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9.1. Sphere packings and packings of ellipsoids
By E. KocH AND W. FISCHER

9.1.1. Sphere packings and packings of circles

9.1.1.1. Definitions

For the characterization of many crystal structures, geo-
metrical aspects have proved to be a useful tool. Among these,
sphere-packing considerations stand out in particular.

A sphere packing in the most general sense is an infinite,
three-periodic set of non-intersecting spheres (i.e. a set of non-
intersecting spheres with space-group symmetry) with the
property that any pair of spheres is connected by a chain of
spheres with mutual contact. If all spheres are symmetry-
equivalent, the sphere packing is called homogeneous, otherwise
it is called heterogeneous.

A homogeneous sphere packing may be represented uniquely
by the set of symmetry-equivalent points that are the centres of
the spheres [point configuration, cf. ITA (1983, Chapter 14.1)].
This point configuration is distinguished by equal shortest
distances giving rise to a connected graph. As all spheres of a
homogeneous sphere packing must be equal in size, their
common radius can be calculated as half this shortest distance.

A heterogeneous sphere packing consists of at least two
symmetry-distinct subsets of spheres, the centres of which form
a respective number of point configurations. The radii of
symmetrically distinct spheres can be either equal or different.
In the first case, the heterogeneous sphere packing may be
represented by its set of sphere centres, quite similar to a
homogeneous one. In the case of different sphere radii, however,
the knowledge of at least some of the radii is additionally
necessary.

As there exists an infinite number of both homogeneous and
heterogeneous sphere packings, it is convenient to classify the
sphere packings into types: two sphere packings belong to the
same type if there exists a biunique mapping that brings the
spheres of one packing onto the spheres of the other packing and
that preserves all contact relations between spheres.

The number of types of homogeneous sphere packings is finite
whereas the number of types of heterogeneous sphere packings is
infinite.

All definitions and properties mentioned so far may be
transferred from sets of spheres in three-dimensional space to
sets of circles in two-dimensional space, giving rise to
heterogeneous and homogeneous packings of circles.

A characteristic property of types of homogeneous sphere
(circle) packings is the number k of contacts per sphere (circle):
3 <k < 12 for sphere packings and 3 < k < 6 for packings of
circles.

A sphere (circle) packing is called stable [close, cf. ITII
(1972, Chapter 7.1)] if no sphere (circle) can be moved without
moving neighbouring spheres (circles) at the same time. As a
consequence, a stable sphere (circle) packing has at least four
(three) contacts per sphere (circle), and not all these contacts
must fall in one hemisphere (semicircle).

The density of a homogeneous sphere (circle) packing is
defined as the fraction of volume (area) occupied by spheres
(circles). It may be calculated as
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for sphere packings, and as
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for packings of circles. Here, r is the radius of the spheres
(circles), n the number of spheres (circles) per unit cell, V the
unit-cell volume, and A the unit-cell area.
Geometric properties of different sphere (circle) packings of
the same type may be different. Such properties are, e.g., the
density and the property of being a stable packing.

9.1.1.2. Homogeneous packings of circles

The homogeneous packings of circles in the plane may be
classified into 11 types (¢f. Niggli, 1927, 1928; Haag, 1929,
1937; Sinogowitz, 1939; Fischer, 1968; Koch & Fischer, 1978).
These correspond to the 11 types of planar nets with equivalent
vertices derived by Shubnikov (1916). If, in addition, symmetry
is used for classification, the number of distinct cases becomes
larger (31 cases according to Sinogowitz, 1939).

Table 9.1.1.1 gives a summary of the 11 types. In column 1,
the type of circle packing is designated by a modified Schléafli
symbol that characterizes the polygons meeting at one vertex of a
corresponding Shubnikov net. The contact number k is given in
column 2. The next column displays the highest possible
symmetry for each type of circle packing. The corresponding
parameter values are listed in column 4. The appropriate shortest
distances d between circle centres and densities p are given in
columns 5 and 6, respectively.

With three exceptions (3%, 3*6, 46.12), all types include circle
packings that are not similar in the mathematical sense and that
differ, therefore, in their geometrical properties. The highest
possible symmetry for a type of homogeneous circle packing
corresponds necessarily to the lowest possible density p of that
type. Therefore, homogeneous circle packings of type 3.122 with
symmetry p6mm are the least dense. The highest possible density
is achieved by the circle packings with contact number 6
referring to triangular nets with hexagonal symmetry.

