6. INTERPRETATION OF DIFFRACTED INTENSITIES

f

tion in incident-beam intensity is many times larger than the sum of the squares of the individual atomic scattering powers.

An extreme case occurs in a perfect crystal, for which total reflection is possible. There is destructive interference with the incident beam producing a marked change in the index of refraction from its normal value of

$$n = 1 - \frac{\lambda^2 e^2}{2\pi mc^2} \sum_a N_a f_a(0), \qquad (6.3.1.4)$$

where *e* and *m* are the charge and mass of the electron. $f_a(0)$ is the scattering factor in the forward direction for an atom of type *a* and N_a is the number of atoms of that type per unit volume.

Thus, for strong reflections in near-perfect crystals, the Rayleigh scattering is affected by both crystal texture and beam direction. This reduction of primary-beam intensity due to the Rayleigh scattering is usually included, along with other specimen-dependent factors affecting diffracted-beam intensity, in the analysis of extinction.

6.3.1.4. Attenuation (mass absorption) coefficients

Since the reduction of intensity depends on the quantity of matter traversed by the beam, the absorption coefficient is often expressed on a mass basis by dividing by the density ρ_m . μ/ρ_m defines the attenuation coefficient.

The determination of attenuation coefficients to high precision is possible only when contributions from all different scattering processes are analysed in detail. To a level of accuracy appropriate to most experiments, however, the coefficient can be determined from the atomic cross sections for scattering and photoelectric absorption. Ideally, absorption corrections for scattering from single crystals in the absence of extinction should be evaluated using the Rayleigh cross section for a crystal in the non-reflecting position. However, as Rayleigh scattering is a minor contribution to the total absorption except for the lighter elements, no large error is made by applying the absorption correction appropriate to an assembly of isolated atoms to a single crystal.

Likewise, μ/ρ_m is, to a good approximation, given by the sum of the attenuation coefficients for each constituent element $(\mu/\rho_m)_a$, weighted by the mass fraction g_a for that element, *i.e.*

$$\frac{\mu}{\rho_m} = \sum_a g_a (\mu / \rho_m)_a,$$
(6.3.1.5)

where the sum is over the elements. The atomic cross section for attenuation is given by

$$\sigma_a = (\mu/\rho_m)_a A_a / N_A = \mu/N_a, \qquad (6.3.1.6)$$

where A_a is the atomic weight and N_a is Avogadro's number. The evaluation of the attenuation coefficients is described in Section 4.2.4.

6.3.2. Dispersion

In the wavelength regime associated with anomalous scattering, where

$$f = f^0 + f' + f'', (6.3.2.1)$$

the refractive index becomes complex, its imaginary component contributing an additional term to the absorption.

 f^0 is the scattering factor for ideal elastic scattering. The dispersion corrections f' and f'' are related to the absorption since (James, 1962; Wagenfeld, 1975)

$$''(\omega) = mc\omega\sigma(\omega)/4\pi e^2, \quad \omega = 2\pi c/\lambda \qquad (6.3.2.2)$$

$$f'(\omega) = \frac{2}{\pi} \int_{0}^{\infty} \left[\omega' f''(\omega') / (\omega^2 - \omega'^2) \right] d\omega'.$$
 (6.3.2.3)

That is, the dispersion corrections are determined by the absorption cross sections. The relationships (6.3.2.2) and (6.3.2.3) can be used in measuring absorption coefficients, as described in Section 4.2.4. The dispersion terms change rapidly near the absorption edge, especially on the short-wavelength side. The changes are anisotropic, sensitive to structure and to the direction of polarization. Details are given by Templeton & Templeton (1980, 1982, 1985).

In near-perfect crystals, the changes near the absorption edge are also sensitive to temperature (Karamura & Fukamachi, 1979; Fukamachi, Karamura, Hayakawa, Nakano & Koh, 1982). The effective absorption coefficient can also be altered by the Borrmann effect (Azaroff, Kaplow, Kato, Weiss, Wilson & Young, 1974).

6.3.3. Absorption corrections

The reduction in the intensity of an X-ray reflection from a uniform beam due to absorption is given by the transmission coefficient

$$A = \frac{1}{V} \int \exp(-\mu T) \, \mathrm{d}V, \qquad (6.3.3.1)$$

where the integration is over the volume of the crystal. The absorption correction

$$A^* = 1/A. \tag{6.3.3.2}$$

T, the path length of the X-ray beam in the crystal, is the sum of the path lengths for the incident and diffracted beams. A technique for measuring crystals for absorption measurements is described in Subsection 6.3.3.6.

Any least-squares analysis involving variation of the linear absorption coefficient, or equivalently an isotropic variation in crystal size, requires the weighted mean path length

$$\bar{T} = -A^{-1}\frac{\partial A}{\partial \mu} = \frac{1}{A^*}\frac{\partial A^*}{\delta \mu}.$$
(6.3.3.3)

This path length is also required in some analyses of extinction (Zachariasen, 1968; Becker & Coppens, 1974).

6.3.3.1. Special cases

For special cases, the integral can be solved analytically, and in some of these the expression reduces to closed form. These are listed in Table 6.3.3.1.

6.3.3.2. Cylinders and spheres

For diffraction in the equatorial plane of a cylinder of radius R within the X-ray beam, the expression for the transmission coefficient reduces to

$$A = \frac{1}{A^*} = \frac{1}{\pi R^2} \int_{0}^{R} \int_{0}^{2\pi} \exp\left(-\mu \{[R^2 - r^2 \sin^2(\theta + \varphi)]^{1/2} + [R^2 - r^2 \sin^2(\theta - \varphi)]^{1/2}\}\right)$$

× cosh (2µr sin θ sin φ)r dr dφ. (6.3.3.4)

Table 6.3.3.1. Transmission coefficients

(1) Reflection from a crystal slab with negligible transmission; the crystal planes are inclined at an angle φ to the extended face, and the normal in the plane of the incident and diffracted beams

$$A = \frac{\sin(\theta - \varphi)}{\mu \{\sin(\theta - \varphi) + \sin(\theta + \varphi)\}}$$

(1*a*) $\varphi = 0$

$$A = 1/2\mu$$

(2) Reflection from a crystal slab of thickness t, with planes parallel to the extended face

$$A = \{1 - \exp\left(-2\mu t \operatorname{cosec} \theta\right)\}/2\mu$$

(3) Transmission through a crystal slab of thickness *t*; the crystal planes are at $\pi/2 - \varphi$ to the surface, with the normal in the plane of the incident and reflected beams

$$A = \frac{\exp\{-\mu t \sec(\theta + \varphi)\} - \exp\{-\mu t \sec(\theta - \varphi)\}}{\mu \left[1 - \frac{\sec(\theta + \varphi)}{\sec(\theta - \varphi)}\right]}$$
(3a) $\varphi = 0$

$$A = t \sec \theta \exp(-\mu t \sec \theta)$$

(4) Transmission through a sphere of radius *R* (*i.e.* for a uniform X-ray beam and $\theta = 0^{\circ}$)

$$A = \frac{3}{2(\mu R)^3} [1/2 - e^{-2\mu R} \{1/2 + \mu R + (\mu R)^2\}]$$

(5) Reflection from a sphere of radius *R* (*i.e.* for a uniform X-ray beam, and $\theta = 90^{\circ}$)

$$A = \frac{3}{4\mu R} \left\{ 1/2 - \frac{1}{16(\mu R)^2} \left[1 - (1 + 4\mu R) e^{-4\mu R} \right] \right\}$$

Values of the absorption correction A^* obtained by numerical integration by Dwiggins (1975*a*) are listed in Table 6.3.3.2.

