{\rm inc}=4\pi [\langle b^2 \rangle - \langle b\rangle ^2] . ]In incoherent scattering, there is no phase relationship between the waves scattered by different atoms. σinc for hydrogen is 40 times larger than σcoh, but the proportion of coherent scattering is substantially increased by deuteration. The scattering from vanadium is almost entirely incoherent, and so it is useful as a container of polycrystalline samples.

6.1.3.4. Scattering by a single crystal

| top | pdf |

The scattering from a single crystal can be either elastic or inelastic. An elastic process is one in which there is no exchange of energy between the neutron and the target nucleus. In an inelastic process, energy exchange occurs, giving rise to the creation or annihilation of elementary excitations such as phonons [see Section 4.1.1[link] of Volume B (IT B, 2001[link])]. Here we shall be concerned only with elastic Bragg scattering.

If kinematic scattering conditions are assumed, the differential cross section, [({{\rm d}\sigma }/{{\rm d}\Omega}) _{\rm coh,el}], giving the probability of coherent elastic scattering by a single crystal into the solid angle [{\rm d}\Omega], is [\left ({{\rm d}\sigma \over{\rm d}\Omega}\right) _{\rm coh,el}=N {(2\pi) {}^3\over{V}}\sum _{{\bf h}} | F({\bf h}) | {}^{2}\delta({\bf H}-2\pi {\bf h}). \eqno (6.1.3.3)]Here, N is the number of unit cells, each of volume V, 2πh is a reciprocal-lattice vector, and F(h) is the nuclear structure factor for Bragg scattering. H is the scattering vector [{\bf H}={\bf k}-{\bf k}_{0},]where k and [{\bf k}_{0}] (with k = k0 = 2π/λ) are the wavevectors of the scattered and incident beams, respectively, and the δ function indicates that the coherent elastic scattering is simply Bragg scattering. F(h) is defined by [F({\bf h}) =\textstyle \sum \limits _{j}b _{\rm coh}^{j}\exp (i{\bf H}\cdot {\bf r}_{j}) \exp (-W_{j}), ]in which [b _{\rm coh}^{j}] is the coherent scattering length of the jth atom in the unit cell, [{\bf r}_{j}] is its equilibrium position with respect to the cell origin, and [\exp \left (W_{j}\right) ] its Debye–Waller temperature factor.

The incoherent elastic scattering cross section is given by [\left ({{\rm d}\sigma }\over{{\rm d}\Omega}\right) _{\rm inc,el}=N\sum _j [\langle b_j^2 \rangle - \langle b_j \rangle ^2] \exp (-2W_j).]Apart from the influence of the Debye–Waller temperature factor, this expression shows that the incoherent scattering is distributed uniformly throughout reciprocal space.

