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8.1. LEAST SQUARES

The general, relative error test is stated as follows. Two scalar
quantities, a and b, are said to satisfy a relative error test with
respect to a tolerence T if

la — bl
<

(8.1.4.15)
lal

Roughly speaking, if T is of the form 1079 then a and b agree to

q digits. Obviously, there is a problem with this test if a = 0 and

there will be numerical difficulties if a is close to 0. Thus, in

practice, (8.1.4.15) is replaced by

la —bl < (lal + DT, (8.1.4.16)

which reduces to an absolute error test as a — 0. A careful
examination may be required to set this tolerance correctly, but,
typically, if one of the fast, stable algorithms is used, only a few
more iterations are necessary to get six or eight digits if one or
two are already known. Note also that the actual value depends
on ¢, the relative machine precision. It is fruitless to seek more
digits of accuracy than are expressed in the machine representa-
tion.

A test based on condition (1) is often implemented by using the
linear approximation to M or the quadratic approximation to S.
Thus, using the quadratic approximation to S, we can compute
the predicted reduction by

Apred = S(x.) — d"T" W[y — M(x,)]. (8.1.4.17)
Similarly, the actual reduction is
Aot = S(Xc) - S(X+)- (8.1.4.18)

The test then becomes A, <[l+SE)IT, A, =<
[1+S&)IT, and A, <2A,.4. That is, we want both the
predicted and actual reductions to be small and the actual
reduction to agree reasonably well with the predicted reduction.
A typical value for T should be 1074, although the value again
depends on &, and the user is cautioned not to make this tolerance
too loose.

For a test on condition (2), we compute the cosine of the angle
between the vector of residuals and the linear subspace spanned
by the columns of J,

cos¢ = ("' Wy — M(x,)]}/[(@"J" WId)S(x,)]"/>.
(8.1.4.19)

The test is cos ¢ < T, where, again, T should be 10~* or smaller.

Test 3 above is usually only present to prevent the process
from continuing when almost nothing is happening. Clearly, we
do not know X, thus the test is typically that corresponding
elements of x, and x, satisfy (8.1.4.16), where T is chosen to be
1079. A recommended value of g is half the number of digits
carried in the computation, e.g. g =8 for standard 64-bit
(double-precision or 16 digit) calculations. Sometimes, the
relative error test is of the form [(x,); — (x.);|/0; < T, where
o; is the standard uncertainty computed from the inverse Hessian
in the last iteration. Although this test has some statistical
validity, it is quite expensive and usually not worth the work
involved to compute.

8.1.4.5. Recommendations

One situation in which the Gauss-Newton algorithm behaves
particularly poorly is in the vicinity of a saddle point in
parameter space, where the true Hessian matrix is not positive
definite. This occurs in structure refinement where a symmetric
model is refined to convergence and then is replaced by a less
symmetric model. The hypersurface of § will have negative
curvature in a finite sized region of the parameter space for the

less-symmetric model, and it is essential to use a safeguarded
algorithm, one that incorporates a line search or a trust region, in
order to get out of that region.

On the basis of this discussion, we can draw the following

conclusions:

(1) In cases where the fit is poor, owing to an incomplete
model or in the initial stages of refinement, methods based
on the quadratic approximation to S (quasi-Newton
methods) often perform better. This is particularly
important when the model is close to a more symmetric
configuration. These methods are more expensive per
iteration and generally require more storage, but their
greater stability in such problems usually justifies the cost.

(2) With small residual problems, where the model is
complete and close to the solution, a safeguarded
Gauss-Newton method is preferred. The trust-region
implementation (Levenberg-Marquardt algorithm) has
been very successful in practice.

(3) The best advice is to pick a good implementation of either
method and stay with it.

8.1.5. Numerical methods for large-scale problems

Because the least-squares problems arising in crystallography are
often very large, the methods we have discussed above are not
always the most efficient. Some large problems have special
structure that can be exploited to produce quite efficient
algorithms. A particular special structure is sparsity, that is,
the problems have Jacobian matrices that have a large fraction of
their entries zero. Of course, not all large problems are sparse,
so we shall also discuss approaches applicable to more general
problems.

