International Tables for Crystallography (2006). Vol. C, Section 8.3.1, pp. 693-698.

8.3. Constraints and restraints in refinement
By E. PrINCE, L. W. FINGER, AND J. H. KONNERT

In Chapter 8.1, the method of least squares is discussed as a
technique for fitting a theoretical model that contains adjustable
parameters to a set of observations. The discussion is very
general and contains very little mention of what sorts of
quantities the observations are or what the model represents.
In crystallography, the model is a crystal, which is constructed
from identical unit cells that contain atoms, and which diffracts
X-rays, neutrons or electrons in a manner that is characteristic of
the arrangement of those atoms. The sample may be either a
single crystal or a polycrystalline powder, and the observations
are diffracted intensities, which may be fitted directly, as in the
Rietveld method for powders (see Chapter 8.6; also Rietveld,
1969), or converted to derived quantities such as integrated
intensities, squared moduli of structure amplitudes, or the
structure amplitudes themselves. The model generally contains
a scale factor and may contain parameters describing other
experimental effects, such as extinction. Each atom in the unit
cell requires three parameters to describe its mean position and
various parameters to describe random deviations from that
position owing to thermal motion or disorder. Models that treat
each atom independently, however, do not allow for the fact that
a great deal more is known about a crystal initially than simply
its chemical composition. Atoms have fairly definite sizes and
tend to occupy sites whose surroundings conform to a rather
limited set of common configurations. In this chapter, we discuss
ways of using this additional information. First, we shall discuss
the use of constraints to reduce the number of parameters that
must be varied and account for relationships among parameters
that are dictated by the laws of chemistry and physics. Then we
shall discuss the use of restraints, which effectively add to the
number of observations that must be fitted by the model.

8.3.1. Constrained models

The techniques of least squares are applicable for refining almost
any model, but the question of the suitability of the model
remains. The addition of parameters may reduce the residual
disagreement, but lead to solutions that have no physical or
chemical validity. Addition of constraints is one method of
constricting the solutions.

8.3.1.1. Lagrange undetermined multipliers

The classical technique for application of constraints is the use
of Lagrange undetermined multipliers, in which the set of p
parameters, x;, is augmented by p —g¢q (g <p) additional
unknowns, /., one for each constraint relationship desired.
The problem may be stated in the form: find the minimum of

S =3 wly; — MF, 8.3.1.1a)

subject to the condition
ix)=0 k=1,2,....,p—¢q). (8.3.1.10)

This may be shown (Gill, Murray & Wright, 1981) to be
equivalent to the problem: find a point at which the gradient of

§'= éwi[yi - M) +1]§I}~kfk(x) (8.3.1.2)

vanishes. Solving for the stationary point leads to a set of
simultaneous equations of the form

pP—q
3S'/ox; = 3S/ax; + kz 2 f(%)/0x; = 0 (8.3.1.3q)
=1

and
88’ /94, = f(x) = 0. (8.3.1.3b)

Thus, the number of equations, and the number of unknowns, is
increased from p to 2p —g. In cases where the number of
constraint relations is small, and where it may be difficult to
solve the relations for some of the parameters in terms of the
rest, this method yields the desired results without too much
additional computation (Ralph & Finger, 1982). With the large
numbers of parameters, and large numbers of constraints, that
arise in many crystallographic problems, however, the use of
Lagrange multipliers is computationally inefficient and cumber-
some.

8.3.1.2. Direct application of constraints

In most cases encountered in crystallography, constraints may
be applied directly, thus reducing rather than increasing the size
of the normal-equations matrix. For each constraint introduced,
one of the parameters becomes dependent on the remaining set,
and the rank of the remaining system is reduced by one. For p
parameters and p — g constraints, the problem reduces to g
parameters. If the Gauss—Newton algorithm is used (Section

8.1.4), the normal-equations matrix is ATWA, where
A; = OM;/ox;, (8.3.1.4)

and W is a weight matrix. A constrained model, M,(z), maybe
constructed using relations of the form

.,zq).

Applying the chain rule for differentiation, the normal-equations
matrix for the constrained model is B WB, where

x; = gi(21, 2, - - (8.3.1.5)

By, = M%)/, = 3" [0M,(x)/3)(3x;/ ).

J=1

(8.3.1.6)

This may be written in matrix form B = AC, where
Cjx = 0x;/ 3z, defines a p x g constraint matrix. The application
of constraints involves (a) determination of the model to be used,
(b) calculation of the elements of C, and (c) computation of the
modified normal-equations matrix.

