International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 7.4, p. 659

Section 7.4.3.2.2. Thomas–Fermi model

N. G. Alexandropoulosa and M. J. Cooperb

7.4.3.2.2. Thomas–Fermi model

| top | pdf |

This statistical model of the atomic charge density (Thomas, 1927[link]; Fermi, 1928[link]) considerably simplifies the calculation of coherent and incoherent scattering factors since both can be written as universal functions of K and Z. Numerical values were first calculated by Bewilogua (1931[link]); more recent calculations have been made by Brown (1966[link]) and Veigele (1967[link]). The method is less accurate than Waller–Hartree theory, but it is a much simpler computation.

References

First citation Bewilogua, L. (1931). Incoherent scattering of X-rays. Phys. Z. 32, 740–744.Google Scholar
First citation Brown, W. D. (1966). Cross-sections for coherent/incoherent X-ray scattering. Reports D2-125136-1 and 125137-1. Boeing Co.Google Scholar
First citation Fermi, E. (1928). Statistical methods of investigating electrons in atoms. Z. Phys. 48, 73–79.Google Scholar
First citation Thomas, L. H. (1927). Calculation of atomic fields. Proc. Cambridge Philos. Soc. 33, 542–548.Google Scholar
First citation Veigele, W. J. (1967). Research of X-ray scattering cross sections: final report. Report KN-379-67-3(R). Kaman Sciences Corp.Google Scholar








































to end of page
to top of page