8.1.5.1. Methods for sparse matrices

We shall first discuss large, sparse, linear least-squares
problems (Heath, 1984), since these techniques form the basis
for nonlinear extensions. As we proceed, we shall indicate how
the procedures should be modified in order to handle nonlinear
problems. Recall that the problem is to find the minimum of
the quadratic form [y — Ax]" W[y — Ax], where y is a vector of
observations, Ax represents a vector of the values of a set of
linear model functions that predict the values of y, and W is a
positive-definite weight matrix. Again, for convenience, we
make the transformation y' = Uy, where U is the upper
triangular Cholesky factor of W, and Z = UA, so that the
quadratic form becomes (y' — Zx)"(y' — Zx), and the minimum
is the solution of the system of normal equations,
Z'Zx =Z"y'. Even if Z is sparse, it is easy to see that
H = Z"Z need not be sparse, because if even one row of Z has
all of its elements nonzero, all elements of H will be nonzero.
Therefore, the direct use of the normal equations may preclude
the efficient exploitation of sparsity. But suppose H is sparse.
The next step in solving the normal equations is to compute the
Cholesky decomposition of H, and it may turn out that the
Cholesky factor is not sparse. For example, if H has the form

= xR =
O O =x =
O = O =
= O O =

where x represents a nonzero element, then the Cholesky factor,
R, will not be sparse, but if
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x 0 0 x

0 x 0 x
H= 0 0 x x|’

X X X x

then R has the form

x 0 0 x

0 x 0 x
R= 0 0 x x

0 0 0 x

These examples show that, although the sparsity of R is
independent of the row ordering of Z, the column order can have
a profound effect. Procedures exist that analyse Z and select a
permutation of the columns that reduces the ‘fill’ in R. An
algorithm for using the normal equations is then as follows:

(1) determine a permutation, P (an orthogonal matrix with
one and only one 1 in each row and column, and all other
elements zero), that tends to ensure a sparse Cholesky
factor;

(2) store the elements of R in a sparse format;

(3) compute Z'Z and Z7 Y;

(4) factor PT(ZTZ)P to get R;

(5) solve R’z = P'Z"y/;

(6) solve RX = z;

(7) set X = P'X.

This algorithm is fast, and it will produce acceptable accuracy if
the condition number of Z is not too large. If extension to the
nonlinear case is considered, it should be kept in mind that the
first two steps need only be done once, since the sparsity pattern
of the Jacobian does not, in general, change from iteration to
iteration.

The QR decomposition of matrices that may be kept in
memory is most often performed by the use of Householder
transformations (see Subsection 8.1.1.1). For sparse matrices, or
for matrices that are too large to be held in memory, this
technique has several drawbacks. First, the method works by
inserting zeros in the columns of Z, working from left to right,
but at each step it tends to fill in the columns to the right of the
one currently being worked on, so that columns that are initially
sparse cease to be so. Second, each Householder transformation
needs to be applied to all of the remaining columns, so that the
entire matrix must be retained in memory to make efficient use of
this procedure.

The alternative procedure for obtaining the QR decomposition
by the use of Givens rotations overcomes these problems if the
entire upper triangular matrix, R, can be stored in memory.
Since this only requires about p?/2 locations, it is usually
possible. Also, it may happen that R has a sparse representation,
so that even fewer locations will be needed. The algorithm based
on Givens rotations is as follows:

(1) bring in the first p rows;

(2) find the QR decomposition of this p x p matrix;

3) fori=p+1 ton, do

(a) bring in row i;
(b) eliminate row i using R and at most p Givens rotations.