The construction of matrix C by a procedure known as the
variable reduction method may be presented formally as follows:
Designate by Z the matrix whose elements are

Zy = 9g;(x)/0x, (8.3.1.7)

and partition Z in the form Z = (U, V), where V is composed of
(p — q) columns of Z chosen to be linearly independent, so that
V is nonsingular. [V is shown as the last (p — g) columns only
for convenience. Any linearly independent set may be chosen.]
The rows of Z form a basis for a (p — g)-dimensional subspace
of the p-dimensional parameter space, and we wish to construct
a basis for z, a g-dimensional subspace that is orthogonal to it,
so that all shifts within that subspace starting at a point where the
constraints are satisfied, a feasible point, leave the values of the
constraint relations unchanged. This basis is used for the
columns of C, which is given by

I
— q
c_(_V_1U>.

(8.3.1.8)
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8. REFINEMENT OF STRUCTURAL PARAMETERS

In this formulation, the columns of V correspond to dependent
parameters that are functions of the independent parameters
corresponding to the columns of U.

Most existing programs provide for the calculation of the
structure factor, F, and its partial derivatives with respect to a
conventional set of parameters, including occupancy, position,
isotropic or anisotropic atomic displacement factors, and
possibly higher cumulants of an atomic density function
(Prince, 1994). The constrained calculation is usually per-
formed by evaluating selected elements, dx;/dz,. Because the
constraint matrix is often extremely sparse, calculation of a
limited sum involving only the nonzero elements is usually
computationally superior to a full matrix multiplication. After
adjustment of the z’s, equations (8.3.1.5) are used to update the
parameters. Using this procedure, it is not necessary to express
the structure factor, or its derivatives, in terms of the refined
parameters. This is particularly important when the constrained
model involves arbitrary molecular shapes or rigid-body
thermal motions.

The need for constraints arises most frequently when the
crystal structure contains atoms in special positions. Here,
certain parameters will be constant or linearly related to others.
If a parameter is constrained to be a constant, the correspond-
ing row of C will contain zeros, and that column will be
ignored. When parameters are linearly dependent on others,
which may occur in trigonal, hexagonal, tetragonal and cubic
space groups, the modification indicated in (8.3.1.6) cannot be
avoided. The constraint relationships among position param-
eters are trivial. Levy (1956) described an algorithm for
determining the constraints that pertain to second and higher
cumulants in the structure-factor formula. Table 8.3.1.1 is a
summary of relations that are found for anisotropic atomic
displacement factors, with a listing of the space groups in
which they occur. Johnson (1970) provides a table listing the
number of unique coefficients for each possible site symmetry
for tensors of various ranks, which is useful information for
verification of constraint relationships.

Another important use of constraints applies to the occupan-
cies of certain sites in the crystal where, for example, a molecule
is disordered in two or more possible orientations or (very
common in minerals) several elements are distributed among
several sites. In both cases, refinement of all of the fractional
occupancies tends to be extremely ill conditioned, because of

COS ¢ COS X COS w — Sin ¢ sin w
— §in @ COS ¥ COS @ — COS @ Sin w
sin x cos w

R =

high correlations between occupancies and atomic displacement
parameters. The overall chemistry, however, may be known
from electron microprobe (Finger, 1969) or other analytic
techniques to much better precision than it is possible to
determine it using diffraction data alone. The constraining
equations for the occupancies of n species in m sites have the
form

m

Z biaij =P

i=1

(8.3.1.9)

where b; is the multiplicity of the ith site, a; is the fractional
occupancy of the jth species in the ith site, and p is the total
number of atoms of species j per unit cell. For a given crystal
structure and composition, the bs and ps are known, and,
furthermore, it is possible to write an additional constraint for
the total occupancy of each site,

a; = 1.
j=1

(8.3.1.10)

If necessary, vacancies may be included as one of the n species
present. In theory, (8.3.1.9) and (8.3.1.10) could be solved for
(n—1) x (m — 1) unknown parameters, a;, with m+n—1
constraint relations, but, in practice, at most one occupancy
factor per site can be refined. When constraints are applied, the
correlations between occupancies and displacement factors are
greatly reduced.

In the analysis of a crystal structure, it may be desirable to test
various constraints on the shape or symmetry of a molecule. For
example, the molecule of a particular compound may have
orthorhombic symmetry in the liquid or vapour phase, but
crystallize with a monoclinic or triclinic space group. Without
constraints, it is impossible to determine whether the crystal-
lization has caused changes in the molecular conformation.
Residual errors in the observations will invariably lead to
deviations from the original molecular geometry, but these may
or may not be meaningful.