The reduced expression for a spherical crystal of radius R is

$$A = \frac{3}{4\pi R^3} \int_{0}^{R} \int_{-1}^{1} \int_{0}^{2\pi} \exp\left(-\mu\{[R^2 - r^2\cos^2\alpha - r^2\sin^2\alpha\sin^2(\theta + \varphi)]^{1/2} + [R^2 - r^2\cos^2\alpha - r^2\sin^2\alpha\sin^2(\theta - \varphi)]^{1/2} - 2r\sin\theta\sin\alpha\sin\varphi\}\right) r^2 dr d(\cos\alpha) d\varphi.$$
(6.3.3.5)

Values of A^* obtained using numerical integration by Dwiggins (1975*b*) are listed in Table 6.3.3.3. An estimate of the accuracy of the numerical integration is given by comparison with the results for special values of θ at which equations (6.3.3.4) and (6.3.3.5) may be integrated analytically, which are included in Table 6.3.3.1. The comparison indicates a reliability for the tabulated values of better than 0.1%. Tables at finer intervals for cylinders and spheres for $\mu R < 1.0$ are given by Rouse, Cooper, York & Chakera (1970). A tabulation up to $\mu R < 5.0$ for spheres is given by Weber (1969). Interpolation for μR may be effected by the formula

$$A^{*}(\mu R) = \exp\left\{\sum_{m=1}^{M} K_{m}(\mu R)^{m}\right\},$$
 (6.3.3.6)

where the K_m are determined, for fixed θ , from the values in Tables 6.3.3.2 and 6.3.3.3.

Subsequent interpolation as a function of θ may be effected by the interpolation formula

$$A^*\{\theta\} = \sum_{n=1}^{N} L_n \sin^{2n}(\theta).$$
 (6.3.3.7)

Interpolation is accurate to 0.1% with N = M = 3.

For cylinders and spheres, \overline{T} may be obtained by means of the expression

$$\bar{T} = \frac{1}{A^*} \frac{dA^*}{d\mu} = R \left[\frac{1}{A^*} \frac{dA^*}{d(\mu R)} \right]$$
(6.3.3.8)

using the values listed in Tables 6.3.3.2 and 6.3.3.3.

Values of $(1/A^*)[dA^*/d(\mu R)]$ obtained by numerical integration by Flack & Vincent (1978) for spheres with $\mu R < 2.5$ are listed in Table 6.3.3.4. An equivalent table of $\mu(R/A^*)/[dA^*/d(\mu R)]$ for $\mu R < 4.0$ is given by Rigoult & Guidi-Morosini (1980).

Alternatively, one can differentiate the interpolation formula (6.3.3.6), yielding

$$\bar{T}(\mu R, \theta) = \frac{1}{\mu} \sum_{m=1}^{M} m K_m (\mu R)^m.$$
(6.3.3.9)

In this case, however, the maximum index M = 7 is required to obtain convergence for $\mu R \le 2.5$. Numerical values of the coefficients K_m for cylinders and spheres evaluated by Tibballs (1982) are listed in Table 6.3.3.5.

Interpolation between the tabulated θ values is obtained from the θ interpolation formula, noting that

$$L_m = \sum_{j=1}^{7} (C^{-1})_{mj} A_j^*, \qquad (6.3.3.10)$$

where

$$C_{mj} = \sin^{2m} \theta_j. \tag{6.3.3.11}$$

The elements $(C^{-1})_{mj}$ and the $K_m(\theta_j)$ for θ_j at 15° intervals in the range $0 < \theta_j < 90^\circ$ are listed in Table 6.3.3.5. Differentiating (6.3.3.7) yields

$$A^{*}(\mu R, \theta)\bar{T}(\mu R, \theta) = \sum_{m=0}^{M} P_{m} \sin^{2m} \theta, \qquad (6.3.3.12)$$

where

$$P_m = R \frac{\partial L_m}{\partial (\mu R)} = \sum_{j=1}^7 (C^{-1})_{mj} A_j^* \bar{T}_j.$$
(6.3.3.13)

Equation (6.3.3.12) for path lengths is the analogue of equation (6.3.3.7) for the transmission factors. It provides the basis for an interpolation formula.

In the case of a cylindrical crystal much larger than the X-ray beam, the absorption correction has been determined by Coyle (1972), in an extension of earlier work by Coyle & Schroeder (1971). The absorption correction for the case of the cylinder axis coincident with the φ axis of a Eulerian cradle, shown in Fig. 6.3.3.1, reduces to the line integral

$$\frac{1}{2\tau} \int_{0}^{2\tau} \exp\{-\mu[(z) + T(z)]\} dz, \qquad (6.3.3.14)$$

