International Tables for Crystallography (2006). Vol. C, Section 8.1.6, pp. 687-688.

8.1. LEAST SQUARES

periodic restarts in the steepest-descent direction are often
helpful. This procedure often requires more iterations and
function evaluations than methods that store approximate
Hessians, but the cost per iteration is small. Thus, it is often
the overall least-expensive method for large problems.

For the least-squares problem, recall that we are finding the
minimum of

Sx) = (1/2)y — Zx]"[y — Zx], (8.1.5.3)

for which

g(x) = Z'(Zx - y).

By using these definitions in the conjugate-gradient algorithm,
it is possible to formulate a specific algorithm for linear least
squares that requires only the calculation of Z times a vector
and Z” times a vector, and never requires the calculation or
factorization of Z'Z.

In practice, such an algorithm will, due to roundoff error,
sometimes require more than p iterations to reach a solution.
A detailed examination of the performance of the procedure
shows, however, that fewer than p iterations will be required
if the eigenvalues of 777 are bunched, that is, if there are sets
of multiple eigenvalues. Specifically, if the eigenvalues are
bunched into k distinct sets, then the conjugate-gradient
method will converge in k iterations. Thus, significant
improvements can be made if the problem can be transformed
to one with bunched eigenvalues. Such a transformation leads
to the so-called preconditioned conjugate-gradient method. In
order to analyse the situation, let C be a p x p matrix that
transforms the variables, such that

(8.1.5.4)

X = Cx. (8.1.5.5)

Then,

y —Zx=y — ZC'xX.. (8.1.5.6)
Therefore, C should be such that the system Cx = X' is easy to
solve, and (ZC™")"ZC™" has bunched eigenvalues. The ideal
choice would be C = R, where R is the upper triangular factor of
the QR decomposition, since ZR™' = Q,. Q;QZ = I has all of
its eigenvalues equal to one, and, since R is triangular, the
system is easy to solve. If R were known, however, the problem
would already be exactly solved, so this is not a useful
alternative. Unfortunately, no universal best choice seems to
exist, but one approach is to choose a sparse approximation to R
by ignoring rows that cause too much fill in or by making R a
diagonal matrix whose elements are the Euclidean norms of the
columns of Z. Bear in mind that, in the nonlinear case, an
expensive computation to choose C in the first iteration may
work very well in subsequent iterations with no further expense.
One should be aware of the trade off between the extra work per
iteration of the preconditioned-conjugate gradient method versus
the reduction in the number of iterations. This is especially
important in nonlinear problems.

The solution of large, least-squares problems is currently an
active area of research, and we have certainly not given an
exhaustive list of methods in this chapter. The choice of method
or approach for any particular problem is dependent on many
conditions. Some of these are:

(1) The size of the problem. Clearly, as computer memories
continue to grow, the boundary between small and large
problems also grows. Nevertheless, even if a problem can
fit into memory, its sparsity structure may be exploited in
order to obtain a more efficient algorithm.

(2) The number of times the problem (or similar ones) will be
solved. If it is a one-shot problem (a rare occurrence),
then one is usually most strongly influenced by easy-to-
use, existing software. Exceptions, of course, exist where
even a single solution of the problem requires extreme
care.

The expense of evaluating the function. With a compli-
cated, nonlinear function like the structure-factor formula,
the computational effort to determine the values of the
function and its derivatives usually greatly exceeds that
required to solve the linearized problem. Therefore, a full
Gauss—-Newton, trust-region, or quasi-Newton method
may be warranted.

Other structure in the problem. Rarely does a problem
have a random sparsity pattern. Non-zero values usually
occur in blocks or in some regular pattern for which
special decomposition methods can be devised.

The machine on which the problem is to be solved. We
have said nothing about the existing vector and parallel
processors. Suffice it to say that the most efficient
procedure for a serial machine may not be the right
algorithm for one of these novel machines. Appropriate
numerical methods for such architectures are also being
actively investigated.

3)

“4)

o)

8.1.6. Orthogonal distance regression

It is often useful to consider the data for a least-squares problem
to be in the form (¢;,y,), i = 1, ..., n, where the ¢, are considered
to be the independent variables and the y;, the dependent
variables. The implicit assumption in ordinary least squares is
that the independent variables are known exactly. It sometimes
occurs, however, that these independent variables also have
errors associated with them that are significant with respect to the
errors in the observations y;. In such cases, referred to as ‘errors
in variables’ or ‘measurement error models’, the ordinary least-
squares methodology is not appropriate and its use may give
misleading results (see Fuller, 1987).

