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8.1. LEAST SQUARES

can be extended to nonlinear model functions by first finding, by
numerical methods, a point in parameter space, X,, at which the
gradient vanishes and then expanding the model functions about
that point in Taylor’s series, retaining only the linear terms.
Equation (8.1.2.4) then becomes

M(x) ~ M(x)) + A(X — X,), (8.1.2.10)

where A; = dM;(x)/dx; evaluated at x = X,. Because we have
already found the least-squares solution, the estimate

X =X, + (ATWA) A" Wy — M(x,)]
=X, + Hly — M(x,)]

reduces to X = x,,. It is important, however, not to confuse x,,
which is a convenient origin, with X, which is a random variable
describable by a joint p.d.f. with mean X, and a variance-
covariance matrix V, = HV ,H", reducing to (A" V;'A)™" when
w=v"

This variance—covariance matrix is the one appropriate to the
linear approximation given in (8.1.2.10), and it is valid (and the
estimate is unbiased) only to the extent that the approximation is
a good one. A useful criterion for an adequate approximation
(Fedorov, 1972) is, for each j and k,
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where o; is the estimated standard deviation or standard
uncertainty (Schwarzenbach, Abrahams, Flack, Prince &
Wilson, 1995) of y;. This criterion states that the curvature of
S(y, x) in a region whose size is of order ¢ in observation space is
small; it ensures that the effect of second-derivative terms in the
normal-equations matrix on the eigenvalues and eigenvectors of
the matrix is negligible. [For a further discussion and some
numerical tests of alternatives, see Donaldson & Schnabel
(1986).]

The process of refinement can be viewed as the construction of
a conditional p.d.f. of a set of model parameters, x, given a set
of observations, y. An important expression for this p.d.f. is
derived from two equivalent expressions for the joint p.d.f. of x
and y:

D,(X,y) = Pc(XY)Pp(y) = P(YX)Pyy(X). (8.1.2.13)

Provided &,(y) > 0, the conditional p.d.f. we seek can be
written

D(x]y) = P(YX) Py (X)/ Py (Y)- (8.1.2.14)

Here, the factor [1/®,,(y)] is the factor that is required to
normalize the p.d.f. @.(y|x) is the conditional probability of
observing a set of values of y as a function of x. When the
observations have already been made, however, this can also be
considered a density function for x that measures the likelihood
that those particular values of y would have been observed for
various values of x. It is therefore frequently written £(x]y), and
(8.1.2.14) becomes

D(x]y) = cl(x]y)Py(x), (8.1.2.15)

where ¢ = [1/®,(y)] is the normalizing constant. &,,(x), the
marginal p.d.f. of x in the absence of any additional
information, incorporates all previously available information
concerning x, and is known as the prior p.d.f., or, frequently,
simply as the prior of x. Similarly, ®@,(x|y) is the posterior

p.d.f., or the posterior, of x. The relation in (8.1.2.14) and
(8.1.2.15) was first stated in the eighteenth century by Thomas
Bayes, and it is therefore known as Bayes’s theorem (Box &
Tiao, 1973). Although its validity has never been in serious
question, its application has divided statisticians into two
vehemently disputing camps, one of which, the frequentists,
considers that Bayesian methods give nonobjective results,
while the other, the Bayesians, considers that only by careful
construction of a ‘noninformative’ prior can true objectivity be
achieved (Berger & Wolpert, 1984).

Diffraction data, in general, contain no phase information, so
the likelihood function for the structure factor, F, given a value
of observed intensity, will have a value significantly different
from zero in an annular region of the complex plane with a
mean radius equal to |F'|. Because this is insufficient information
with which to determine a crystal structure, a prior p.d.f. is
constructed in one (or some combination) of two ways. Either
the prior knowledge that electron density is non negative is used
to construct a joint p.d.f. of amplitudes and phases, given
amplitudes for all reflections and phases for a few of them
(direct methods), or chemical knowledge and intuition are used
to construct a trial structure from which structure factors can be
calculated, and the phase of F, is assigned to F,,. Both of
these procedures can be considered to be applications of Bayes’s
theorem. In fact, F_,. for a refined structure can be considered a

. . calc
Bayesian estimate of F.

8.1.3. Implementation of linear least squares

In this section, we consider in detail numerical methods for
solving linear least-squares problems, that is, the situation where
(8.1.2.4) and (8.1.2.5) apply exactly.

8.1.3.1. Use of the OR factorization

The linear least-squares problem can be viewed geometrically
as the problem of finding the point in a p-dimensional subspace,
defined as the set of points that can be reached by a linear
combination of the columns of A, closest to a given point, y, in
an n-dimensional observation space. Since this is equivalent to
finding the orthogonal projection of point y into that subspace, it
is not surprising that an orthogonal decomposition of A helps to
solve the problem. For convenience in this discussion, let us
remove the weight matrix from the problem by defining the

standardized design matrix by
Z=UA, (8.1.3.1)

where U is the upper triangular Cholesky factor of W.

Consider the least-squares problem with the QR factorization
of Z, as given in Subsection 8.1.1.1. For y' = U(y —b),
(8.1.2.5) becomes

S=( —-2Zx)'(y — Zx)
=[0"(y — Zx]"[Q" (v — Zx)],
which reduces to
S=(0y —Rx)"(Q7y —Rx)+y"Q,QTy.  (8.1.3.3)

The second term in (8.1.3.3) is independent of x, and is therefore
the sum of squared residuals. The first term vanishes if

Rx = 0Ly, (8.1.3.4)

which, because R is upper triangular, is easily solved for x. The
QR decomposition of Z therefore leads naturally to the following
algorithm for solving the linear least-squares problem:

(8.13.2)
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8. REFINEMENT OF STRUCTURAL PARAMETERS

(1) compute the QR factorization of Z;

(2) compute sz,

(3) solve Rx = Qyy for x.