$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	$\begin{array}{c} 1\\ 1.1785\\ 1.3739\\ 1.3739\\ 1.3739\\ 2.0497\\ 2.30497\\ 2.30497\\ 2.30497\\ 3.1061\\ 3.3886\\ 3.36763\\ 3.36763\\ 3.36763\\ 3.36763\\ 3.36763\\ 3.36763\\ 3.36763\\ 3.36763\\ 5.7746\\ 6.697\\ 7.389\\ 6.697\\ 7.315\\ 7.315\\ 7.935\end{array}$		1.1567 1.3254 1.5055 1.6961 1.6961 1.8964 2.1063 2.3220 2.5454 2.7747 3.0090	3.2474 3.4894 3.7344 4.2315 4.2315 4.7361 4.7361 4.74830 5.5041 5.5041 5.5041 5.5041 5.5041 5.5041 5.5043 6.282 6.282 6.282
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{c} 1\\ 1.1785\\ 1.3741\\ 1.3857\\ 1.3741\\ 1.8121\\ 2.0518\\ 2.30533\\ 2.5651\\ 3.3990\\ 3.1142\\ 3.3990\\ 3.3990\\ 3.3990\\ 3.1142\\ 3.3990\\ 3.3933\\ 5.5514\\ 4.2835\\ 5.1935\\ 5.1935\\ 5.1935\\ 5.1935\\ 5.1935\\ 5.1935\\ 5.1935\\ 5.1935\\ 5.1935\\ 5.1935\\ 5.107\\ 7.059\\ 8.002\end{array}$		1.1567 1.3256 1.5059 1.6970 1.8979 2.1076 2.3253 2.3253 2.5499 2.7805 3.0163	3.2566 3.5005 3.7477 3.7477 3.9974 4.2495 5.0170 5.2760 5.2760 5.2760 5.2760 6.325 6.061 6.325 6.853
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\theta = 80^{\circ}$	$\begin{array}{c} 1\\ 1.1787\\ 1.3749\\ 1.5876\\ 1.5876\\ 1.5876\\ 2.5879\\ 2.5795\\ 3.1383\\ 3.4295\\ 3.1383\\ 3.4295\\ 3.1383\\ 3.4295\\ 3.4295\\ 3.4295\\ 3.4295\\ 5.5773\\ 4.6471\\ 4.9609\\ 5.5960\\ 5.5960\\ 5.5960\\ 5.5960\\ 5.5960\\ 5.59166\\ 6.887\\ 7.540\\ 7.540\\ 7.540\\ 8.196\\ 8.196\end{array}$		1.1568 1.35262 1.5074 1.6997 1.9024 2.1145 2.1145 2.3351 2.3351 2.5632 2.7979 3.0383	3.2838 3.5334 3.5334 4.0432 4.0432 4.3024 4.8681 4.8279 5.0936 5.0936 5.0936 6.174 6.174 6.172 6.972 6.996
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$		1 1.1790 1.1790 1.5906 1.5906 1.8215 2.0677 2.2603 3.1772 3.4790 3.1772 3.4790 3.772 3.4790 6.773 5.4499 6.773 7.118 7.418 5.7499 6.773 7.118 7.418 8.511 8.511		1.1570 1.1570 1.5096 1.7041 1.9097 2.1257 2.1257 2.1257 2.3508 2.5845 2.5845 2.5845 3.0738	3.3276 3.5866 3.5866 4.1174 4.383 4.383 4.383 4.9383 5.5001 5.7842 5.7842 6.070 6.358 6.070 6.338 6.938
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\theta = 70^{\circ}$	$\begin{array}{c} 1\\ 1.1793\\ 1.3777\\ 1.5946\\ 1.5946\\ 1.8293\\ 1.8293\\ 1.8293\\ 2.24809\\ 2.2399\\ 3.5462\\ 3.5462\\ 3.5462\\ 3.5462\\ 3.5462\\ 3.5462\\ 3.5462\\ 5.2441\\ 4.5256\\ 6.693\\ 6.693\\ 6.693\\ 7.4810\\ 8.187\\ 7.810\\ 8.187\\ 8.565\\ 8.945\\ 8.945\end{array}$		1.1572 1.3282 1.5126 1.7099 1.9194 2.1403 2.3719 2.3719 2.6133 2.3719 2.6133 3.1216	3.3870 3.6586 3.9360 4.2183 4.2183 4.2052 4.5052 4.5052 5.0907 5.9942 6.301 6.610 6.922 7.235 7.235
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ heta=65^{\circ}$	$\begin{array}{c} 1\\ 1.1798\\ 1.3796\\ 1.5994\\ 1.8388\\ 1.8388\\ 1.8388\\ 2.9759\\ 2.9732\\ 2.9732\\ 2.9732\\ 3.2951\\ 3.2951\\ 3.9759\\ 3.9759\\ 3.9759\\ 5.6711\\ 5.4516\\ 5.8385\\ 6.231\\ 6.628\\ 7.435\\ 7.435\\ 8.255\\ 8.669\\ 9.086\\ 9.086\end{array}$		1.1575 1.1575 1.15162 1.7169 1.9311 2.1583 2.3977 2.6484 2.6484 3.1807	3.4605 3.7483 4.0432 4.647 4.520 4.6520 4.6520 5.2823 5.2823 5.2823 5.2823 6.595 6.595 6.932 6.932 7.614 7.614
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$= 60^{\circ}$	$\begin{array}{c} 1\\ 1.1802\\ 1.3818\\ 1.8049\\ 1.8049\\ 1.8049\\ 1.8049\\ 3.3717\\ 3.3717\\ 3.3717\\ 3.3717\\ 3.3717\\ 3.3717\\ 3.3717\\ 5.7068\\ 5.865\\ 5.7036\\ 6.128\\ 6.128\\ 5.7036\\ 6.128\\ 5.7036\\ 6.128\\ 8.895\\ 8.805\\ 8.808\\ 8.808\\ 9.271\\ 10.205$		1.1579 1.1579 1.5204 1.7249 1.9445 2.1789 2.4274 2.6892 2.6892 2.9637 3.2499	3.5470 3.8542 4.1706 4.1706 4.4955 5.1678 5.5140 5.5140 6.587 6.587 6.955 7.327 7.722 8.081 8.462
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	= 55°	1 1.1808 1.1808 1.841 1.6108 1.8611 1.8611 1.8611 1.8611 1.8611 1.8611 1.8611 1.8611 1.8611 1.8611 1.8611 1.8611 1.8611 1.8611 1.8611 1.8612 1.8613 1.8614 1.953 1.953 1.953 1.953 1.953 1.9604 1.9604 1.0008 1.0008	res	1.1582 1.15248 1.15248 1.7335 1.9592 2.2015 2.7346 2.7346 2.7346 3.0241 3.3280	3.6455 3.9756 4.3175 4.6703 5.0333 5.0333 5.0333 5.0333 5.0333 5.0333 6.975 6.975 6.975 7.385 6.975 7.800 8.645 9.074 9.074
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$= 50^{\circ}$	$\begin{array}{c} 1\\ 1.1813\\ 1.1813\\ 1.865\\ 1.6169\\ 1.8733\\ 1.8733\\ 2.21564\\ 2.21564\\ 3.5538\\ 3.5538\\ 3.5538\\ 3.5538\\ 3.5538\\ 3.5538\\ 3.5538\\ 5.3376\\ 5.3376\\ 5.3376\\ 5.3376\\ 5.3376\\ 5.3376\\ 5.3376\\ 0.906\\ 10.906\\ 11.515\\ 12.130\\ 12.130\\ 11.515\\ 12.130\\ 12.130\\ 11.515\\ 12.130\\ 12.130\\ 11.515\\ 12.130\\ 12.130\\ 11.515\\ 12.130\\ 12.130\\ 11.515\\ 12.130\\ 12.130\\ 11.515\\ 12.130\\ 12.130\\ 11.515\\ 12.130\\ 11.515\\ 12.130\\ 11.515\\ 12.130\\ 12.1$	for sphei	1.1586 1.15293 1.5293 1.7425 1.9745 2.2555 2.4952 2.7835 3.0898 3.4135	3.7540 4.1104 4.4819 4.8876 5.2666 5.56780 6.101 6.535 6.535 6.533 7.431 7.893 8.362 8.339 9.322 9.322
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	= 45°	$\begin{array}{c} 1\\ 1.1818\\ 1.3889\\ 1.6230\\ 1.6230\\ 1.8857\\ 1.8857\\ 3.5010\\ 2.25010\\ 3.6560\\ 3.6560\\ 3.6560\\ 3.6560\\ 3.6560\\ 3.6560\\ 1.222\\ 4.1022\\ 5.6110\\ 5.6110\\ 5.6110\\ 5.6110\\ 5.6110\\ 5.6110\\ 5.6110\\ 5.6110\\ 1.292\\ 1.233\\ 1.2$	es of A^*	1 1.1589 1.15896 1.7515 1.7515 1.9901 1.9901 2.25316 2.5316 2.5316 3.1592 3.5048	3.8710 4.2571 4.6625 5.0862 5.9862 5.9849 5.9849 6.446 6.458 6.446 7.446 7.446 7.961 9.023 9.569 9.569 0.690
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$= 40^{\circ}$	1 1.1823 1.3912 1.6290 1.6290 1.8279 2.23996 3.7629 3.7629 3.7629 3.7629 5.3199 5.3219 5.5319 5.5319 5.5319 5.5319 5.5319 7.192 5.5319 5.5319 5.5319 7.192 5.5319 5.5319 5.5319 7.192 7.19	3.3. Valu	1 1.1593 1.15383 1.7604 1.7604 2.0056 2.2746 2.2683 3.2308 3.2308 3.6001	<u>v Г ю 4 ю</u>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		8 4 7 4 4 1 7 1 8 8 9 7 7	ble 6.3.3	1 1.1597 1.15426 1.5426 1.7689 2.0204 2.29386 3.3026 3.3026 3.6966	1174
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11		Та		++-0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	= 25°				5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$= 20^{\circ}$	2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	= 15°				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$= 10^{\circ} \theta$				2 2 2 2
$\begin{array}{c} \theta = 0^{\circ} \\ 1 \\ 1.1843 \\ 1.4009 \\ 1.6548 \\ 1.9522 \\ 2.7047 \\ 3.1762 \\ 3.1762 \\ 3.1762 \\ 3.1762 \\ 5.9356 \\ 6.907 \\ 8.021 \\ 9.2367 \\ 8.021 \\ 9.2367 \\ 14.3578 \\ 5.0907 \\ 8.021 \\ 9.2367 \\ 12.397 \\ 12.374 \\ 11.1609 \\ 11.460 \\ 12.377 \\ 4.1237 \\ 11.1609 \\ 11.160 \\ 11.161 \\ 11.151 \\ 11.151 \\ 11.151 \\ 11.151 \\ 11.151 \\ 11.169 \\ 11.151 \\ 11.161 \\ 11.151 \\ 11.161 \\ 11.151 \\ 11.161 \\$	$= 5^{\circ} \theta$				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	∘0 =				v 0