In order to specify how to use this algorithm to solve the linear
least-squares problem, we must also state how to account for Q.
We could accumulate Q or save enough information to generate
it later, but this usually requires excessive storage. The better
alternatives are either to apply the steps of Q to y’ as we proceed
or to simply discard the information and solve R'Rx = Z"y’'. It
should be noted that the order of rows can make a significant
difference. Suppose

eNeoNoNoNeNeR =
SO OO O =R OO

N

I
"R R R OOOOHN
"R oOoco0cOoOR OO0 O
N ooOoOR®R o0 QCOQ

=
=

The work to complete the QR decomposition is of order p?
operations, because each element below the main diagonal can be
eliminated by one Givens rotation with no fill, whereas for

X X X X X
x 0 0 0 O
x 0 0 0 O
x 0 0 0 O
Z=|x 0 0 0 O
0 x 0 00O
0 0 x 00O
0 0 0 x O
0 0 0 0 x

each Givens rotation fills an entire row,
tion requires of order np? operations.

and the QR decomposi-

8.1.5.2. Conjugate-gradient methods

A numerical procedure that is applicable to large-scale
problems that may not be sparse is called the conjugate-gradient
method. Conjugate-gradient methods were originally designed to
solve the quadratic minimization problem, find the minimum of

S(x) = (1/2)x"Hx — b, (8.1.5.1)

where H is a symmetric, positive-definite matrix. The gradient
of S is

g(x) = Hx — (8.1.5.2)

and its Hessian matrix is H. Given an initial estimate, X,, the
conjugate-gradient algorithm is

(1) define dy, = —g(x,);

2) fork=0,1,2,...,p—1,4d,

(@) o = _dk g(Xk)/d/{Hdkv

(0) X1 = X + 2y

©) = g(Xk+1) g(Xk+1)/ g(Xk) g(x;);
() diyy = —8(X0) + v,y

This algorithm finds the exact solution for the quadratic
function in not more than p steps.

This algorithm cannot be used directly for the nonlinear case
because it requires H to compute ¢, and the goal is to solve the
problem without computing the Hessian. To accomplish this, the
exact computation of « is replaced by an actual line search, and
the termination after at most p steps is replaced by a convergence
test. Thus, we obtain, for a given starting value X, and a general,
nonquadratic function S:

(1) define dy, = —g(x,);

(2) set k =0;

(3) do until convergence

(@) X =X + akdk, where o 1s chosen by a line search;
®) v = g(Xk+1) g8(X1)/ g(Xk) 8(x;);

(©) diyy = —8(Xpp1) + Vel

@k=k+1.

Note that, as promised, H is not needed. In practice, it has
been observed that the line search need not be exact, but that
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periodic restarts in the steepest-descent direction are often
helpful. This procedure often requires more iterations and
function evaluations than methods that store approximate
Hessians, but the cost per iteration is small. Thus, it is often
the overall least-expensive method for large problems.

For the least-squares problem, recall that we are finding the
minimum of

Sx) = (1/2)y — Zx]"[y — Zx], (8.1.5.3)

for which

g(x) = Z'(Zx - y).

By using these definitions in the conjugate-gradient algorithm,
it is possible to formulate a specific algorithm for linear least
squares that requires only the calculation of Z times a vector
and Z” times a vector, and never requires the calculation or
factorization of Z'Z.

In practice, such an algorithm will, due to roundoff error,
sometimes require more than p iterations to reach a solution.
A detailed examination of the performance of the procedure
shows, however, that fewer than p iterations will be required
if the eigenvalues of 777 are bunched, that is, if there are sets
of multiple eigenvalues. Specifically, if the eigenvalues are
bunched into k distinct sets, then the conjugate-gradient
method will converge in k iterations. Thus, significant
improvements can be made if the problem can be transformed
to one with bunched eigenvalues. Such a transformation leads
to the so-called preconditioned conjugate-gradient method. In
order to analyse the situation, let C be a p x p matrix that
transforms the variables, such that

(8.1.5.4)

X = Cx. (8.1.5.5)