(4) compute the residual sum of squares by y'y —y Q,0%y

(5) compute the variance—covariance  matrix from
V.,=R 'R Hr.

8.1.3.2. The normal equations

Let us now consider the relationship of the QR procedure for
solving the linear least-squares problem to the classical method
based on the normal equations. The normal equations can be
derived by differentiating (8.1.3.2) and equating the result to a
null vector. This yields

Z"zx = 7"y (8.1.3.5)
The al%onthm is therefore to compute the cross-product matrix,
Z"Z, and the right-hand side, d = Z"y’, and to solve the
resultmg system of equations, Bx = d. This is usually accom-
phshed by computmg the Cholesky decomposition of B, that is
B = C"C, where C is upper triangular, and then solving the two
triangular systems C'v=d and Cx =v. Because Z = OR,
equation (8.1.3.5) becomes

R"Q,0,Rx = R"Q}y, (8.1.3.6)

or
R"Rx = R"Qly (8.1.3.7)

It is clear that R is the Cholesky factor of Z”Z, although it is
formed in a different way. This procedure requires of order
(np*)/2 operations to form the product Z”Z and p* /3 operations
for the Cholesky decomposition. In some situations, the extra
time to compute the QR factorization is justified because of
greater stability, as will be discussed below. Most other
quantities of statistical interest can be computed directly from
the QR factorization.

8.1.3.3. Conditioning

The condition number of Z, which is defined (Subsection
8.1.1.1) as the square root of the ratio of the largest to the
smallest eigenvalue of Z"Z, is an indicator of the effect a small
change in an element of Z will have on the elements of
(Z"Z) 'and of X. A large value of the condition number means
that small errors in computing an element of Z, owing possibly
to truncation or roundoff in the computer, can introduce large
errors into the elements of the inverse matrix. Also, when the
condition number is large, the standard uncertainties of some
estimated parameters will be large. A large condition number,
as defined in this way, can result from either scaling or
correlation or some combination of these. To illustrate this,
consider the matrices

777 — <2+8 O)
0 £

Try 1 1—¢
ZZ_(I—E 1 )’

where & represents machine precision, which can be defined as
the smallest number in machine representation that, when added
to 1, gives a result different from 1. By the conventional
definition, both of these matrices have a condition number for Z
of [(2 + €)/€]'*. Because numbers of order ¢ can be perfectly
well represented, however, the first one can be inverted without

and

loss of precision, whereas an inverse for the second would be
totally meaningless. It is good practice, therefore, to factor the
design matrix, Z, into the form

Z =TS, (8.1.3.8)

where S is a p x p diagonal matrix whose elements define some
kind of ‘natural’ unit appropriate to the parameter represented in
each column of Z. The ideal natural unit would be the standard
uncertainty of that parameter, but this is not available until after
the calculation has been completed. If correlation is not too
severe, suitable values for the elements of S, of the same order of
magnitude as those derived from the standard uncertainty, are
the column Euclidean norms, that is

S =|z]| = @'z)"”,

where z; denotes the jth column of Z. This scaling causes all

. T .
diagonal elements of Z° Z to be equal to one, and errors in the
elements of Z will have roughly equal effects.

Il conditioning that results from correlation, as in the second
example above, is more difficult to deal with. It is an indication
that some linear combination of parameters, some eigenvector
of the normal equations matrix, is poorly determined by the
available data. Use of the QR factorization of Z to compute the
Cholesky factor of Z'Z may be advantageous, in spite of the
additional computation time, because better numerical stability
is obtained in marginal situations. As a practical matter,
however, it is important to recognize that an ill conditioned
matrix is a symptom of a flaw in the model or in the
experimental design (or both). Use can be made of the fact
that, although determining the entire set of eigenvalues and
eigenvectors of a large matrix is computationally an inherently
difficult problem, a relatively simple algorithm, known as a
condition estimator (Anderson et al., 1992), can produce a good
approximation to the eigenvector that corresponds to the
smallest eigenvalue of a nearly singular matrix. This informa-
tion can be used in either or both of two ways. First, without
any fundamental modification to the model or the experiment, a
simple, linear transformation of the parameters so that the
problem eigenvector is one of the independent parameters,
followed by rescaling, can resolve the numerical difficulties in
computing the estimates. A common example is the situation
where a phase transition results in the doubling of a unit cell,
with pairs of atoms almost but not quite related by a lattice
translation. A transformation that makes the estimated param-
eters the sums and differences of corresponding parameters in
related pairs of atoms can make a dramatic improvement in the
condition number. Alternatively, the problem eigenvector can
be set to some value determined from theory or from some other
experiment (see Section 8.3.1), or additional data can be
collected that are selected to make that combination of
parameters determinate.

(8.1.3.9)

8.1.4. Methods for nonlinear least squares

Recall (equation 8.1.2.1) that the general, nonlinear problem can
be stated in the form: find the minimum of

S®) = Y wly — M, (8.1.4.1)

i=1

where x is a vector of p parameters, and M(x) represents a set of
model functions that predict the values of observations, y. In this
section, we discuss two useful ways of solving this problem and
consider the relative merits of each. The first is based on
iteratively linearizing the functions M;(x) and approximating
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