Table 6.3.3.2. Values of A* for cylinders

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 All values 3 multiplied 0 by 3 8 to eliminate 2 fractions
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccc} \theta = 75^{\circ} \\ 1.5000 \\ 1.5000 \\ 1.4152 \\ 1.3292 \\ 1.1748 \\ 1.1748 \\ 1.1748 \\ 1.1748 \\ 1.1748 \\ 1.1748 \\ 1.1748 \\ 1.1748 \\ 1.1748 \\ 1.1748 \\ 0.9767 \\ 0.97$	
$ \begin{array}{c} \theta \\ \hline \theta \\ $	
$\begin{array}{c} \theta = 70^{\circ} \\ 1.5000 \\ 1.4191 \\ 1.5880 \\ 1.2624 \\ 1.19077 \\ 1.0577 \\ 1.0577 \\ 1.0577 \\ 1.0577 \\ 0.9978 \\ 0.9409 \\ 0.8880 \\ 0.9409 \\ 0.8392 \\ 0.7506 \\ 0.7506 \\ 0.7113 \\ 0.67149 \\ 0.67149 \\ 0.67149 \\ 0.7113 \\ 0.6749 \\ 0.7506 \\ 0.7506 \\ 0.4469 \\ 0.7113 \\ 0.67328 \\ 0.4142 \\ 0.66105 \\ 0.4469 \\ 0.4469 \\ 0.4420 \\ 0.6105 \\ 0.4142 \\ 0.53317 \\ 0.53317 \\ 0.53337 \\ 0.4142 \\ 0.53337 \\ 0.4142 \\ 0.53337 \\ 0.4142 \\ 0.53337 \\ 0.4142 \\ 0.53337 \\ 0.53337 \\ 0.53337 \\ 0.53337 \\ 0.53337 \\ 0.53337 \\ 0.53337 \\ 0.573 \\ 0.556 \\ 0.4142 \\ 0.55837 \\ 0.4142 \\ 0.55837 \\ 0.4142 \\ 0.55837 \\ 0.573 \\ 0.556 \\ 0.573 \\ 0.555 \\ 0.5$	0 3 70 70 -448 -448 -448 -152 512 512
$\begin{array}{c} \theta = 65^{\circ} \\ 1.5000 \\ 1.5000 \\ 1.4248 \\ 1.3491 \\ 1.2773 \\ 1.2073 \\ 1.2073 \\ 1.2773 \\ 1.2773 \\ 1.2773 \\ 0.9674 \\ 0.9665 \\ 0.7776 \\ 0$	
$\begin{array}{c} \theta = 60^{\circ} \\ \theta = 60^{\circ} \\ 1.5000 \\ 1.5000 \\ 1.3615 \\ 1.22947 \\ 1.22945 \\ 1.0516 \\ 0.9976 \\ 0.9976 \\ 0.9976 \\ 0.9976 \\ 0.9976 \\ 0.9976 \\ 0.9976 \\ 0.9976 \\ 0.9976 \\ 0.9976 \\ 0.9976 \\ 0.9976 \\ 0.9976 \\ 0.9976 \\ 0.9976 \\ 0.9976 \\ 0.9976 \\ 0.4896 \\ 0.6638 \\ 0.6936 \\ 0.4554 \\ 0.60334 \\ 0.60334 \\ 0.6137 \\ 0.60335 \\ 0.5557 \\ 0.5557 \\ 0.5557 \\ 0.5557 \\ 0.5557 \\ 0.5557 \\ 0.5355 \\ 0.5357 \\ 0.5357 \\ 0.5357 \\ 0.5355 \\ 0.555 \\ 0.$	$\begin{array}{c} 0\\ 48-24\sqrt{3}\\ -496+200\sqrt{3}\\ 1920-560\sqrt{3}\\ -3520+640\sqrt{3}\\ -372-256\sqrt{3}\\ -1024\end{array}$
0.5.3.5.4. Values of $(I/A^*)(aA/a)^{1}(aI,K)$ for spheres \circ $\theta = 35^{\circ}$ $\theta = 45^{\circ}$ $\theta = 55^{\circ}$ θ \circ $\theta = 35^{\circ}$ $\theta = 45^{\circ}$ $\theta = 55^{\circ}$ θ 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.4663 1.4450 1.44019 1.3879 1.3748 1.3718 1.3866 1.3708 1.3235 1.2325 1.3382 1.3748 1.3886 1.3708 1.3263 1.2373 1.2373 1.2373 1.3886 1.3382 1.3382 1.3382 1.3382 1.3382 1.1473 1.0071 1.0884 1.0339 1.3382 1.1233 1.11879 1.1473 1.0070 1.0170 1.1332 1.1332 1.11879 1.1473 1.0073 0.9815 0.9971 0.9816 0.9755 1.11770 1.0278 0.9317 0.92896 0.8816 0.7912	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 -8 184 -1136 2752 -2816 1024
$\begin{array}{c c} 1 & (1/A^{-}) ((1/A^{-}) ((1/A^{-})) ((1/A^{-$	0 12 1536 1536 3328 3328 -1024
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0 \\ -268 \\ 1536 \\ -3328 \\ -3328 \\ 3072 \\ -1024 \end{array}$
$\begin{array}{c} \begin{array}{c} \partial = 35^{\circ} \\ \hline \theta = 35^{\circ} \\ \hline \theta = 35^{\circ} \\ \hline 1.5000 \\ \hline 1.5000 \\ \hline 1.4634 \\ \hline 1.4634 \\ \hline 1.4638 \\ \hline 1.3492 \\ \hline 1.3479 \\ \hline 1.1474 \\ \hline 1.1070 \\ \hline 1.0670 \\ \hline 1.0670 \\ \hline 1.0670 \\ \hline 1.0670 \\ \hline 0.9145 \\ \hline 0.914 \\ \hline 0.$	$\begin{array}{c} 0\\ -24\\ 488\\ -2192\\ 4032\\ -3328\\ 1024\end{array}$
0 0 <td>47 2007 6407 567 3 24 24</td>	47 2007 6407 567 3 24 24
Ia $\theta = 25^{\circ} - \theta$ $\theta = 25^{\circ} - \theta$ 1.5000 1.5000 1. 1.4739 1. 1.4739 1. 1.3593 1. 1.3593 1. 1.3593 1. 1.3593 1. 1.3593 1. 1.3593 1. 1.2573 1. 1.1987 1. 1.2573 1. 1.1987 1. 1.1312 1. 1.1312 1. 1.1312 1. 1.1312 1. 1.1312 1. 1.1312 1. 1.0297 0. 0.9294 0. 0.8646 0. 0.83340 0. 0.7744 0. 0.7748 0. 0.7748 0. 0.7748 0. 0.7748 0. 0.79351 1. 1.7551 1. 1.7557 1. <td>$\begin{array}{c} 0\\ 48+24\sqrt{3}\\ -496-200\sqrt{3}\\ 1920+560\sqrt{3}\\ -3520-640\sqrt{3}\\ -372+256\sqrt{3}\\ -1024\end{array}$</td>	$\begin{array}{c} 0\\ 48+24\sqrt{3}\\ -496-200\sqrt{3}\\ 1920+560\sqrt{3}\\ -3520-640\sqrt{3}\\ -372+256\sqrt{3}\\ -1024\end{array}$
$\begin{array}{cccc} & \theta = 20^{\circ} \\ 1.5000 & 1.5000 \\ 1.5000 & 1.5000 \\ 1.4782 & 1.4782 \\ 1.4782 & 1.4058 \\ 1.4058 & 1.3538 \\ 1.3538 & 1.364 \\ 1.20103 & 1.1494 \\ 1.2103 & 1.1494 \\ 1.2103 & 1.1799 \\ 1.1494 & 1.2014 \\ 1.2014 & 0.014 \\ 0.0144 & 0.0914 \\ 0.0014 & 0.014 \\ 0.0014 & 0.0014 \\ 0.0014 $	3 -73 518 518 2432 1792 512
$\begin{array}{c} \theta = 15^{\circ} \\ \theta = 15^{\circ} \\ 1.5000 \\ 1.4809 \\ 1.4809 \\ 1.4401 \\ 1.4401 \\ 1.41900 \\ 1.3567 \\ 1.3562 \\ 1.3013 \\ 1.301$	3 -73 518 -1600 2432 -1792 -1792 512
$ \begin{array}{c} \theta = 10^{\circ} \ell \\ \theta = 10^{\circ} \ell \\ 1.5000 \\ 1.4829 \\ 1.4829 \\ 1.4476 \\ 1.4476 \\ 1.4476 \\ 1.4473 \\ 1.3683 \\ 1.363 \\ 1.3683 \\ 1.3683 \\ 1.3683 \\ 1.3890 \\ 1.3890 \\ 1.3890 \\ 1.3883 \\ 1.3272 \\ 1.0327 \\ 1.0327 \\ 1.0327 \\ 1.0327 \\ 1.0327 \\ 1.0327 \\ 1.0327 \\ 1.0327 \\ 0.9583 \\ 0.9297 \\ 0.9297 \\ 0.9297 \\ 0.9297 \\ 0.9297 \\ 0.9297 \\ 0.9297 \\ 0.9297 \\ 0.9297 \\ 0.9283 \\ K_3^{\circ} \\ K$	$(\mathcal{C}^{-1})_{0j}^{0j}$ $(\mathcal{C}^{-1})_{1j}^{0j}$ $(\mathcal{C}^{-1})_{2j}^{0j}$ $(\mathcal{C}^{-1})_{3j}$ $(\mathcal{C}^{-1})_{4j}^{0j}$
$\begin{array}{c} \theta = 5^{\circ} \\ 1.5000 \\ 1.4842 \\ 1.4842 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4563 \\ 1.3398 \\ 1.$	
$\begin{array}{l} \theta = 0^{\circ} \\ 1.5000 \\ 1.5000 \\ 1.4845 \\ 1.4845 \\ 1.4862 \\ 1.4862 \\ 1.4866 \\ 1.4360 \\ 1.4360 \\ 1.4360 \\ 1.3355 \\ 1.$	
μR 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	