Then,

y —Zx=y — ZC'xX.. (8.1.5.6)
Therefore, C should be such that the system Cx = X' is easy to
solve, and (ZC™")"ZC™" has bunched eigenvalues. The ideal
choice would be C = R, where R is the upper triangular factor of
the QR decomposition, since ZR™' = Q,. Q;QZ = I has all of
its eigenvalues equal to one, and, since R is triangular, the
system is easy to solve. If R were known, however, the problem
would already be exactly solved, so this is not a useful
alternative. Unfortunately, no universal best choice seems to
exist, but one approach is to choose a sparse approximation to R
by ignoring rows that cause too much fill in or by making R a
diagonal matrix whose elements are the Euclidean norms of the
columns of Z. Bear in mind that, in the nonlinear case, an
expensive computation to choose C in the first iteration may
work very well in subsequent iterations with no further expense.
One should be aware of the trade off between the extra work per
iteration of the preconditioned-conjugate gradient method versus
the reduction in the number of iterations. This is especially
important in nonlinear problems.

The solution of large, least-squares problems is currently an
active area of research, and we have certainly not given an
exhaustive list of methods in this chapter. The choice of method
or approach for any particular problem is dependent on many
conditions. Some of these are:

(1) The size of the problem. Clearly, as computer memories
continue to grow, the boundary between small and large
problems also grows. Nevertheless, even if a problem can
fit into memory, its sparsity structure may be exploited in
order to obtain a more efficient algorithm.

(2) The number of times the problem (or similar ones) will be
solved. If it is a one-shot problem (a rare occurrence),
then one is usually most strongly influenced by easy-to-
use, existing software. Exceptions, of course, exist where
even a single solution of the problem requires extreme
care.

The expense of evaluating the function. With a compli-
cated, nonlinear function like the structure-factor formula,
the computational effort to determine the values of the
function and its derivatives usually greatly exceeds that
required to solve the linearized problem. Therefore, a full
Gauss—-Newton, trust-region, or quasi-Newton method
may be warranted.

Other structure in the problem. Rarely does a problem
have a random sparsity pattern. Non-zero values usually
occur in blocks or in some regular pattern for which
special decomposition methods can be devised.

The machine on which the problem is to be solved. We
have said nothing about the existing vector and parallel
processors. Suffice it to say that the most efficient
procedure for a serial machine may not be the right
algorithm for one of these novel machines. Appropriate
numerical methods for such architectures are also being
actively investigated.

3)

“4)

o)

8.1.6. Orthogonal distance regression

It is often useful to consider the data for a least-squares problem
to be in the form (¢;,y,), i = 1, ..., n, where the ¢, are considered
to be the independent variables and the y;, the dependent
variables. The implicit assumption in ordinary least squares is
that the independent variables are known exactly. It sometimes
occurs, however, that these independent variables also have
errors associated with them that are significant with respect to the
errors in the observations y;. In such cases, referred to as ‘errors
in variables’ or ‘measurement error models’, the ordinary least-
squares methodology is not appropriate and its use may give
misleading results (see Fuller, 1987).

Let us define M(#;, x) to be the model functions that predict the
y;. Observe that ordinary least squares minimizes the sum of the
squares of the vertical distances from the observed points y; to
the curve M(t,x). If ¢, has an error §;,, and these errors are
normally distributed, then the maximum-likelihood estimate of
the parameters is found by minimizing the sum of the squares of
the weighted orthogonal distances from the point y; to the curve
M(t, x). More precisely, the optimization problem to be solved is
given by

mién i { [yi - M(ti + 8, X)] TWy [yi - M(ti + 4, X)] + SiTWtSi}’
X, i=1

(8.1.6.1)

where Wy and W, are appropriately chosen weights. Problem
(8.1.6.1) 1is called the orthogonal distance regression (ODR)
problem. Problem (8.1.6.1) can be solved as a least-squares
problem in the combined variables x, § by the methods given
above. This, however, is quite inefficient, since such a procedure
would not exploit the special structure of the ODR problem. Few
algorithms that exploit this structure exist; one has been given by
Boggs, Byrd & Schnabel (1987), and the software, called
ODRPACK, is by Boggs, Byrd, Donaldson & Schnabel (1989).
The algorithm is based on the trust-region (Levenberg-
Marquardt) method described above, but it exploits the special
structure of (8.1.6.1) so that the cost of each iteration is no more
expensive than the cost of a similar iteration of the corresponding
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