International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 6.4, p. 612

Section 6.4.13.3. The absorbing crystal

T. M. Sabinea

a ANSTO, Private Mail Bag 1, Menai, NSW 2234, Australia

6.4.13.3. The absorbing crystal

| top | pdf |

Only the Bragg case for thick crystals will be considered here. The asymptotic values of A, B, and C are [1/(2\mu L^{*})], [1/(\mu L^{*})], and [2/(\mu L^{*})], respectively, so that [ BCx=2N_{{c}}^2\lambda ^2F^2/\mu ^2. \eqno (6.4.13.4)]For BCx small, the integrated intensity, [I_{{B}}], is given by [ I_{{B}}=(Q_\theta /2\mu)[1-(N_{{c}}F/)2]V^{2/3}. \eqno (6.4.13.5)]For BCx large, [ I_{{B}}=(1/2\sqrt {2})[1-(\mu /2\lambda N_{{c}}F)^2]\lambda ^2N_{{\rm c}}FV^{2/3}/\sin 2\theta. \eqno (6.4.13.6)]It can be shown that the parameter g (which has no relation to the parameter g used to describe the mosaic-block distribution) used by Zachariasen (1945[link]) in discussing this case is equal to −μ/2NCF. Hence, on his y scale, [ I_{{B}}=(\pi /2\sqrt {2})[1-g^2]. \eqno (6.4.13.7)]The value he obtained is IB = 8/3[1 − 2|g|], while Sabine & Blair (1992[link]) found IB = 8/3[1 − 2.36|g|].

References

First citation Sabine, T. M. & Blair, D. G. (1992). The Ewald and Darwin limits obtained from the Hamilton–Darwin energy transfer equations. Acta Cryst. A48, 98–103.Google Scholar
First citation Zachariasen, W. H. (1945). Theory of X-ray diffraction in crystals. New York: John Wiley, Dover.Google Scholar








































to end of page
to top of page