International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 7.1, pp. 632-633

Section 7.1.6.6. Some applications

U. W. Arndtb

7.1.6.6. Some applications

| top | pdf |

The use of linear and area detectors has increased markedly in recent years (Arndt, 1988[link]). No new principles for the construction of linear devices have emerged, but more examples of each type have become commercially available.

Many more structures have been determined with area-detector diffractometers. The most commonly used gas-filled detectors at present are the delay-line read out MWPC first described by Xuong et al. (1978[link]), as developed by Hamlin (1985[link]), and a detector using a modification of the coded-anode read out due to Burns (Durbin, Burns, Moulai, Metcalf, Freymann, Blum, Anderson, Harrison & Wiley, 1986[link]; Howard, Gilliland, Finzel, Poulos, Ohlendorf & Salemne, 1987[link]; Derewenda & Helliwell, 1989[link]). Corresponding instruments in the USSR and their use have been described by Anisimov, Zanevskii, Ivanov, Morchan, Peshekhonov, Chan Dyk Tkhan, Chan Khyo Dao, Cheremukhina & Chernenko (1986[link]) and by Andrianova, Popov, Kheiker, Zanevskii, Ivanov, Peshekhonov & Chernenko (1986[link]).

A two-dimensional photon-counting X-ray detector has been described by Collett & Podolsky (1988[link]).

The widespread use of area-detector methods in single-crystal studies, especially for macromolecular material, has been greatly aided by the development of complete software packages to deal with all aspects of data collection and handling. Earlier program packages (Howard, Nielson & Xuong, 1985[link]; Pflugrath & Messerschmidt, 1987[link]; Thomas, 1987[link]) tended to be specific to one particular detector and its associated diffractometer. However, following the initiative of Bricogne (1987[link]) and with financial assistance from EEC funds, a group of scientists, including most of the originators of the earlier packages, are now collaborating in writing, extending, and maintaining a comprehensive device-independent position-sensitive-detector software package.

References

First citation Andrianova, M. E., Popov, A. N., Kheiker, D. M., Zanevskii, Yu. V., Ivanov, A. B., Peshekhonov, V. D. & Chernenko, S. P. (1986). Use of coordinate X-ray diffractometer with a high-resolution chamber to obtain diffraction data for single crystals of proteins. Dokl. Akad. Nauk SSR, 28, 122–125. Translated in Sov. Phys. Dokl. (USA), 31, 358–361.Google Scholar
First citation Anisimov, Yu. S., Zanevskii, Yu. V., Ivanov, A. B., Morchan, V. D., Peshekhonov, V. D., Chan Dyk Tkhan, Chan Khyo Dao, Cheremukhina, G. A. & Chernenko, S. P. (1986). Two-dimensional automated X-ray detector for diffraction experiments. Pribory i Tekhnika Eksperimenta, No. 4, pp. 60–62. Translated in Instrum. Exp. Tech. 29, 821–823.Google Scholar
First citation Arndt, U. W. (1988). Position-sensitive detectors in condensed matter studies. Nucl. Instrum. Methods, A273, 459–462.Google Scholar
First citation Bricogne, G. (1987). The EEC cooperative programming workshop on position-sensitive detector software. Computational aspects of protein crystal data analysis, edited by J. R. Helliwell, P. A. Machin & M. Z. Papiz. SERC Daresbury Laboratory Report DL/SC1/R25, pp. 120–145.Google Scholar
First citation Collett, B. & Podolsky, R. J. (1988). 2-D photon counter for X-ray imaging. Rev. Sci. Instrum. 59, 1122–1126.Google Scholar
First citation Derewenda, Z. & Helliwell, J. R. (1989). Calibration tests and use of a Nicolet/Xentronics imaging proportional chamber mounted on a conventional source for protein crystallography. J. Appl. Cryst. 22, 123–137.Google Scholar
First citation Durbin, R. M., Burns, R., Moulai, J., Metcalf, P., Freymann, D., Blum, M., Anderson, J. E., Harrison, S. C. & Wiley, D. C. (1986). Protein, DNA and virus crystallography with a focused imaging proportional counter. Science, 232, 1127–1132.Google Scholar
First citation Hamlin, R. (1985). Multiwire area X-ray diffractometers. Methods Enzymol. 114, 416–452.Google Scholar
First citation Howard, A. J., Gilliland, G. L., Finzel, B. C., Poulos, T. L., Ohlendorf, D. H. & Salemne, F. R. (1987). The use of an imaging proportional counter in macromolecular crystallography. J. Appl. Cryst. 20, 383–387.Google Scholar
First citation Howard, A. J., Nielson, C. & Xuong, Ng. H. (1985). Software for a diffractometer with multiwire area detector. Methods Enzymol. 114, 452–472.Google Scholar
First citation Pflugrath, J. W. & Messerschmidt, A. (1987). FAST system software. Computational aspects of protein crystal data analysis, edited by J. R. Helliwell, P. A. Machin & M. Z. Papiz. SERC Daresbury Laboratory Report DL/SC1/R25, p. 149–161.Google Scholar
First citation Thomas, D. J. (1987). The balance between the relative capabilities of X-ray area detectors, computer and interface hardware and software packages. Computation aspects of protein crystal data analysis, edited by J. R. Helliwell, P. A. Machin & M. Z. Papiz, SERC Daresbury Laboratory Report DL/SC1/R25, pp. 162–166.Google Scholar
First citation Xuong, Ng. H., Freer, S. T., Hamlin, R., Neilsen, C. & Vernon, W. (1978). The electronic stationary-picture method for high-speed measurement of reflection intensities from crystals with large unit cells. Acta Cryst. A34, 289–296.Google Scholar








































to end of page
to top of page