With molecular-shape constraints, it is possible to constrain
the geometry to any desired conformation. The first step is to
describe the molecule in a special, orthonormal coordinate
system that has a well defined relationship between the
coordinate axes and the symmetry elements. If this system is
properly chosen, the description of the molecule is easy. The
next step is to describe the transformation between this
orthonormal system and the crystallographic axes. A standard,
orthonormal coordinate system (Prince, 1994) can be con-
structed with its x axis parallel to a and its z axis parallel to c¢*. If
the special system is translated with respect to the standard
system so that they share a common origin, Eulerian angles, w,
X, and ¢, may be used to define a matrix that rotates the special
coordinates into the standard system. Angle w is defined as the
clockwise rotation through which the special system must be
rotated about the z axis of the standard system to bring the z axis
of the special system into the x, z plane of the standard system.
Similarly, angle x is the clockwise angle through which the
resulting, special system must be rotated about the y axis of the
standard system to bring the z axes into coincidence, and, finally,
angle ¢ is the clockwise angle through which the special system
must be rotated about the common z axes to bring the other axes
into coincidence. The overall transformation is given by

COS@COS xSinw + singpcosw  —cos@sin x
—singcos xsinw + cos@cosw  singsin x (8.3.1.11)
sin x sin w cos X

The overall transformation of a vector, x’, from the special
coordinate system to the crystallographic system is given by

x =D 'Rx +t, (8.3.1.12)

where t is the origin offset between the two systems and D is the
upper triangular Cholesky factor (Subsection 8.1.1.1) of the
metric tensor, G, which is defined by

a-a a-b a-c
a-b b-b b-c
a-¢c b-c c-c

G= (8.3.1.13)

Equations (8.3.1.12) are the constraint relationships, and the
refinable parameters include the adjustable parameters in the
special system, the origin offset, and the three rotation angles.
This set of parameters, although it is written in a very different
manner, is a linear transformation of a subset of the conventional
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8.3. CONSTRAINTS AND RESTRAINTS IN REFINEMENT
Table 8.3.1.1. Symmetry conditions for second-cumulant tensors

If more than one condition is applicable for a space group, the site is identified by its Wyckoff notation following the space-group symbol. The stated
conditions are valid only for the first equipoint listed for the position. For space groups with alternative choices of origin, the option with a centre of
symmetry has been selected.

(A) Monoclinic
(1) Site symmetry m, 2, 2/m - four independent elements
(a) B1» = Boz = 0; one principal axis parallel to [010]
All groups with unique axis b
(b) B13 = B3 = 0; one principal axis parallel to [001]
All groups with unique axis ¢

(B) Orthorhombic
(1) Site symmetry m, 2, 2/m - four independent elements
(a) B1, = Bi3 = 0; one principal axis parallel to [100]
P222(i,j, k, 1), P222,(a,b), C222,(a), C222(e,f), F222(e,j), 1222(e,f), 12,2,2,(a), Pmm2(g, h), Pmc2,, Pma2(c), Pmn2,,
Cmm?2(e), Cmc2,, Amm2(d, e), Ama2(b), Fmm2(c), Imm2(d), Ima2(b), Pmmm(u, v), Pnnn(g, h), Pccm(i, j), Pban(g, h), Pmma(k),
Pnna(d), Pmna(a, b, c,d, e, f, h), Pbcm(c), Pmmn(e), Cmcm(a, b, e, f), Cmca(a, b, d, ), Cmmm(n), Cccm(g), Cmma(c, d, h, i, m),
Cccal(e), Fmmm(c, I, m), Fddd(e), Immm(l), Ibam(f), Ibca(c), Imma(a, b, f, h)
(b) B1, = Boz = 0; one principal axis parallel to [010]
P222(m, n, 0, p), P222,(c,d), C222,(b), C222(g, h), F222(f, i), 1222(g, h), 12,2,2,(b), Pmm2(e, ), Cmm2(d), Amm2(c),
Abm2(c), Fmm2(d), Imm2(c), Pmmm(w, x), Pnnn(i, j), Pccm(k, l), Pban(i,j), Pmma(a, b, c,d, g, h, i,j), Pmna(g), Pcca(c),
Pmmm(f), Pbcn, Pnma, Cmca(e), Cmmm(o), Cccm(h), Cmma(e,f,j, k, n), Ccca(f), Fmmm(d, k, n), Fddd(f), Immm(m), Ibam(g),
Ibca(d), Imma(c, d, g, i)
(¢) B3 = B3 = 0; one principal axis parallel to [001]
P222(q,r, s, 1), P2,2,2, C222(i,j, k), F222(g, h), 1222(i, j), 12,2,2,(c), Pcc2, Pma2(a,b), Pnc2, Pba2, Pnn2, Cmm2(c), Ccc2,
Abm2(a, b), Ama2(a), Aba2, Fmm2(b), Fdd2, Iba2, Ima2(a), Pmmm(y, z), Pnnn(k,l), Pccm(a, b, c,d, m,n, o0, p, q), Pban(k, 1),
Pnna(c), Pcca(d, e), Pbam, Pccn, Pbcm(d), Pnnm, Cmem(g), Cmmm(e, f, m, p, q), Ccem(c, d, e, f, i, ], k, [), Cmma(l), Ccca(g, h),
Fmmme, j, 0), Fddd(g), Immm(n), Ibam(c, d, h, i, ), Ibca(e)
(2) Site symmetry mm2, 222, mmm - three independent elements