References

First citation Abramowitz, M. & Stegun, I. A. (1964). Handbook of mathematical functions. National Bureau of Standards Publication AMS 55.Google Scholar
First citation Ahlrichs, R. & Taylor, P. R. (1981). The choice of Gaussian basis sets for molecular electronic structure calculations. J. Chim. Phys. 78, 316–323.Google Scholar
First citation Altmann, S. L. & Cracknell, A. P. (1965). Lattice harmonics. I. Cubic groups. Rev. Mod. Phys. 37, 19–32.Google Scholar
First citation Atoji, M., Watanabe, T. & Lipscomb, W. N. (1953). The X-ray scattering from a hindered rotator. Acta Cryst. 6, 62–66.Google Scholar
First citation Avery, J. & Watson, K. J. (1977). Generalized X-ray scattering factors. Simple closed-form expressions for the one-centre case with Slater-type orbitals. Acta Cryst. A33, 679–680.Google Scholar
First citation Bacon, G. E. (1975). Neutron diffraction, 3rd ed. Oxford: Clarendon Press.Google Scholar
First citation Bellman, R. (1961). A brief introduction to theta functions. New York: Holt, Reinhart and Winston.Google Scholar
First citation Blume, M. (1963). Polarization effects in the magnetic elastic scattering of slow neutrons. Phys. Rev. 130, 1670–1676.Google Scholar
First citation Chidambaram, R. & Brown, G. M. (1973). A model for a torsional oscillator in crystallographic least-squares refinement. Acta Cryst. B29, 2388–2392.Google Scholar
First citation Clementi, E. & Roetti, C. (1974). Roothaan–Hartree–Fock atomic wavefunctions. Basis functions and their coefficients for ground and certain excited states of neutral and ionized atoms. At. Data Nucl. Data Tables, 14, 177–478.Google Scholar
First citation Coulthard, M. A. (1967). A relativistic Hartree–Fock atomic field calculation. Proc. Phys. Soc. 91, 44–49.Google Scholar
First citation Cromer, D. T. & Mann, J. B. (1968). X-ray scattering factors computed from numerical Hartree–Fock wave functions. Los Alamos Scientific Laboratory Report LA-3816.Google Scholar
First citation Cromer, D. T. & Waber, J. T. (1968). Unpublished work reported in International tables for X-ray crystallography (1974), Vol. IV, p. 71. Birmingham: Kynoch Press.Google Scholar
First citation Dawson, B. (1970). Neutron studies of nuclear charge distributions in barium fluoride and hexamethylenetetramine. Thermal neutron diffraction, edited by B. T. M. Willis, pp. 101–123. Oxford University Press.Google Scholar
First citation Desclaux, J. P. & Freeman, A. J. (1978). Dirac–Fock studies of some electronic properties of actinide ions. J. Magn. Magn. Mater. 8, 119–129.Google Scholar
First citation Doyle, P. A. & Turner, P. S. (1968). Relativistic Hartree–Fock and electron scattering factors. Acta Cryst. A24, 390–397.Google Scholar
First citation Duijneveldt, F. B. van (1971). IBM Technical Report RJ-945.Google Scholar
First citation Dunning, T. H. Jr & Jeffrey-Hay, P. (1977). Gaussian basis sets for molecular calculations. Modern theoretical chemistry 3. Methods of electronic structure theory, edited by H. F. Schaefer III, pp. 1–27. New York: Plenum.Google Scholar
First citation Favro, L. D. (1960). Theory of the rotational motion of a free rigid body. Phys. Rev. 119, 53–62.Google Scholar
First citation Feller, W. (1966). An introduction to probability theory and its applications, Vol. II, Chap. 19. New York: John Wiley.Google Scholar
First citation Fisher, R. (1953). Dispersion on a sphere. Proc. R. Soc. London Ser. A, 217, 295–305.Google Scholar
First citation Fox, A. G., O'Keefe, M. A. & Tabbernor, M. A. (1989). Relativistic Hartree–Fock X-ray and electron atomic scattering factors at high angles. Acta Cryst. A45, 786–793.Google Scholar
First citation Freeman, A. J. & Desclaux, J. P. (1972). Neutron magnetic form factor of gadolinium. Int. J. Magn. 3, 311–317.Google Scholar
First citation Furry, W. H. (1957). Isotropic rotational Brownian motion. Phys. Rev. 107, 7–13.Google Scholar
