International
Tables for Crystallography Volume C Mathematical, physical and chemical tables Edited by E. Prince © International Union of Crystallography 2006 |
International Tables for Crystallography (2006). Vol. C. ch. 7.4, p. 659
|
The matrix elements of (7.4.3.4) can be evaluated exactly for the hydrogen atom. If one-electron wavefunctions in many-electron atoms are modelled by hydrogenic orbitals [with a suitable choice of the orbital exponent; see, for example, Slater (1937
)], an analytical approach can be used, as was originally proposed by Bloch (1934
).
Hydrogenic calculations have been shown to predict accurate K- and L-shell photoelectric cross sections (Pratt & Tseng, 1972). The method has been applied in a limited number of cases to K-shell (Eisenberger & Platzman, 1970
) and L-shell (Bloch & Mendelsohn, 1974
) incoherent scattering factors, where it has served to highlight the deficiencies of the Waller–Hartree approach. In chromium, for example, at an incident energy of ∼17 keV and a Bragg angle of 85°, the L-shell Waller–Hartree cross section is higher than the `exact' calculation by ∼50%. A comparison of Waller–Hartree and exact results for 2s electrons, taken from Bloch & Mendelsohn (1974
), is given in Table 7.4.3.3
for illustration. The discrepancy is much reduced when all electrons are considered.
Sexact is the incoherent scattering factor calculated analytically from a hydrogenic atomic model. Simp is the incoherent scattering factor calculated by taking the Compton profile derived in the impulse approximation and truncating it for ΔE < EB. SW–H is the Waller–Hartree incoherent scattering factor. Data taken from Bloch & Mendelsohn (1974 ![]() |
In those instances where the exact method has been used as a yardstick, the comparison favours the `relativistic integrated impulse approximation' outlined below, rather than the Waller–Hartree method.
References