(a) B1» = Biz = By = 0 principal axes parallel to crystal axes
All space groups

(C) Tetragonal
(1) Site symmetry m, 2, 2/m - four independent elements
(a) B, = Bi3 = 0; one principal axis parallel to [100]
P422(1, m, n, 0), P4,22(j, k, 1, m), 1422(h, i), 14,22(f), I4,md, P82m(i,j, k, [), P42c(g, i), I#2m(f, g), 142d(d), P4/mcc(k, [),
P4 /nbm(k, 1), P4/nnc(i,j), P4/nmm(i), P4,/mmc(o, p), P4,/mcm(l, m), P4,/nbc(h, i), P4,/nnm(i,j), P4,/nmc(g), 14/mmm(n),
14 /mem(j), 14, /amd(c, d, f, h), 14, /acd(e)
(b) B1, = Boz = 0; one principal axis parallel to [010]
P4,22(a, b), P4;22(a, b), PAmm(e,f), P4,mc, [4mm(d), PA2c(h, j), PAm2(j, k), 14m2(i), P4/mmm(s, 1)
(c¢) B3 = By = 0; one principal axis parallel to [001]
P4, P4,, 14, I4,, P4, I4, PA/m, P4,/m, P4/n, P4,/n, I4/m, 14, /a, PA22(i), P42,2(d), P4,22(g, h,i), P4,2,2(c, d), I422(f),
14,22(c), P4ycm(c), PAynm(b), P4cc, P4nc, P4,bc, 14,cd, PA2m(m), PA2c(k, [, m), P42,m(d), PA21c, P4c2(g, h, i), P4b2(e,f),
P4n2(e, h), 14c2(f, g), 142m(h), 142d(c), P4/mmm(p, q), P4/mcc(e, i, m), P4/nnc(g), P4/mbm(i, j), P4/mnc(c,f, h), P4/ncc(e),
P42/mmc(q), P4,/mem(f, k,n), P4,/nbc(f,g), P4,/nnm(h), P4,/mbc(a, c, e,f, h), P4,/mnm(c, h,i), P4,/ncm(f), 14/mmm(l),
14/mem(k), 14, /acd(d)

(d) Bii = B, Biz = —PBy3 one principal axis parallel to [110]
P422(j, k), P42,2(e,f), P4,22(c), P4,2,2, P4,22(n, 0), P4,2,2(e, f), P4;22(c), P4;2,2, 1422(g, ), 14,22(d), P4m2(h, i),
PAc2(e,f), PAb2(g, h), PAn2(g), 14m2(g, h), I14c2(e, h), P4/mcc(j), P4/nbm(e,f,i,j, m), P4/nnc(h), P4/mnc(g), P4,/mmc(n),
P4, /nbc(j), P4,/nnm(e,f, k, 1, m), PA,/mbc(g), 14/mmm(k), I4/mcm(e, i), 14,/amd(g), I4,/acd(f)

(€) B11 = B> Biz = Bos; one principal axis parallel to [110]
14,22(e), P4mm(d), P4bm, Pd,cm(d), Pd,nm(c), I4mm(c), I4cm, P42m(n), P42,m(e), P4n2(f), 142m(i), P4/mmm(r),
P4/mbm(k), P4/nmm(d, e, g, h,j), P4/ncc(f), P4,/mcm(o), P4,/mnm(j), P4,/nmc(f), P4,/ncm(c,d, g, h, i), 14/ mmm(f, m),
14 /mem(1)

(2) Site symmetry mm2, 222, mmm - three independent elements

(a) B, = Biz = By = 0; principal axes parallel to crystal axes
P422, P4,22(a, b, c,d), 1422(c), PAmm, P4,mc, [4mm, 14 ,md, PR2m(e,f), P42c, Pam2, I14m2, 142m(c),
P4/mmmle,f, i, 1, m,n,o), P4/mcc, P4/nnc, P4/nmm, P4,/mmc, P4,/mcm(e), P4,/nbc(a, b), P4,/nnm(c), P4,/nmc,
14/ mmm(c, g, 1,)), I4,/amd
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8. REFINEMENT OF STRUCTURAL PARAMETERS
Table 8.3.1.1. Symmetry conditions for second-cumulant tensors (cont.)