where z and T(z) are the path lengths for the incident and diffracted beams, respectively. τ is the radius, along the line of the incident beam, of the ellipse described by the cross section of the crystal in the plane of diffraction, shown in Fig. 6.3.3.2. The equation for the ellipse is

$$\tau = R(1 - \sin^2 \theta \sin^2 \chi)^{-1/2}.$$
 (6.3.3.15)

The outgoing elliptical radius v satisfies

$$Av^4 + Bv^2 + C = 0, (6.3.3.16)$$

where

$$A = [1 - \sin^2 \theta \sin^2 \chi]^2$$

$$B = -2R^2[1 - \sin^2 \theta \sin^2 \chi]$$

$$-2(\tau - z)^2[\cos^2 \theta - \sin^2 \theta \cos^2 \chi] \sin^2 2\theta \sin^2 \chi$$

$$C = R^4 + 2R^2(\tau - z)^2 \sin^2 2\theta \sin^2 \chi \cos 2\theta$$

$$+ (\tau - z)^4 \sin^4 2\theta \sin^4 \chi.$$

In the case where the cylinder axis is inclined at an angle Γ to the φ axis, these equations become

$$A = [1 - \sin^2(\theta + \beta) \sin^2 \chi_1]^2$$

$$B = -2R^2[1 - \sin^2(\theta + \beta) \sin^2 \chi_1]$$

$$- 2(\tau - z)^2[\cos^2(\theta + \beta)$$

$$- \sin^2(\theta + \beta) \cos^2 \chi_1] \sin^2 2\theta \sin^2 \chi_1$$

$$C = R^4 + 2R^2(\tau - z)^2 \sin^2 2\theta \sin^2 \chi_1 \cos 2(\theta + \beta)$$

$$+ (\tau - z)^4 \sin^4 2\theta \sin^4 \chi_1,$$

where

$$\tan \beta = \sin \Gamma \sin \varphi / [\sin \Gamma \cos \chi \cos \varphi + \sin \chi \cos \Gamma].$$

The roots of the quadratic equation (6.3.3.16) for v^2 are real and positive for reflection from within the crystal. The convergent path length T is given by the positive root of the triangle formula

$$T^{2} - 2T(\tau - z)\cos 2\theta + (\tau - z)^{2} - v^{2} = 0.$$
 (6.3.3.17)

It should be noted that the volume of the specimen irradiated changes with the angular settings of the diffractometer. Normalization to constant volume requires that the absorption

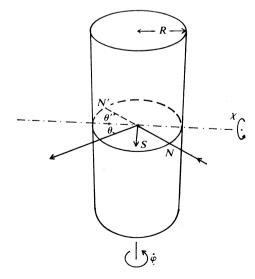


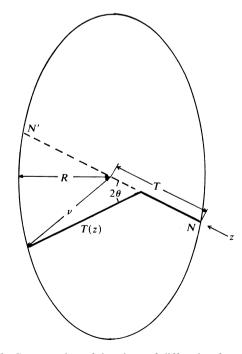
Fig. 6.3.3.1. Geometry of the Eulerian cradle with the axis of a Fig. 6.3.3.2. Cross section of the plane of diffraction for a cylindrical cylindrical specimen coincident with the φ axis.

correction be multiplied by the volume-correction factor $[1 - \sin^2(\theta - \beta)\sin^2\chi_1]^{-1/2}.$

The method readily extends to the case of a cylindrical window or sheath, such as used for mounting an unstable crystal of conventional size. The correction in this case is

$$\exp[-\mu(\tau_2 - \tau_1 + \nu_2 - \nu_1)] = \exp\left(-\mu(R_2 - R_1)\{[1 - \sin^2(\theta - \beta)\sin^2\chi_1]^{-1/2} + [1 - \sin^2(\theta + \beta)\sin^2\chi_1]^{-1/2}\}\right),$$
(6.3.3.18)

where the subscripts 1 and 2 apply to the inner and outer radii, respectively.


The integral in equation (6.3.3.14) may be evaluated by Gaussian quadrature, *i.e.* by approximation as a weighted sum of the values of the function at the N zeros X_i of the Legendre polynomial of degree N in the interval [-1, +1]. The weights w_i for the points are tabulated by Abramowitz & Stegun (1964). Further details are given in Subsection 6.3.3.4. The emergent path lengths $T(z_1)$ and $T(z_2)$ for the case of the sheath are calculated as functions of the Gaussian variable X_i using the linear transformation

$$z_i = \tau_1 X_i + \tau_2, \quad i = 1, 2, \dots, N.$$
 (6.3.3.19)

This transformation converts the Gaussian variable X into the beam coordinate z for each i of the N summation points.

6.3.3.3. Analytical method for crystals with regular faces

For a crystal with regular faces, (6.3.3.1) may be integrated exactly, giving the correction in analytical form. In its simplest form, the analytical method applies to specimens with no reentrant angles. It is efficient for crystals with a small number of faces. Its accuracy does not depend on the size of the absorption coefficient. The principles can be illustrated by reference to the two-dimensional case of a triangular crystal shown in Fig. 6.3.3.3.

specimen coincident with the φ axis.

The crystal is divided into polygons *ADC*, *AFD*, *CDE*, and *BEDF* as shown. The radiation incident on each polygon enters through one face of the crystal, and is either absorbed or emerges through another. Within each polygon, the loci of constant absorption are the straight lines dotted in Fig. 6.3.3.3. It is convenient to subdivide *BEDF* into the triangles *BEF* and *EDF*. By the derivation of an expression for the contribution of a triangular crystal to the scattering, including allowance for absorption, and with the sum taken over the component triangles *ADC*, *AFD*, *CDE*, *BEF*, and *EDF*, the correction for absorption can be calculated.

A three-dimensional crystal is divided into polyhedra, for each of which the radiation enters through one crystal face and leaves through another. Corners for the polyhedra are of five types, namely,

(1) Crystal vertex.

(2) An intersection of a ray through a lit vertex with an opposite face.

(3) An intersection of an incident ray through a lit (i) vertex with a plane of diffracted (d) rays through a lit (d) edge, and the corresponding intersection with incident and diffracted beams interchanged.

(4) An intersection of a plane of incident rays through a lit (i) edge with an opposite edge, and its equivalent.

(5) An intersection on a shaded face of planes of incident and diffracted rays through (i) and (d) edges.

For each vertex x, y, z, the sum of the path lengths to each of the crystal faces is calculated, and multiplied by the absorption coefficient μ to give the optical path length using the equation

$$\mu r_{i} = \mu (d_{i} - a_{i}x - b_{j}y - c_{j}z)/(a_{j}u + b_{j}v + c_{j}w),$$

where u, v, w are the direction cosines for the beam direction, and $a_j x + b_j y + c_j z = d_j$ is the equation for the crystal face. The minimum for all *j* is the path length to the surface.