All circle packings described in Table 9.1.1.1 are stable in the
sense defined above. Only circle packings of types 3.12% and 482
may be unstable.

9.1.1.3. Homogeneous sphere packings

The number of homogeneous sphere-packing types is not
known so far. Sinogowitz (1943) systematically derived sphere
packings with non-cubic symmetry from planar sets of spheres,
but he did not compare sphere packings with different
symmetry and classify them into types. Fischer calculated the
parameter conditions for all cubic (Fischer, 1973, 1974) and all
tetragonal (Fischer, 1991a,b, 1993) sphere packings. 199 types
of homogeneous sphere packings with cubic symmetry and 394
types with tetragonal symmetry exist in all. 12 of these types
are common to both systems. In a similar way, Zobetz (1983)
calculated the sphere-packing conditions for Wyckoff position
R3m 6(c). Using a different approach, Koch & Fischer (1995)
derived all types of homogeneous sphere packings with contact
number k£ = 3. Because of the unique correspondence of each
homogeneous sphere packing to a graph, studies on three-
dimensional nets also give contributions to the knowledge on
sphere-packing types. In particular, papers by Wells (1977,
1979, 1983), O’Keeffe (1991, 1992), O’Keeffe & Brese (1992)
and Treacy, Randall, Rao, Perry & Chadi (1997) contain some
information on sphere packings with k =3 and k = 4.
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Table 9.1.1.1. Types of circle packings in the plane

Type k Symmetry Parameters Distance d Density
36 6 pémm 1(a) 0,0 a 0.9069
32434 5 pigm 4(c) XX+ x=13-1 1(V6 —2)a 0.8418
3342 5 2mm 4(d) x,0 x=1-1V3;bja=2-3 b 0.8418
346 5 p6 6(d) X,y x=3%y=1 1V a 0.7773
44 4 padmm 1(a) 0,0 a 0.7854
3464 4 p6mm 6(e) X, X x=1-13 I(WV3-1a 0.7290
3636 4 p6mm 3(c) 1,0 la 0.6802
6 3 pémm 2(b) 1,2 1V3a 0.6046
48? 3 pdmm 4(d) x,0 x=1-1v2 (V2 —1)a 0.5390
46.12 3 p6mm 12(f) X,y x=i3+Ly=LV3-1 113 0.4860
3.122 3 p6mm 6(c) X, X x=1-13 (2 —+/3)a 0.3907

Table 9.1.1.2 shows examples for sphere packings with high
contact numbers and high densities in the upper part and with
small contact numbers and low densities in the lower part.
Column 1 gives reference numbers to designate the types in the
following. Column 2 displays the contact numbers k. The highest
possible symmetry for each type is described in column 3.
Coordinates and metrical parameters referring to the most
regular sphere packings of each type are listed in column 4; the
respective shortest distances d between sphere centres are given
in column 5. For a sphere packing that can be subdivided into
plane nets of spheres with mutual contact, the direction and the
type of these nets are shown in column 6. Column 7 contains
stacking information: the contact numbers to the nets above and
below, and the number of layers per translation period in the
direction perpendicular to the layers. The last column displays
the density with respect to the parameters of column 4. For all
cases, this value gives the minimal density for that type of sphere
packing.

The densest homogeneous sphere packings known so far may
be derived from the densest packings of circles (3° in Table
9.1.1.1). Such sphere packings can always be subdivided into
parallel plane layers of spheres with six contacts per sphere
within each layer and with three contacts to each of the
neighbouring layers above and below (c¢f. Fig. 9.1.1.1).
Consequently, the contact number k becomes 12. As there
exist two stacking possibilities for each layer with respect to the
previous layer, infinitely many stacking sequences can be
derived in principle, but only two refer to homogeneous sphere
packings. If for each layer the two neighbouring layers are
stacked directly upon each other, a sphere packing of a two-layer
type with hexagonal symmetry (type 1) results. It is called
hexagonal closest packing (abbreviated h.c.p.). If for all layers
the neighbouring layers are never stacked directly upon each
other, a sphere packing of a three-layer type with cubic
symmetry (type 2) is formed. It is designated cubic closest
packing (c.c.p.). In spite of these terms, for a long time it was
only known that the cubic closest packings are the densest ones
that correspond to lattices (Minkowski, 1904). Only recently,
Hsiang (1993) published a proof that there does not exist any
packing of spheres of equal size with a higher density, but the
completeness of this proof is still doubted (cf. e.g. Hales, 1994).