(C) Tetragonal (cont.)
() Bi1 = Ba» Bis = By = 0; principal axes parallel to [110], [110] and [001]
P42,2, P4,22(e,f), P4,2,2, 1422(d), 14,22, PAbm, P4,cm, P4,nm, I4cm, P42m(g, h), P42,m, P4c2, P4b2, P4n2, I4c2, I42m(e),
P4A/mmm(j, k), PA4/nbm, P4/mbm, P4/mnc, P4/ncc, P4,/mcm(a, c, g, h,i,j), P4,/nbc(c), P4,/nnm(d, g), P4,/mbc, P4,/mnm,
P4, /ncm, 14/mmm(h), I14/mcm, 14, /acd
(3) Site symmetry 4, 4, 4/m, 4mm, 42m, 422, 4/mmm - two independent elements
(@) Bi1 = B> Bia = Bis = By; = 0; uniaxial with unique axis parallel to [001]
All space groups

(D) Trigonal (hexagonal axes) and hexagonal
(1) Site symmetry m, 2, 2/m - four independent elements
(a) B3 = B3 = 0; one principal axis parallel to [001]
Pé6, P6,, P6,, P6, P6/m, P6;/m, P622(i), P6,22(e, f), P6,22(e,f), P6cc, Pom2(l, m), P6c2(k), P62m(j, k), P62c(h),
P6/mmm(p, q), P6/mcc(g, i, 1), P6;/mcm(j), P6;/mmc(j)
(b) B11 = By, Bi3 = —Py;3 one principal axis parallel to [110]
P3ml, R3m, P3ml(i), R3m(h), P6mm(e), P6;mc, Pom2(n)
(©) Bi1 = By Bi3 = Bas; one principal axis parallel to [210]
P312, P3,12, P3,12, P31m(i,j), P31c, P622(l, m), P6c2( )
(d) By, =2PB12, 2B13 = Ba3; one principal axis parallel to [100]
P321, P3,21, P3,21, R32, P3ml(e,f, g, h), P3cl, R3m(d, e, f, g), R3c, P622(j, k), P6,22(a), P6522(a), P6,22(g, h), P6,22(g, h),
P6522(g), P62c(g), P6/mmm(o), P6/mcc(j), P6;/mmc(g, i, k)
(e) By, = 2B15, B3 = 0; one principal axis parallel to [210]
P31m, P31m(f, g, k), P6,22(b), P6522(b), P6,22(i,j), P6,22(i,j), P6;22(h), Pomm(d), P6;cm, P62m(i), P6/mmm(n),
P6/mcc(k), P6s/mem(f,i,k)
(2) Site symmetry mm?2, 222, mmm - three independent elements
(@) By =2B15, P13 = Bz = 0; principal axes parallel to [100] and [001]
P622, P6,22, P6,22, Pomm, P62m, P6/mmm, P6/mcc, P6;/mcm, P6;/mmc
() Bi1 = Ba» P13 = Brz = 0; principal axes parallel to [110], [210] and [001]
P6m2
(3) Site symmetry 3, 3, 3m, 32, 3m, 6, 6, 6/m, 6m2, 6mm, 622, 6/mmm - two independent elements
(@) B11 = By =2B12, Biz = Bz = 0; unique axis parallel to ¢
All space groups