The analytical expression for the scattering power for each polyhedron, including the effect of absorption, can be expressed in a convenient form by subdividing the polyhedra into tetrahedra. The auxiliary points define the corners of the tetrahedra.

The total diffracted intensity is proportional to the sum of contributions, one from each tetrahedron, of the form

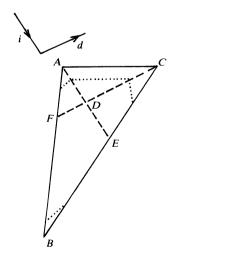


Fig. 6.3.3.3. The crystal *ABC* divided into polygons by the dashed lines AE and *CF* parallel to the incident (*i*) and diffracted (*d*) beams, respectively. A locus of constant absorption is shown dotted.

$$R_t = 6V_t e^{-g} H(1)$$

$$=\frac{6V_{i}}{(b+c)}e^{-g}\bigg\{\frac{h(a)-h(a+b)}{b}-\frac{h(a+b)-h(a+b+c)}{c}\bigg\},$$
(6.3.3.20)

where

$$h(x) = \frac{1 - e^{-x}}{x}.$$
 (6.3.3.21)

 V_t is the volume of the tetrahedron. For a crystal with Cartesian coordinate vertices 1, 2, 3, and 4,

$$V_{t} = \frac{1}{6} \begin{vmatrix} x_{1} - x_{2} & x_{1} - x_{3} & x_{1} - x_{4} \\ y_{1} - y_{2} & y_{1} - y_{3} & y_{1} - y_{4} \\ z_{1} - z_{2} & z_{1} - z_{3} & z_{1} - z_{4} \end{vmatrix}.$$
 (6.3.3.22)

The g_i are optical path lengths (*i.e.* path lengths rescaled by the absorption coefficient) ordered so that

$$g_1 < g_2 < g_3 < g_4$$

and

$$g = g_1, \quad a = g_2 - g_1, \quad b = g_3 - g_2, \quad c = g_4 - g_3.$$

(6.3.3.23)

The transmission factor for the crystal is the sum of the scattering powers for all the tetrahedra $\sum R_t$ divided by the volume $\sum V_t$. The equality of the total volume to the sum of the V_t values for the component tetrahedra provides a useful check on the accuracy of the calculations, since the total volume is independent of the beam directions, and must be the same for all reflections.

When any of *a*, *b*, and *c* are small, asymptotic forms are required for the expressions in (6.3.3.20). For $\varepsilon < 0.3 \times 10^{-2}$, and

10 . 2 .01

$$a < \varepsilon \qquad h(a) = 1 - a/2 + a^2/3!$$

$$h(b + a) = h(b) + ah_1(b) + a^2h_2(b)/2;$$

$$b < \varepsilon \qquad h(a + b) = h(a) + bh_1(a) + b^2h_2(a)/2$$

$$[h(a) - h(a + b)]/b$$

$$= -h_1(a) - bh_2(a)/2 - b^2h_3(a)/3!;$$

$$c < \varepsilon \qquad [h(a + b) - h(a + b + c)]/c$$

$$= -h_1(a + b) - ch_2(a + b)/2$$

$$-c^2h_3(a + b)/3!;$$

$$b, c < \varepsilon \qquad H(1) = h_2(a)/2 + (2b + c)h_3(a)/3!$$

$$+ (3b^2 + 3bc + c^2)h_4(a)/4!;$$

$$a, c < \varepsilon \qquad h(a) = 1 - a/2 + a^2/3!$$

$$[h(a + b) - h(a + b + c)]/c$$

$$= -h_1(a + b) - ch_2(a + b)/2$$

$$-c^2h_3(a + b)/3!;$$

$$a, b < \varepsilon \qquad h(a + b) = 1 - (a + b)/2 + (a + b)^2/3!$$

$$[h(a) - h(a + b)]/b$$

$$= 1/2 - a/3 - b/3! + a^2/8 + ab/8 + b^2/4!;$$

$$a, b, c < \varepsilon \qquad H(1) = \frac{1}{3!} - \frac{a + b}{8} + (b - c)/4!$$

$$+ [(a + b + c)(4a + 3b)$$

$$+ 2a^2 + ab + c^2]/5!;$$

$$(6.2.2.21)$$

(6.3.3.24)

where the *n*th derivative of h(x) is

$$h_n(x) = (-)^n h(x) - \{(-)^n + n h_{n-1}(x)\}/x.$$
 (6.3.3.25)

An alternative method of calculating the scattering power of each Howells polyhedron is based on a subdivision into slices. Within each polyhedron, the loci of constant absorption are planes, equivalent to the dotted lines for the two-dimensional example in Fig. 6.3.3.3. The loci may be determined from the path lengths of rays diffracted at each vertex of the polyhedron. The sum of the path lengths in the incident and diffracted directions is found for each vertex, and the loci determined by interpolation. The slices into which each polyhedron is divided are bounded at the upper and lower faces by planes parallel to the loci of constant absorption, such that at least one vertex of the polyhedron lies on those planes.

The volume of the slice is determined from the coordinates of the vertices on each of the opposite faces. Dummy vertices are inserted if necessary to make the number of vertices on the top and bottom faces identical. For simplicity, an axis (z) is chosen perpendicular to the upper face. This locus of constant absorption with N_v vertices x_i, y_i, z_i has an area

$$D_U = 1/2 \sum_{i=1}^{N_v} (x_i y_{i+1} - y_i x_{i+1}) = E/2.$$
 (6.3.3.26)

The corresponding vertices on the lower face may be written $x_i + q\Delta x_i$, $y_i + q\Delta y_i$, $z_i + q\Delta z$, with q = 1. The lower face has an area

$$D_L = 1/2(E + qF + q^2G), \quad q = 1,$$
 (6.3.3.27)

where

$$F = \sum_{i=1}^{N_{v}} \Delta x_{i} y_{i+1} + \Delta y_{i+1} x_{i} - \Delta x_{i+1} y_{i} - \Delta y_{i} x_{i+1}$$

and

$$G = \sum_{i=1}^{N_{v}} \Delta x_{i} \Delta y_{i+1} - \Delta y_{i} \Delta x_{i+1}$$
 (6.3.3.28)

so that the volume of the slice is

$$V_s = 1/2(z_L - z_U)(E + F/2 + G/3).$$
 (6.3.3.29)

The diffracting power of an element of the slice, allowing for absorption, is $D(q) \exp(-\mu T) dz$, where *T* is the total path length of the rays diffracted from this plane. Because of the definition of the Howells polyhedron, the path length

$$T = T_U + q(T_L - T_U) = T_U + q\Delta T.$$
 (6.3.3.30)

Thus, the total diffracting power of the slice

$$R_{s} = 1/2(z_{L} - z_{U}) \exp(-\mu T_{U})$$

$$\times \int_{0}^{1} (E + qF + q^{2}G) \exp(-\mu q\Delta T) dq$$

$$= 1/2(z_{L} - z_{U}) \exp(-\mu T_{L}) \left\{ \frac{-E}{\mu\Delta T} - \frac{F(\mu\Delta T + 1)}{(\mu\Delta T)^{2}} - G\frac{(\mu\Delta T^{2} + 2\mu\Delta T + 2)}{(\mu\Delta T)^{3}} \right\}$$

$$- 1/2(z_{L} - z_{U}) \exp(-\mu T_{U}) \left\{ \frac{-E}{\mu\Delta T} - \frac{F}{(\mu\Delta T)^{2}} - \frac{2G}{(\mu\Delta T)^{3}} \right\}.$$
(6.3.3.31)

The transmission factor for the Howells polyhedron is obtained by summing over the slices, and that for the whole crystal is obtained by summing over the polyhedra, i.e.

$$A = \sum R_s / \sum V_s, \qquad (6.3.3.32)$$

where the crystal volume is $\sum V_s$.