First citation Gumbel, E. J., Greenwood, J. A. & Durand, D. (1953). The circular normal distribution: theory and tables. J. Am. Stat. Assoc. 48, 131–152.Google Scholar
First citation Huzinaga, S. (1971). Approximate atomic functions I, II, III. Technical Report, University of Alberta, Edmonton, Alberta, Canada.Google Scholar
First citation International Tables for Crystallography (2005). Vol. A, edited by Th. Hahn. Heidelberg: Springer.Google Scholar
First citation International Tables for Crystallography (2001). Vol. B, edited by U. Shmueli, 2nd ed. Dordrecht: Kluwer Academic Publishers.Google Scholar
First citation Johnson, C. K. & Levy, H. A. (1974). Thermal motion of independent atoms. International tables for X-ray crystallography. Vol. IV, pp. 317–319. Birmingham: Kynoch Press.Google Scholar
First citation Kay, M. I. & Behrendt, D. R. (1963). The structure factor for a harmonic quasi-torsional oscillator. Acta Cryst. 16, 157–162.Google Scholar
First citation Kendall, M. G. & Stuart, A. (1963). The advanced theory of statistics, Vol. 1, Chaps 2, 3 and 6. London: Griffin.Google Scholar
First citation King, M. V. & Lipscomb, W. N. (1950). The X-ray scattering from a hindered rotator. Acta Cryst. 3, 155–158.Google Scholar
First citation Kuhs, W. F. (1983). Statistical description of multimodal atomic probability densities. Acta Cryst. A39, 149–158.Google Scholar
First citation Kurki-Suonio, K. (1977). Electron density mapping in molecules and crystals. IV. Symmetry and its implications. Isr. J. Chem. 16, 115–123.Google Scholar
First citation Kurki-Suonio, K., Merisalo, M. & Peltonen, H. (1979). Site symmetrized Fourier invariant treatment of anharmonic temperature factors. Phys. Scr. 19, 57–63.Google Scholar
First citation Kuznetsov, P. I., Stratonovich, R. L. & Tikhonov, V. I. (1960). Quasi-moment functions in the theory of random processes. Theory Probab. Appl. (USSR), 5, 80–97.Google Scholar
First citation Lévy, P. (1938). C. R. Soc. Math. Fr. p. 32. Also Processus stochastiques et mouvement Brownian, p. 182. Paris: Gauthier-Villars.Google Scholar
First citation Lovesey, S. W. (1984). Theory of neutron scattering from condensed matter. Vol. 2. Polarization effects and magnetic scattering. The International Series of Monographs on Physics No. 72. Oxford University Press.Google Scholar
First citation Mackenzie, J. K. & Mair, S. L. (1985). Anharmonic temperature factors: the limitations of perturbation-theory expressions. Acta Cryst. A41, 81–85.Google Scholar
First citation McLean, A. D. & Chandler, G. S. (1979). IBM Research Report RJ-2665 (34180).Google Scholar
First citation McLean, A. D. & Chandler, G. S. (1980). Contracted basis sets for molecular calculations. I. Second row atoms, Z = 11–18 . J. Chem. Phys. 72, 5639–5648.Google Scholar
First citation Mair, S. L. (1980a). Temperature dependence of the anharmonic Debye–Waller factor. J. Phys. C, 13, 2857–2868.Google Scholar
First citation Mair, S. L. (1980b). The anharmonic Debye–Waller factor in the classical limit. J. Phys. C, 13, 1419–1425.Google Scholar
First citation Mair, S. L. & Wilkins, S. W. (1976). Anharmonic Debye–Waller factor using quantum statistics. J. Phys. C, 9, 1145–1158.Google Scholar
First citation Mann, J. B. (1968a). Unpublished work reported in International tables for X-ray crystallography (1974), Vol. IV, p. 71. Birmingham: Kynoch Press.Google Scholar
First citation Mann, J. B. (1968b). Los Alamos Scientific Laboratory Report LA-3961, p. 196.Google Scholar
First citation Mardin, K. V. (1972). Statistics of directional data. New York: Academic Press.Google Scholar
First citation Maslen, E. N. (1968). An expression for the temperature factor of a librating atom. Acta Cryst. A24, 434–437.Google Scholar
