International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 8.7, p. 726

Section 8.7.4.3.1. Spin-only density at zero temperature

P. Coppens,a Z. Sub and P. J. Beckerc

a 732 NSM Building, Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260-3000, USA,bDigital Equipment Co., 129 Parker Street, PKO1/C22, Maynard, MA 01754-2122, USA, and cEcole Centrale Paris, Centre de Recherche, Grand Voie des Vignes, F-92295 Châtenay Malabry CEDEX, France

8.7.4.3.1. Spin-only density at zero temperature

| top | pdf |

Let us consider first an isolated open-shell system, whose orbital momentum is quenched: it is a spin-only magnetism case. Let [\hat {\bf m}_s] be the spin-magnetization-density operator (in units of [2\mu_B]): [\hat {\bf m}_s=\textstyle\sum\limits_j\, \hat{\boldsigma}_j\,\delta({\bf r}-{\bf r}_j). \eqno (8.7.4.16)][{\bf r}_j] and [\hat{\boldsigma}_j] are, respectively, the position and the spin operator (in [\hbar] units) of the jth electron. This definition is consistent with (8.7.4.7)[link].

The system is assumed to be at zero temperature, under an applied field, the quantization axis being Oz. The ground state is an eigenstate of [\hat{\bf S}^2] and [\hat S_z], where [\hat{\bf S}] is the total spin: [\hat {\bf S}=\textstyle\sum\limits_j\, \hat{\boldsigma}_j. \eqno (8.7.4.17)]Let S and Ms be the eigenvalues of [\hat{\bf S}^2] and [\hat S_z]. (Ms will in general be fixed by Hund's rule: MS = S.) [2M_S=[n_\uparrow - n_\downarrow], \eqno (8.7.4.18)]where [n_\uparrow] and [n_\downarrow] are the numbers of electrons with [(\uparrow: +{1\over2}\,)] and [(\downarrow:-{1\over2}\,)] spin, respectively.

The spin-magnetization density is along z, and is given by [m_{Sz}({\bf r}) = \left\langle \psi_{SM_S} \left| \,\textstyle\sum\limits_j\, \hat{\boldsigma}_{jz} \delta({\bf r}-{\bf r}_j)\right| \psi_{SM_S} \right\rangle. \eqno (8.7.4.19)][m_{Sz}({\bf r})] is proportional to the normalized spin density that was defined for a pure state in (8.7.2.10)[link]. [m_{Sz}({\bf r})=M_Ss({\bf r}). \eqno (8.7.4.20)]If [\rho_\uparrow({\bf r})] and [\rho_\downarrow({\bf r})] are the charge densities of electrons of a given spin, the normalized spin density is defined as [s({\bf r})=[\rho_\uparrow({\bf r})-\rho_\downarrow({\bf r})]{1\over [n_\uparrow- n_\downarrow]}, \eqno (8.7.4.21)]compared with the total charge density ρ(r) given by [\rho({\bf r})=\rho_\uparrow({\bf r})+\rho_\downarrow({\bf r}). \eqno (8.7.4.22)]A strong complementarity is thus expected from joint studies of ρ(r) and s(r).

In the particular case of an independent electron model, [\rho_\alpha({\bf r})=\textstyle\sum\limits^{N_\alpha}_{i=1}\, |\varphi_{i\alpha}({\bf r})|^2 \quad (\alpha=\,\uparrow,\downarrow), \eqno (8.7.4.23)]where [\varphi_{i\alpha}({\bf r})] is an occupied orbital for a given spin state of the electron.

If the ground state is described by a correlated electron model (mixture of different configurations), the one-particle reduced density matrix can still be analysed in terms of its eigenvectors [\psi_{i\alpha}] and eigenvalues [n_{i\alpha}] (natural spin orbitals and natural occupancies), as described by the expression [\rho_\alpha({\bf r})=\textstyle\sum\limits^\infty_{i=1}\, n_{i\alpha}|\psi_{i\alpha}({\bf r})|^2, \eqno (8.7.4.24)]where 〈ψiαjβ〉 = δijδαβ, since the natural spin orbitals form an orthonormal set, and [n_{i\alpha} \leq 1 \quad \textstyle\sum\limits^\infty_{i=1}\, n_{i\alpha}=n_\alpha. \eqno (8.7.4.25)]

As the quantization axis is arbitrary, (8.7.4.20)[link] can be generalized to [{\bf m}_s({\bf r})=\hat{\bf S}s({\bf r}). \eqno (8.7.4.26)]Equation (8.7.4.26)[link] expresses the proportionality of the spin-magnetization density to the normalized spin density function.








































to end of page
to top of page