Independently of the stacking sequences, closest packings of
spheres contain ideal octahedral and ideal tetrahedral voids. The
number of octahedra per unit cell equals the respective number
of spheres, whereas the number of tetrahedral voids is twice as
large. The distances between the centres and the vertices of
these voids are +/2d/2 and +/6d /4, respectively. Within a cubic
closest packing, faces are shared only between octahedral and

tetrahedral voids. Each edge is common to two octahedra and
two tetrahedra. In contrast, piles of face-sharing octahedra are
formed within a hexagonal closest packing, whereas the
tetrahedra are arranged as pairs with one face in common.
The other faces are shared between octahedra and tetrahedra.
Again, each edge belongs to two octahedra and two tetrahedra.

Densest layers of spheres may also be stacked such that each
sphere is in contact with two spheres of the previous layers (cf.
Fig. 9.1.1.2). Such a stacking results in contact number 10.
Again, infinitely many periodic stacking sequences are possible,
but only four give rise to homogeneous sphere packings [types 9,
10, 11: ¢f. Hellner (1986); type 12: cf. O’Keeffe (1988)]. In the
most symmetrical forms of these four cases, each sphere is
located exactly above or below the middle of two neighbouring
spheres of the adjacent layers. This kind of stacking gives rise to
distorted tetrahedral voids only. The number of tetrahedra per
unit cell is six times the number of spheres. Two kinds of
differently distorted tetrahedra exist in the ratio 1:2. The two-
layer type 9 corresponds to a tetragonal body-centred lattice with
specialized axial ratio.

Furthermore, densest layers of spheres may be stacked in a
mixed sequence with three contacts per sphere to one
neighbouring layer and two contacts to the other layer. This
kind of stacking results in five types of homogeneous sphere
packings (3 to 7) with contact number 11.