First citation Mises, R. von (1918). Über die `Ganzahligheit' der Atomgewichte und verwandte Fragen. Phys. Z. 19, 490–500.Google Scholar
First citation Nathans, R., Shull, C. G., Shirane, G. & Andresen, A. (1959). The use of polarised neutrons in determining the magnetic scattering by iron and nickel. J. Phys. Chem. Solids, 10, 138–146.Google Scholar
First citation Normand, J.-M. (1980). A Lie group: rotations in quantum mechanics, p. 461. Amsterdam: North-Holland.Google Scholar
First citation Pawley, G. S. & Willis, B. T. M. (1970). Neutron diffraction study of the atomic and molecular motion in hexamethylenetetramine. Acta Cryst. A26, 263–271.Google Scholar
First citation Perrin, F. (1928). Etude mathématique du mouvement Brownien de rotation. Ann. Ecole. Norm. Suppl. 45, pp. 1–23.Google Scholar
First citation Perrin, F. (1934). Mouvement Brownien d'un ellipsoïde (I). Dispersion diélectrique pour des molécules ellipsoïdales. J. Phys. Radium, 5, 497.Google Scholar
First citation Press, W. & Hüller, A. (1973). Analysis of orientationally disordered structures. I. Method. Acta Cryst. A29, 252–256.Google Scholar
First citation Ramaseshan, S., Ramesh, T. G. & Ranganath, G. S. (1975). A unified approach to the theory of anomalous scattering. Some novel applications of the multiple-wavelength method. Anomalous scattering, edited by S. Ramaseshan & S. C. Abrahams, pp. 139–161. Copenhagen: Munksgaard.Google Scholar
First citation Roberts, P.-H. & Ursell, H. D. (1960). Random walk on a sphere. Philos. Trans. R. Soc. London Ser. A, 252, 317–356.Google Scholar
First citation Roos, B. & Siegbahn, P. (1970). Gaussian basis sets for the first and second row atoms. Theor. Chim. Acta, 17, 209–215.Google Scholar
First citation Scheringer, C. (1985). A general expression for the anharmonic temperature factor in the isolated-atom-potential approach. Acta Cryst. A41, 73–79.Google Scholar
First citation Schoenborn, B. P. (1975). Phasing of neutron protein data by anomalous dispersion. Anomalous scattering, edited by S. Ramaseshan & S. C. Abrahams, pp. 407–421. Copenhagen: Munksgaard.Google Scholar
First citation Shirane, G. (1959). A note on the magnetic intensities of powder neutron diffraction. Acta Cryst. 12, 282–285.Google Scholar
First citation Shull, C. G. (1967). Neutron interactions with atoms. Trans Am. Crystallogr. Assoc. 3, 1–16.Google Scholar
First citation Stephens, M. A. (1963). Random walk on a circle. Biometrika, 50, 385–390.Google Scholar
First citation Stewart, R. F. (1980a). Algorithms for Fourier transforms of analytical density functions. Electron and magnetisation densities in molecules and crystals, edited by P. Becker, pp. 439–442. New York: Plenum.Google Scholar
First citation Stewart, R. F. (1980b). Multipolar expansions of one-electron densities. Electron and magnetisation densities in molecules and crystals, edited by P. Becker, pp. 405–425. New York: Plenum.Google Scholar
First citation Stewart, R. F., Davidson, E. R. & Simpson, W. T. (1965). Coherent X-ray scattering for the hydrogen atom in the hydrogen molecule. J. Chem. Phys. 42, 3175–3187.Google Scholar
First citation Thakkar, A. J. & Smith, V. H. Jr (1992). High-accuracy ab initio form factors for the hydride anion and isoelectronic species. Acta Cryst. A48, 70–71.Google Scholar
First citation Trammell, G. T. (1953). Magnetic scattering of neutrons from rare earth ions. Phys. Rev. 92, 1387–1393.Google Scholar
First citation Veillard, A. (1968). Gaussian basis sets for molecular wavefunctions containing second row atoms. Theor. Chim. Acta, 12, 405–411.Google Scholar
First citation Zucker, U. H. & Schulz, H. (1982). Statistical approaches for the treatment of anharmonic motion in crystals. I. A comparison of the most frequently used formalisms of anharmonic thermal vibrations. Acta Cryst. A38, 563–568.Google Scholar








































to end of page
to top of page