International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 8.4, pp. 702-706
https://doi.org/10.1107/97809553602060000612

Chapter 8.4. Statistical significance tests

E. Princea and C. H. Spiegelmanb

a NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA, and bDepartment of Statistics, Texas A&M University, College Station, TX 77843, USA

References

First citation Cramér, H. (1951). Mathematical methods of statistics. Princeton, NJ: Princeton University Press.Google Scholar
First citation Draper, N. & Smith, H. (1981). Applied regression analysis. New York: John Wiley.Google Scholar
First citation Fedorov, V. V. (1972). Theory of optimal experiments, translated by W. J. Studden & E. M. Klimko. New York: Academic Press.Google Scholar
First citation Hamilton, W. C. (1964). Statistics in physical science: estimation, hypothesis testing and least squares. New York: Ronald Press.Google Scholar
First citation Himmelblau, D. M. (1970). Process analysis by statistical methods. New York: John Wiley.Google Scholar
First citation Prince, E. (1982). Comparison of the fits of two models to the same data set. Acta Cryst. B38, 1099–1100.Google Scholar
First citation Prince, E. (1994). Mathematical techniques in crystallography and materials science, 2nd ed. Berlin/Heidelberg/New York/London/Paris/Tokyo/Hong Kong/Barcelona/Budapest: Springer-Verlag.Google Scholar
First citation Prince, E. & Nicholson, W. L. (1985). Influence of individual reflections on the precision of parameter estimates in least squares refinement. Structure and statistics in crystallography, edited by A. J. C. Wilson, pp. 183–195. Guilderland, NY: Adenine Press.Google Scholar
First citation Shoemaker, D. P. (1968). Optimization of counting time in computer controlled X-ray and neutron single-crystal diffractometry. Acta Cryst. A24, 136–142.Google Scholar
First citation Williams, E. J. & Kloot, N. H. (1953). Interpolation in a series of correlated observations. Aust. J. Appl. Sci. 4, 1–17.Google Scholar