 $dA/d\mu$, required in calculating \overline{T} for the extinction correction, can be obtained by differentiating R_s for each slice with respect to μ , summing the derivatives for each slice, and dividing by $\sum V_s$. To reduce rounding errors in calculation, it may be desirable to rescale the crystal dimensions so that the path lengths are of the order of unity, multiplying the absorption coefficient by the inverse of the scale factor. Further details are given by Alcock, Pawley, Rourke & Levine (1972).

The number of component tetrahedra or slices, which determines the time and precision required for calculation, is a rapidly increasing function of the number of crystal faces. The method may be computationally prohibitive for crystals with complex shapes.

6.3.3.4. Gaussian integration

The integral in the transmission factor in equation (6.3.3.1) may be approximated by a sum over grid points spaced at intervals through the crystal volume. It is usually convenient to orient the grid parallel to the crystallographic axes. The grid is non-isometric, the points being chosen weighted by Gaussian constants to minimize the difference between the weighted sum at those points and the exact value of the integral.

Thus, an integral such as $\int_a^b f(y) dy$ may be approximated (Stroud & Secrest, 1966) by

$$\int_{a}^{b} f(y) \, \mathrm{d}y = \frac{b-a}{2} \sum_{i=1}^{n} w_i f(y_i) + R_n, \qquad (6.3.3.33)$$

where

$$y_i = \left(\frac{b-a}{2}\right)X_i + \left(\frac{b+a}{2}\right),$$

 X_i is the *i*th zero of the Legendre polynomial $P_n(X)$,

$$w_i = \frac{2}{(1 - X_i^2)} [P'_n(X_i)]^2, \qquad (6.3.3.34)$$

and

$$R_n = \frac{(b-a)^{2n+1}(n!)^4}{(2n+1)[(2n!)]^3} 2^{2n+1} f^{(2n)}(\xi), \quad -1 < \xi < 1. \quad (6.3.3.35)$$

When applying this to the calculation of a transmission coefficient (Coppens, 1970), we commence with the *a*-axis grid points x_i selected such that

$$x_i = x_{\min} + (x_{\max} - x_{\min})X_i, \qquad (6.3.3.36)$$

where the X_i are the Gaussian constants.

For each x_i , a line is drawn parallel to **b** and points are then selected such that

$$y_{ij} = y_{\min}(x_i) + [y_{\max}(x_i) - y_{\min}(x_i)]X_j.$$
(6.3.3.37)

The procedure is repeated for the *c* direction, yielding

$$z_{ijk} = z_{\min}(x_i, y_j) + [z_{\max}(s_i, y_j) - z_{\min}(x_i, y_j)]X_k. \quad (6.3.3.38)$$

To calculate the absorption corrections, the incident and diffracted wavevectors are determined. For each grid point, the sum T_{ijk} of the path lengths for the incident and diffracted beams is evaluated. The sum that approximates the transmission coefficient is then

$$A = 1/V \sum_{i,j,k} w_i w_j w_k \exp(-\mu T_{ijk}).$$
 (6.3.3.39)

Gaussian constants are tabulated by Abramowitz & Stegun (1964).

Alternative schemes based on Monte Carlo and threedimensional parabolic integration are described by de Graaff (1973, 1977).

6.3.3.5. Empirical methods

Some crystals do not have regular faces, or cannot be measured because these are obscured by the crystal mounting. If corrections based on measurements of the crystal shape are not feasible, absorption measurements may be estimated, either from the intensities of the same reflection at different azimuthal angles ψ (see Subsection 6.3.3.6), or from measurements of equivalent reflections, by empirical methods.

There are variants of the method related to differences in experimental technique. The principles may be illustrated by reference to the procedure for a four-circle diffractometer (Flack, 1977).

Intensities H_m are measurements for a reflection **S** at the angular positions Ω_m , 2θ , χ_m , φ_m . Corrected intensities I_m are to be derived from the measurements by means of a correction factor A_m^* such that

$$I_m = A_m^* H_m. (6.3.3.40)$$

It is assumed that the correction can be written in the form of a rapidly converging Fourier series

$$A_m^* = \sum_{i,j,k,l=-\infty}^{\infty} a_{ijkl} \cos(i\Omega + j2\theta + k\chi + l\varphi) + b_{ijkl} \sin(i\Omega + j2\theta + k\chi + l\varphi).$$
(6.3.3.41)

The form of the geometrical terms may be simplified by taking advantage of the symmetry of the four-circle diffractometer. If it is assumed that diffraction is invariant to reversal of the incident and diffracted beams, the settings Ω , 2θ , χ , φ ; Ω , -2θ , $-\chi$, $\pi + \varphi$; $-\Omega$, -2θ , $\pi + \chi$, φ ; $-\Omega$, 2θ , $\pi - \chi$, $\pi + \varphi$; $\pi + \Omega$, -2θ , χ , φ ; $\pi + \Omega$, 2θ , $-\chi$, $\pi + \varphi$; $\pi - \Omega$, 2θ , $\pi + \chi$, φ ; $\pi - \Omega$, 2θ , $\pi + \chi$, φ ; the setting $\pi - \Omega$, -2θ , $\pi + \chi$, φ ; $\pi - \Omega$, -2θ , $\pi + \chi$, $\pi + \varphi$ are equivalent. In shorthand notation, the series (6.3.3.41) reduces to

$$A_m^* = \sum a_{\text{cccc}} + a_{\text{cccc}} + a_{\text{sccc}} + a_{\text{scsc}} + a_{\text{scsc}} + a_{\text{scsc}} + a_{\text{scsc}} + a_{\text{scsc}} + a_{\text{scsc}} + b_{\text{scss}} + b_{\text{scsss}} + b_{\text{scss}} + b_{$$

The range of indices for some terms may be restricted by noting other symmetries in the diffraction experiment. Thus, equation (6.3.3.40) will define the absorption correction for measurements of the incident-beam intensity, with $\Omega = 2\theta = 0$. Since with this geometry the correction will be invariant to rotation about the χ axis, the coefficients for the function involving $\cos(i\Omega)\cos(j2\theta)$ must vanish if the χ index, k, is non-zero. By similar reasoning with the φ axis along the incident beam, one may deduce that coefficients for $\sin(i\Omega)\cos(j2\theta)\sin(k\chi)$ will vanish unless l = 0.

Because for a given reflection all measurements are made at the same Bragg angle, the 2θ dependence of the correction cannot be determined by empirical methods. This factor in A is obtained from the absorption correction for a spherical crystal of equivalent radius.

Since an empirical absorption correction is defined only to within a scale factor, the scale must be specified by applying a constraint such that

$$\frac{1}{N_{\rm S}} \sum_{\rm S} A_{\rm S}^* = 1, \qquad (6.3.3.43)$$

where $N_{\rm S}$ is the number of independent reflections. Equation (6.3.3.42) may be expressed in the shorthand notation

$$A_{\mathbf{S}}^* = \sum_{p=0} C_p f_{p\mathbf{S}},\tag{6.3.3.44}$$

where C_p is the coefficient in a term such as a_{ccsc} or b_{ccss} and f_{pS} is the corresponding geometrical function. Labelling the constant geometrical term with a value of unity as f_0 and rearranging leads to

$$A_{\mathbf{S}}^{*} = 1 + \sum_{p=1} C_{p} \left\{ f_{p\mathbf{S}} - \frac{1}{N_{\mathbf{S}}} \sum_{\mathbf{S}} f_{p\mathbf{S}} \right\} = 1 + \sum_{p=1} C_{p} g_{p\mathbf{S}},$$
(6.3.3.45)

which defines g_{pS} .

Equation (6.3.3.40) is now expressed as

$$I_{mS} = H_{mS} + H_{mS} \sum_{p=1} C_p g_{pS}, \qquad (6.3.3.46)$$

in which the coefficients C_p are to be chosen so that the values of I_{mS} for each S are as near equal as possible. Since the values within each set will not be exactly equal, we rewrite (6.3.3.46) as

$$\Delta_{mS} - H_{mS} = -I_{S} + H_{mS} \sum_{p=1}^{N} C_{p} g_{pS}, \qquad (6.3.3.47)$$

in which the mean intensity $I_{\rm S}$ and the C_p are chosen to minimize $\sum_{{\rm S}.m} w_{\rm S}^2 \Delta_{m{\rm S}}^2$, where

$$\Delta_{m\mathbf{S}} = I_{m\mathbf{S}} - I_{\mathbf{S}},\tag{6.3.3.48}$$

and $w_{\rm S}$ is the weight for that reflection.