AV
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Fig. 9.1.1.1. Two triangular nets representing two densest packed
layers of spheres. The layers are stacked in such a way that each
sphere is in contact with three spheres of the other layer.
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Table 9.1.1.2. Examples for sphere packings with high contact numbers and high densities and with low contact numbers and low
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densities
Type k Symmetry Parameters Distance d Net Stacking Density
1| 12 | P6y/mmc 2(c) 1,21 c/la=1%6 a (001) 36 ,3 2 | 0.7405
2| 12| Fm3m  4(a) 0,0,0 - 1V2a {111} 3% | 3,3 3
{001} 4* | 4,4 2
3| 11 | Cmca 8f) 0,y,z y=Llz=3V2-2 a (001)3° | 3,2 4 0.7187
bja=+3,cla=3V/6++3
4 11 | P3,21 6(c) x,y,z x:%,y:%,z: 2—% a (001) 3° 3,2 6
cla=~6+3V3
5| 11 | Fdd2 16(6) x,y.z x=1,y=3v2-1,2=0 c (010)3° | 3,2 8
bla=4%V2+2,cla=13
6 | 11| P622  12(c) x,y.2 x=ty=4z=1v2-1 a (001)3° | 3,2 12
cla= 2«/5 +343
71 11| C2/m 4G)  x,0,z x=1v2-1z=3/2-4 b (001)3% | 3,2 12
bja=1%y3,cla=1V6+1V3
cosf=1v6-13
8 | 11 | P4y/mnm 4(f) x,x,0 x=iV2-1 cla=2-V2 c - - 0.7187
9 | 10 | I4/mmm 2(a) 0,0,0 c/a=1V6 c {110} 3% | 2,2 2 | 0.6981
10 | 10 | P6,22  3(c) 1,0,0 cla=3%V3 a (001)3° | 2,2 3
11 | 10 | Fddd 8a) 0,0,0 bja=+/3,c/la=23 a 001)3° | 2,2 4
12 | 10 | Fddd 16(g) 4.4,z z=3,bla=+3,cla=4J3 a 001)3° [ 2,2 8
13| 10 | Cmem  4(c)  0,y,% y=3.bla=1J15c/a=2%/10 1V/6a (001) 4* ,3 2 | 0.6981
14 | 10 | Pnma 4c) x1.z x=xk.z2—4.bla=%tcla=%V15 | ¢ (010) 4* ,3 2
15 | 10 | P6;/mme 4(f) 1,2,z z=3-1/6,c/la=2%/6+2 a (001) 3° 1 0.6657
16 | 10 | R3m 6(c) 0,0,z z=1-1V6,c/a=+6+3 a (001) 3¢ o1
17 | 10 | Cmem  4(c) 0,y,} y=3-16, a (010)4* | 4,2 4 | 0.6657
cla= l,b/a:\/g—{—\/f
18 | 10 | I4,/amd 8(e) 0,0,z z=1-1V6,c/a=23+22 a (001) 4* | 4,2 8
19 | 10 | 14/m 8h) x,y,0 x=2-LV2,y=L-42 c - - 0.6619
cla=(4-2.2)"
20| 10 | R3 18(f) x5,z x=3y=12=0,c/a=1J/42 1V a (001) 3,2 3 0.6347
3%
21| 4 | Fd3m 32(e) x,x,x x=3-1/6 GV2-13)a | - - 0.1235
22| 4| Im3m 48(j) 0,y,z y=4-32V2,2=3-LV2 EV2—Da - - 0.1033
23 | 4| 14,32 48() x,y.7 x=y=1i42,2=0 1—1V2)a - - 0.0789
24 | 3| 14,32 24(h) Loy i-y | y=1/3-3 (V6 —-3V2)a | - - 0.0555
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Two other types of homogeneous sphere packings (15 and 16)
with contact number k = 10 also refer to densest layers of
spheres. In these cases, each sphere has three contacts to one
neighbouring layer and one contact to the other layer that is
stacked directly above or below the original layer.

Cubic closest packings may also be regarded as built up from
square layers 4* stacked in such a way that each sphere has
four neighbouring spheres in the same layer and four
neighbours each from the layers above and below (c¢f. Fig.
9.1.1.3). If square layers are stacked such that each sphere has
contact to four spheres of one neighbouring layer and to two
spheres of the other layer (c¢f. Fig. 9.1.1.4), sphere packings
with contact number 10 result. In total, two types of
homogeneous packings (17 and 18) with this kind of stacking
exist. Sphere packings of type 9 may also be decomposed into
4* layers parallel to (101) or (011) in a five-layer sequence.
These nets are made up from parallel rhombi and stacked such
that each sphere has contact with three other spheres from the
layer above and from the layer below. If such layers are
stacked in a two-layer sequence, sphere packings of type 13

Fig. 9.1.1.2. Two triangular nets representing two densest packed
layers of spheres. The layers are stacked in such a way that each
sphere is in contact with two spheres of the other layer.
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Fig. 9.1.1.3. Two square nets representing two layers of spheres
stacked in such a way that each sphere is in contact with four spheres
of the other layer.

with symmetry Cmcm result (O’Keeffe, 1998). Sphere packings
of type 14 are also build up from 4* layers, but here the rhombi
occur in two different orientations (O’Keeffe, 1998). Sphere
packings with high contact numbers may also be derived by
stacking of other layers. Type 20, for example, refers to 3%6
layers where each sphere is in contact with three spheres of one
neighbouring net and two spheres of the other one (Sowa &
Koch, 1999). Such a sphere packing may alternatively be
derived from the cubic closest packing by omitting system-
atically 1/7 of the spheres in each of the 3% nets.

Sphere packings of types 8 and 19 (c¢f. Figs. 9.1.1.5 and
9.1.1.6) cannot be built up from plane layers of spheres in
contact although their contact numbers are also high.

Table 9.1.1.2 contains complete information on homogeneous
sphere packings with k =10, 11, and 12 and with cubic or
tetragonal symmetry.

The least dense (most open) homogeneous sphere packings
known so far have already been described by Heesch & