International
Tables for Crystallography Volume C Mathematical, physical and chemical tables Edited by E. Prince © International Union of Crystallography 2006 |
International Tables for Crystallography (2006). Vol. C. ch. 7.1, pp. 628-629
|
For the very highest counting rates, it is necessary to abandon all methods in which individual X-ray photons are counted and instead to measure the ionization current produced by the incident X-rays on either cathode or anode. Fig. 7.1.6.6
shows the principles of a cathode read-out linear PSD. The cathode is divided into strips, each of which is connected to a capacitor and to an input terminal of a CMOS analogue multiplexer. The charge accumulated on each capacitor in a given time period is transferred to a charge-sensitive amplifier when the associated channel is selected by an addressing signal. The output voltage of the amplifier is digitized by means of an analogue-to-digital converter. The complete pattern is scanned by incrementing the addresses sequentially: The resolution is that of the strip spacing (∼0.5 mm) and the principle can be extended to two dimensions (Hasegawa, Mochiki & Sekiguchi, 1981
; Mochiki, Hasegawa, Sekiguchi & Yoshioka, 1981
; Mochiki, 1984
; Mochiki & Hasegawa, 1985
). Global count rates in excess of 109 s−1 are possible with this method. Lewis (1994
) has published a comprehensive survey of the present status and the future potentialities of gas-filled position-sensitive detectors.
References