(E) Cubic
(1) Site symmetry m, 2, 2/m - four independent elements
(@) Bi» = B3 = 0; one principal axis parallel to [100]
P23, F23, 123, 12,3, Pm3, Pn3, Fm3, Fd3, Im3, Ia3, PA32(h), P4,32(h, i,j), FA32(i), F4,32(f), 1432(g), 14,32(f), P43m(h),
143m(f), P43n, F43c, 143d, Pm3m(k, ), Pn3n(g), Pm3n(k), Pn3m(h), Fm3m(j), Fm3c(i), Fd3c(f), Im3m(j), la3d(f)
() Bi1 = B> P13 = Bas; one principal axis parallel to [110]
P43m(i), F43m, 143m(g), Pm3m(m), Pn3m(k), Fm3m(k), Fd3m(g), Im3m(k)
(¢) By, = Bs3, B2 = —Bi3; one principal axis parallel to [011]
P432(i,j), P4,32(l), F432(g, h), 1432(h), P4,32, 14,32(g), Pn3n(h), Pm3n(j), Pn3m(j), Fm3c(h)
(d) By, = Bs3» B1a = Bi13; one principal axis parallel to [011]
P4,32(k), F4,32(g), 1432(i), P4,32, I4,32(h), Pn3m(i), Fd3m(h, i), Fd3c(g), Im3m(i), la3d(g)
(2) Site symmetry mm2, 222, mmm - three independent elements
(a) B1, = Biz = By = 0; principal axes parallel to crystal axes
P23, 123, Pm3, Pn3, Fm3, Im3, P4,32(d), P43n, Pm3m(h), Pm3n, Fm3c, Im3m(g)
() By = PBs3» Bra = B3 = 0; principal axes parallel to [011], [011] and [100]
P4,32(e, f), FA32, 1432, 14,32, P43m, F43m, [43m, Pm3m(i, j), Pn3m, Fm3m, Fd3m, Im3m(h), la3d
(3) Site symmetry 3, 3, 3m, 32, 3m, 6, 6, 6/m, 6m2, 6mm, 622, 6/mmm - two independent elements
(@) Bi1 = By = Bss, Bia = B3 = PBa3; unique axis parallel to [111]
All space groups
(4) Site symmetry 4, 4, 4/m, 4mm, 42m, 422, 4/mmm - two independent elements
(@) By, = B33, Bia = Bz = Byz = 0; uniaxial with unique axis parallel to [100]
All space groups
(5) Site symmetry 23, m3, 43m, 432, m3m - one independent element
(@) Bi1 = By = Bss, Bia = Bis = B3 = 0; isotropic
All space groups
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8.3. CONSTRAINTS AND RESTRAINTS IN REFINEMENT

crystallographic parameters, so that statistical tests based on the
F ratio or Hamilton’s R ratio (Section 8.4.2; Hamilton, 1964)
may be used to assess significance. Shape constraints differ from
those owing to space group or chemical conditions in that the
constraint equations (8.3.1.12) are not linear functions of the
independent parameters. Thus, the elements of C are not
constants and must therefore be evaluated in each iteration of
the refinement algorithm.

Another area in which application of constraints is important
arises whenever some portion of the structure undergoes
thermal motion as a rigid entity. One means of determining
rigid-motion parameters is to refine the conventional, aniso-
tropic atomic displacement factors of all atoms individually and
to fit a librational model to the resulting thermal factors
(Schomaker & Trueblood, 1968). A problem arises with this
approach because the presence of libration implies curvilinear
motion in the crystallographic system, and thus the probability
density function for an atom that does not lie on the axis of
libration cannot be described by a Gaussian function in a
rectilinear coordinate system. For neutron diffraction, where H
atoms have major scattering power, the effect may be large
enough to affect convergence (Prince, Dickens & Rush, 1974).
Anharmonic (third-cumulant) terms could be used, but the
number of parameters increases rapidly, because there are as
many as ten, independent, third cumulant tensor elements per
atom.

Thermal motions of rigid bodies are represented by a
symmetric, translation tensor, T, a symmetric, libration tensor,
L, and a nonsymmetric, screw correlation tensor, S (Cruick-
shank, 1961; Schomaker & Trueblood, 1968). Any sequence of
rotations of a rigid body about a fixed point is equivalent to a
single, finite rotation about some axis passing through the fixed
point. This rotation can be represented (Prince, 1994) by an axial
vector, A, where |4| is the magnitude of the rotation, and the
direction cosines of the axis with respect to some system of
orthogonal axes are given by «; = 4,/|A| = 4,/(0 + 75 + 23)'%.
An exact expression for the displacement, u, of a point in the
rigid body, located by a vector r from the centre of mass, owing
to a rotation 4 about an axis passing through the centre of mass is

u = (sin |4]/]A])(4 x r) + [(1 — cos |2|)/|,1|2][,1 x (4 x r)].
(8.3.1.14)

For small rotations, the trigonometric functions can be replaced
by power-series expansions, and, because of the extremely rapid
convergence of these series, (8.3.1.14) is approximated
extremely well, even for values of |4| as large as 0.5 rad, by

u=(1—[A%/6)(A xr)+[(1/2) — |A]*/24][Ax (A x 1)].
(8.3.1.15)

By expansion of the vector products, this can be written

3 3 3
u; = Zl (A(r)l-j 4+ kz {B(r)ijk Aj g+ lz [C(r)iﬂd i Ay
= =1 =1

)

where the coefficients, A(r);, B(r);, C(r);,, and D(r);,, are
multiples of components of r. For example, [Axr], =
Aoy — Asty, so that A(r);; =0, A(r);, =r;, and A(r);3 = —1,.
These coefficients have been tabulated by Sygusch (1976), and
expressed in Fortran source code by Prince (1994).

