7.1. DETECTORS FOR X-RAYS

The tube is not uniformly sensitive across its diameter. The maximum sensitivity is confined to the cylindrical volume shown cross-hatched in the figure. The diameter of this sensitive area depends on the gas filling and the geometry of the tube. For maximum efficiency, the X-ray beam should be directed along and close to the anode, but should not strike it. Geiger counters are not critically temperature-dependent. Linearity of response is limited by the dead-time following the discharge initiated by the absorption of a quantum and the magnification of the few hundred ions produced to some millions by their acceleration under the electric field. To produce this amplification, a certain minimum threshold voltage is required. Above this minimum, there is a plateau extending for several hundred volts within which the number of quanta detected is essentially independent of the applied voltage and the size of the pulses is essentially independent of the energy of the absorbed quantum.

Geiger counters are simple to use and show little deterioration even after prolonged use. However, since the pulses are all of about the same size, pulse-height discrimination cannot be used, and the long dead-time limits linearity of response unless special monitoring circuits are used (Eastabrook & Hughes, 1953). They have been almost completely superseded by other types of counter, described in Sections 7.1.3.–7.1.8.

7.1.3. Proportional counters (By W. Parrish)

7.1.3.1. The detector system

The commonest types of detector for both powder and single-crystal diffractometry are proportional counters and especially scintillation counters (Section 7.1.4). The detector system consists of the detector itself, a high-voltage power supply, a single-channel pulse-height analyser, and a scaling circuit, as shown schematically in Fig. 2.3.3.5. For position-sensitive detectors (Section 7.1.3.3) and solid-state detectors (Sections 7.1.4.2 and 7.1.5), multichannel analysers are necessary. The X-ray manufacturers and a number of electronic companies provide complete detector systems, often integrated with the computer data-collection system.

7.1.3.2. Proportional counters

Proportional counters are available in various sizes and gas fillings. A typical detector is a metal cylinder about 2 cm in diameter and 8-10 cm long, with central wire anode and 0.13 mm Be side window, Fig. 7.1.2.1(b). Some have an opposite exit window to transmit the unabsorbed beam and thus avoid fluorescence from the wall. The tube may be filled with Xe to atmospheric pressure for high absorption, and a small amount of quenching gas such as CO₂ or CH₄ is added to limit the discharge. When an X-ray quantum is absorbed, the discharge current is the sum of the Townsend avalanches of the secondary electrons and the gas amplification is about 10⁴. A chargesensitive preamplifier is generally used. Some proportional counters are filled to several atmospheres pressure to increase the gas absorption. Very thin organic film windows are used for very long wavelengths as in fluorescence spectroscopy. They may transmit moisture, and gas may migrate through them so that flow counters are used to replenish the gas. This requires careful control of the pressure to avoid changes in the counting efficiency.

7.1.3.3. Position-sensitive detectors

One variety of position-sensitive detector, in which the photon absorptions in different regions are counted separately, is a

special type of proportional counter. The following description applies primarily to one-dimensional detectors for powder diffractometry; two-dimensional (area) detectors are treated in Section 7.1.6.

Position-sensitive detectors (PSD's) are being used in increasing number for various powder-diffraction studies. They have the great advantage of simultaneously recording a much larger region of the pattern than conventional counters. The difference in receiving apertures determines the gain in time. The position at which each quantum is detected is determined electronically by the system computer and stored in a multichannel analyser. There is a digital addition of each incident photon address and the angular address of the diffractometer.

The PSD's are available in short straight form and as longer detectors with curvature to match the diffractometer focusing circle. The short detectors can be used in a stationary position to cover a small angular range or scanned. Göbel (1982) developed a high-speed method using a short (8° window) scanning PSD with $50\,\mu m$ linear resolution in the diffractometer geometry shown in Fig. 2.3.1.12(b). He was able to record at speeds of a hundred or more degrees a minute, and patterns with reasonably good statistical precision in several tens of degrees a minute. This is faster than conventional energy-dispersive diffraction and has the advantage of much higher resolution.

The PSD should be selected to match best the diffraction geometry. The detector is sensitive across the 1-2 cm gasabsorption path. If the diffracted rays are not perpendicular to the window, the parallax causes broadening and loss of resolution. This becomes important in the focusing geometries and can be minimized if the diffractometer and specimen focusing circles are nearly coincident. A large loss of resolution would occur in the conventional geometry, Fig. 2.3.1.3, because only the central ray of a single reflection would be normal to the window. The problem is minimized in powder-camera geometry with a thin rod specimen, Fig. 2.3.4.1(a), where the entire pattern can be recorded with a long, curved PSD (Ballon, Comparat & Pouxe, 1983); see also Shishiguchi, Minato & Hashizume (1986),Lehmann, Christensen, Feidenhans'l & Nielsen (1987), Wölfel (1983), and Foster & Wölfel (1988).

7.1.3.4. Resolution, discrimination, efficiency

The topics of energy resolution, pulse-height discrimination, quantum-counting efficiency, and linearity are common to proportional, scintillation and solid-state counters, and are treated in Subsections 7.1.4.3.–7.1.4.5.

7.1.4. Scintillation and solid-state detectors (By W. Parrish)

7.1.4.1. Scintillation counters

The most frequently used detector is the scintillation counter (Parrish & Kohler, 1956). It has two elements: a fluorescent crystal and a photomultiplier tube, Fig. 7.1.2.1(c). For X-ray diffraction, a cleaved single-crystal plate of optically clear NaI activated with about 1% Tl in solid solution is used. The crystal is hygroscopic and is hermetically sealed in a holder with thin Be entrance window and glass back to transmit the visible-light scintillations. The size and shape of the crystal can be selected, but is usually a 2 cm diameter disc or a rectangle $20 \times 4 \times 1$ mm thick. A small thin crystal has been used to reduce the background from radioactive samples (Kohler & Parrish, 1955). A viscous mounting fluid with about the same refractive index as the glass is used to reduce light reflection and to attach it to the end of the photomultiplier tube. The crystal and