Let us define M(#;, x) to be the model functions that predict the
y;. Observe that ordinary least squares minimizes the sum of the
squares of the vertical distances from the observed points y; to
the curve M(t,x). If ¢, has an error §;,, and these errors are
normally distributed, then the maximum-likelihood estimate of
the parameters is found by minimizing the sum of the squares of
the weighted orthogonal distances from the point y; to the curve
M(t, x). More precisely, the optimization problem to be solved is
given by

mién i { [yi - M(ti + 8, X)] TWy [yi - M(ti + 4, X)] + SiTWtSi}’
X, i=1

(8.1.6.1)

where Wy and W, are appropriately chosen weights. Problem
(8.1.6.1) 1is called the orthogonal distance regression (ODR)
problem. Problem (8.1.6.1) can be solved as a least-squares
problem in the combined variables x, § by the methods given
above. This, however, is quite inefficient, since such a procedure
would not exploit the special structure of the ODR problem. Few
algorithms that exploit this structure exist; one has been given by
Boggs, Byrd & Schnabel (1987), and the software, called
ODRPACK, is by Boggs, Byrd, Donaldson & Schnabel (1989).
The algorithm is based on the trust-region (Levenberg-
Marquardt) method described above, but it exploits the special
structure of (8.1.6.1) so that the cost of each iteration is no more
expensive than the cost of a similar iteration of the corresponding

687

Copyright © 2006 International Union of Crystallography

http://it.iucr.org/Cb/ch8o1v0001/sec8o1o6/

8. REFINEMENT OF STRUCTURAL PARAMETERS

ordinary least-squares problems. For a discussion of some of the
statistical properties of the resulting estimates, including a
procedure for the computation of the variance-covariance
matrix, see Boggs & Rogers (1990).

8.1.7. Software for least-squares calculations

Giving even general recommendations on software is a difficult
task for several reasons. Clearly, the selection of methods
discussed in earlier sections contains implicitly some recom-
mendations for approaches. Among the reasons for avoiding
specifics are the following:

(1) Assessing differences in performance among various
codes requires a detailed knowledge of the criteria the
developer of a particular code used in creating it. A
program written to emphasize speed on a certain class of
problems on a certain machine is impossible to compare
directly with a program written to be very reliable on a
wide class of problems and portable over a wide range
of machines. Other measures, including ease of main-
tenance and modification and ease of use, and other
design criteria, such as interactive versus batch, stand
alone versus user-callable, automatic computation of
related statistics versus no statistics, and so forth, make
the selection of software analogous to the selection of a
car.

(2) Choosing software requires detailed knowledge of the
needs of the user and the resources available to the user.
Considerations such as problem size, machine size,
machine architecture and financial resources all enter
into the decision of which software to obtain.

(3) A software recommendation made on the basis of today’s
knowledge ignores the fact that algorithms continue to be
invented, and old algorithm continue to be rethought in the
light of new developments and new machine architectures.
For example, when vector processors first appeared,
algorithms for sparse-matrix calculations were very poor
at exploiting this capability, and it was thought that these

new machines were simply not appropriate for such
calculations. Now, however, recent methods for sparse
matrices have achieved a high degree of vectorization.
For another example, early programs for crystallo-
graphic, full-matrix, least-squares refinement spent a
large fraction of the time building the normal-equations
matrix. The matrix was then inverted using a procedure
called Gaussian elimination, which does not exploit the
fact that the matrix is positive definite. Some programs
were later converted to use Cholesky decomposition,
which is at least twice as fast, but many were not because
the inversion process took a small fraction of the total
time. Linear algebra, however, is readily adaptable to
vector and parallel machines, and procedures such as QR
factorization are extremely fast, while the calculation of
structure factors, with its repeated evaluations of trigono-
metric functions, becomes the time-controlling step.

The general recommendation is to analyse carefully the needs
and resources in terms of these considerations, and to seek expert
assistance whenever possible. As much as possible, avoid the
temptation to write your own codes. Despite the fact that the
quality of existing software is far from uniformly high, the
benefits of utilizing high-quality software generally far outweigh
the costs of finding, obtaining, and installing it.

Sources of information on software have improved signifi-
cantly in the past several years. Nevertheless, the task of
identifying software in terms of problems that can be solved;
organizing, maintaining and updating such a list; and informing
the user community still remains formidable.

A current, problem-oriented system that includes both a
problem classification scheme and a network tool for obtaining
documentation and source code (for software in the public
domain) is the Guide to Available Mathematical Software
(GAMS). This system is maintained by the National Institute
of Standards and Technology (NIST) and is continually being
updated as new material is received. It gives references to
software in several software repositories; the URL is http://
math.nist.gov/gams.

688

references

http://it.iucr.org/Cb/ch8o1v0001/references/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [641.000 859.000]
>> setpagedevice