If the centre of mass of the rigid body also moves, the total
displacement of the point at r is v=u-+t, where t is the
displacement of the centre of mass from its equilibrium

3
+ 3 DOy A A Ht P (8.3.1.16)
m=1

position. A discussion of the effects of rigid-body motion on
diffraction intensities involves quantities like (v;), (v;v;), and
so forth, the ensemble averages of these quantities over many
unit cells, which may be assumed to be equal to the time
averages for one wunit cell over a long time. The
rigid-body-motion tensors are defined by T; = (1),
L; = (44;), and S; = (4t;). The distributions of 7, and %,
can usually be assumed to be approximately Gaussian, so that
fourth moments can be expressed in terms of second
moments. Thus, (4,44A) = LiLy, + LyLy; + LyLy, (AA58) =
LTy + SySy + SySy., and so forth. If the elements of t and 4
are measured with respect to their mean positions,
(t;) = (%) =0. Third moments, quantities like (44#), do
not necessarily vanish, except when the rigid body is
centrosymmetric, but their effects virtually always are small,
and can be neglected.

A particle that is part of a librating, rigid body undergoes a
curvilinear motion that results in its having a mean position that
is displaced from its equilibrium position. This causes an
apparent shortening of interatomic distances, which must be
corrected for if accurate values of bond lengths are to be derived.
The displacement, d, from the equilibrium position to the mean
position is (Prince & Finger, 1973)

3
> B(r)zjk l{jk

1 k=1

d;, = <vi> =

3

J

303
+2° 22 D)ygm( L Ly, + Ly Ly, + Ly Lyy) | -

I=1 m=

(8.3.1.17)

Anisotropic atomic displacement factors, B; » By, or Uy, are
related by simple, linear transformations that are functions of the
unit-cell constants to the quantity «; = (v;v;) — (v;)(v;). If the
rigid body has a centre of symmetry, so that the elements of S
vanish, this is given by

303 303
ki =T;+> > (A(r)ik A(r)y Ly + > 1{3[1‘1(1' )ik C(O)

k=1 I=1 m=1 n=

+ A(r)jk C(r)ilmn] + 2B(r)ikm B(r)jln} Lkl Lmn) . (83 1.1 8)

Expressions including elements of S have been given by Sygusch
(1976) and, in Fortran source code, by Prince (1994).
Expressions for anisotropic atomic displacement factors in
terms of T, L, and S that included only terms linear in the
tensor elements were given by Schomaker & Trueblood (1968),
who pointed out that the diagonal elements of S never appeared
individually, but only as the differences of pairs, so that the
expressions were invariant under the addition of a constant to all
three elements. This ‘trace of S singularity’ was resolved by
applying the additional constraint S;; 4+ S,; + S35 = 0. As was
pointed out by Sygusch (1976), the inclusion of terms that are
quadratic in the tensor elements removes this indeterminacy, but
the effects of the additional terms are so small that the problem
remains extremely ill conditioned. In practice, therefore, these
elements should still be treated as underdetermined.

Prince (1994) lists the symmetry restrictions for each type of
tensor for various point groups. Although the description of
thermal motion is essentially harmonic within the rigid-body
system, the structure-factor formulation must include what
appear to be anharmonic terms. Prince also presents computer
routines that contain the relations between the elements of T, L,
and S and the second- and third-cumulant tensor elements. As in
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the case of shape constraints, the equations are nonlinear, and the
elements of C must be re-evaluated in each iteration.

8.3.2. Stereochemically restrained least-squares refinement

The precision with which an approximately correct model can
be refined to describe the atomic structure of a crystal depends
on the ability of the model to represent the atomic distributions
and on the quality of the observational data being fitted with
the model. In addition, although the structure can in principle
be determined by a well chosen data set only a little larger
than the number of parameters to be determined (Section
8.4.4), in practice, with a nonlinear model as complex as that
for a macromolecular crystal, it is necessary for the
parameters defining the model to be very much over-
determined by the observations. For well ordered crystals of
small- and intermediate-sized molecules, it is usually possible
to measure a hundred or more independent Bragg reflections
for each atom in the asymmetric unit. When the model
contains three position parameters and six atomic displacement
parameters for each atom, the over-determinacy ratio is still
greater than ten to one. In such instances, each model
parameter can usually be quite well determined, and will
provide an accurate representation of the average structure in
the crystal, except in regions where ellipsoids are not adequate
descriptions of the atomic distributions. This contrasts sharply
with studies of biological macromolecules, in which positional
disorder and thermal motion in large regions, if not the entire
molecule, often limit the number of independent reflections in
the data set to fewer than the number of parameters necessary
to define the distributions of individual atoms. This problem
may be overcome either by reducing the number of parameters
describing the model or by increasing the number of
independent observations. Both approaches utilize knowledge
of stereochemistry.

A great deal of geometrical information with which an
accurate model must be consistent is available at the onset of a
refinement. The connectivity of the atoms is generally known,
either from the approximately correct Fourier maps of the
electron density obtained from a trial structure determination or
from sequencing studies of the molecules. Quite tight bounds
are placed on local geometry by the accumulating body of
information concerning bond lengths, bond angles, group
planarity, and conformational preferences in torsion angles.
Additional knowledge concerns van der Waals contact potential
functions and hydrogen-bonding properties, and displacement
factors must also be correlated in a manner consistent with the
known geometry. In Section 8.3.1, we discuss the use of
constraints to introduce this stereochemical knowledge. In this
section, we discuss a technique that introduces the stereo-
chemical conditions as additional observational equations
(Waser, 1963). This method differs from the other in that
information is introduced in the form of distributions about
mean values rather than as rigidly fixed geometries. The
parameters are restrained to fall within energetically permis-
sible bounds.

8.3.2.1. Stereochemical constraints as observational equations

As described in Section 8.1.2, given a set of observations, y;,
that can be described by model functions, M;(x), where X is the
vector of model parameters, we seek to find x for which the sum

is minimum. For restrained refinement, S is composed of several
classes of observational equations, including, in addition to the
ones for structure factors, equations for interatomic distances,
planar groups and displacement factors.

Structure factors yield terms in the sum of the form

Agp = [|F ()| — |F ()] /0t. (8.3.2.2)

The distances between bonded atoms and between next-nearest-
neighbour atoms may be used to require bonded distances and
angles to fall within acceptable ranges. This gives terms of the
form

Ay = (digeat — Aimoge) /93 (8.3.2.3)

where o is the standard deviation of an empirically determined
distribution of values for distances of that type. Groups of atoms
may be restrained to be near a common plane by terms of the
form (Schomaker, Waser, Marsh & Bergman, 1959)

A, =(m,-r—d)’ /o, (8.3.2.4)

where m; and d, are parameters of the plane, o, is again an
empirically determined standard deviation, and - indicates the
scalar product.

If a molecule undergoes thermal oscillation, the displacement
parameters of individual atoms that are stereochemically related
must be correlated. These parameters may be required to be
consistent with the known stereochemistry by assuming a model
that gives a distribution function for the interatomic distances in
terms of the individual atom parameters and then restraining the
variance of that distribution function to a suitably small value.
The variation with time of the distances between covalently
bonded atoms can be no greater than a few hundredths of an
angstrom. Therefore, the thermal displacements of bonded atoms
should be very similar along the bond direction, but they may be
more dissimilar perpendicular to the bond. If we make the
assumption that the atom with a broader distribution in a given
direction is ‘riding’ on the atom with the narrower distribution,
the variance of the interatomic distance parallel to a vector v
making an angle 6(v, j) with the direction of bond j is (Konnert &
Hendrickson, 1980)

V, = A2cos? 0 + (A% )2d2)(sin* 6 — 6sin* O cos? 0) + . . .,
(83.2.5)

where d, is the normal distance for that type of bond,
A2 = (#2 —u}), and %> and %, are the mean square displacements
parallel to v of atom a and atom b, respectively. The restraint
terms then have the form V?2/o2. For isotropic displacement
factors, these terms take the particularly simple form
(B, — B,)’ /o3, but with the disadvantage that, when isotropic
displacement parameters are used, the displacements cannot be
suitably restrained along the bonds and perpendicular to the
bonds simultaneously.

Several additional types of restraint term have proved useful in
restraining the coordinates for the mean positions of atoms in
macromolecules. Among these are terms representing non-
bonded contacts, torsion angles, handedness around chiral
centres, and noncrystallographic symmetry (Hendrickson &
Konnert, 1980; Jack & Levitt, 1978; Hendrickson, 1985).
Contacts between nonbonded atoms are important for determin-
ing the conformations of folded chain molecules. They may be
described by a potential function that is strongly repulsive when
the interatomic distance is less than some minimum value, but
only weakly attractive, so that it can be neglected in practice,

S = Xn: wily, — M(x)I* (8.3.2.1) when the distance is greater than that value. This leads to terms
i=1 of the form
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