If the equation to be solved

$$-w_{\mathbf{S}}H_{m\mathbf{S}} \simeq -w_{\mathbf{S}}I_m + \sum_{p=1} C_p g_{p\mathbf{S}}w_{\mathbf{S}}I_{m\mathbf{S}}$$
(6.3.3.49)

is written in the shorthand form

$$\boldsymbol{D} = \boldsymbol{F}\boldsymbol{C},\tag{6.3.3.50}$$

in which **D** corresponds to $-w_{\rm S}H_{\rm mS}$, the I_m and C_p correspond to **C**, with $(-w_{\rm S})$ and $w_{\rm S}g_{p\rm S}H_{m\rm S}$ corresponding to **F**, the solution to (6.3.3.50) can be determined from the normal equations

$$\boldsymbol{C} = (\boldsymbol{F}^T \boldsymbol{F})^{-1} \boldsymbol{F}^T \boldsymbol{D}, \qquad (6.3.3.51)$$

where \mathbf{F}^{T} is the transpose of \mathbf{F} . This procedure suffers from the disadvantages of requiring a matrix inversion whenever the set of trial functions (*i.e.* those multiplied by the coefficients C_{p}) is modified. The tedious inversion of the normal equations, described by (6.3.3.51), may be replaced by a simple inversion via the Gram-Schmidt orthogonalizing process, *i.e.* by calculating a matrix \mathbf{W} with mutually orthogonal columns \mathbf{W}_{j} such that

$$W_{1} = F_{1}$$

$$W_{j} = F_{j} - \sum_{k=1}^{j-1} (F_{j} \cdot W_{k}) W_{k} / W_{k}^{2}.$$
(6.3.3.52)

The minimizing of $(D - FC)^2$ is replaced by minimizing $(D - WA)^2$. Differentiating with respect to a_i yields

$$a_j = \frac{\boldsymbol{D} \cdot \boldsymbol{W}_j}{\boldsymbol{W}_i^2}.$$
 (6.3.3.53)

If equation (6.3.3.52) is written as

$$F = WB$$
,

where the upper triangular matrix \boldsymbol{B} is

$$b_{ij} = F_j \cdot W_i / W_i^2, \quad i < j; \quad b_{ij} = 1, i = j;$$

$$b_{ii} = 0, i > j, \quad (6.3.3.54)$$

the vector determining the coefficients is

$$C = B^{-1}A, \tag{6.3.3.55}$$

in which the inversion of B is straightforward.

In difficult cases, with data affected by errors in addition to absorption, the method described may give physically unreasonable absorption corrections for some reflections. In such cases, it may help to impose the approximate constraints

$$\sum_{\mathbf{S}} w_{\mathbf{S}}^2 H_{m\mathbf{S}} / \sum_{\mathbf{S}} w_{\mathbf{S}}^2 = \sum_{\mathbf{S}} w_{\mathbf{S}}^2 I_{m\mathbf{S}} / \sum_{\mathbf{S}} w_{\mathbf{S}}^2.$$
(6.3.3.56)

If m = 1, 2, ..., M, this reduces to the M constraint equations

$$\sum_{p=1} C_p \left\{ \frac{\sum_{\mathbf{S}} w_{\mathbf{S}}^2 H_{m\mathbf{S}} g_{p\mathbf{S}}}{\sum_{\mathbf{S}} w_{\mathbf{S}}^2} \right\} = \sum_{p=1} C_p \left\{ \frac{\varepsilon w_m \sum_{\mathbf{S}} w_{\mathbf{S}}^2 H_{m\mathbf{S}} g_{p\mathbf{S}}}{\sum_{\mathbf{S}} w_{\mathbf{S}}^2} \right\} = 0,$$
(6.3.3.57)

where w_m is the square root of the weight for the weighted mean of the equivalent reflections H_m , defined as

$$H_m = \sum_{\mathbf{S}} w_{\mathbf{S}}^2 H_{m\mathbf{S}} / \sum_{\mathbf{S}} w_{\mathbf{S}}^2 \quad \text{for each } \mathbf{S}, \qquad (6.3.3.58)$$

and the multiplier ε controls the strength with which the additional constraints are enforced. With the additional constraint equations, the sum of squares to be minimized, corresponding to (6.3.3.48), becomes

$$\sum_{\mathbf{S},m} w_{\mathbf{S}}^2 (I_{m\mathbf{S}} - I_m)^2 + \sum_m \varepsilon^2 w_m^2 (H_m - I_m)^2.$$
(6.3.3.59)

A closely related procedure expressing the absorption corrections as Fourier series in polar angles for the incident and diffracted beams is described by Katayama, Sakabe & Sakabe (1972). A similar method minimizing the difference between observed and calculated structure factors is described by Walker & Stuart (1983). Other experimental techniques for

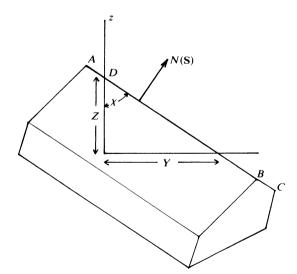


Fig. 6.3.3.4. Crystal oriented with the normal N(S) to the face *ABCD* in the plane of view.

measuring data for empirical absorption corrections that could be analysed by the Fourier-series method are described by Kopfmann & Huber (1968), North, Phillips & Mathews (1968), Flack (1974), Stuart & Walker (1979), Lee & Ruble (1977a,b), Schwager, Bartels & Huber (1973), and Santoro & Wlodawer (1980).

6.3.3.6. Measuring crystals for absorption

In general, A depends both on the shape of the crystal and on its orientation with respect to the incident and diffracted beams. To measure the shape of the crystal, a measuring microscope is mounted in the xy plane, and the crystal rotated about the z axis at right angles to that plane. A rotation about the z axis changes the orientation of the crystal x and y coordinates with respect to those (X and Y) for the measuring device. The x axis is directed from crystal to microscope when the angle of rotation about the z axis (φ) is zero. During rotation, each face will at some stage be oriented with its normal $N(\mathbf{S})$ perpendicular to the line of view, *i.e.* in the XY plane for instrument coordinates. If the angle of rotation at that orientation is denoted φ_N , the appearance of a typical face ABCD will be as indicated in Fig. 6.3.3.4.

The equation for the plane is

$$x \sin \varphi_N + y \cos \varphi_N + z \tan \chi = Y$$

or, equivalently,

$$(x\sin\varphi_N + y\cos\varphi_N)\cot\chi + z = Z.$$

For a crystal oriented on an Eulerian cradle, it is necessary to specify the orientation of the crystal, *i.e.* the angles Ω , χ , φ in which the measurements of the diffraction intensities are made. In a reflecting position, the reciprocal-lattice vector **S**, which is normal to the Bragg planes, bisects the angle between the incident and diffracted beams, as shown in Fig. 6.3.3.5.

If the crystal is rotated about the reciprocal-lattice vector **S**, varying the angle ψ , the crystal remains in a reflecting position. That is, there is a degree of freedom in the scattering experiment that enables the same reflection to be observed at different sets of Ω , χ , φ values. The path length varies with ψ , except for spherical crystals. In order to calculate an absorption correction, the value of ψ and its origin must be specified. For a crystal mounted on an Eulerian cradle, the bisecting position, with $\Omega = \theta$, is usually chosen as the origin for ψ .

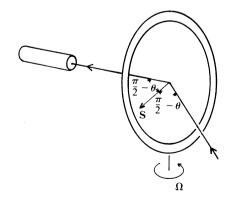


Fig. 6.3.3.5. Geometry of the Eulerian cradle in the bisecting position.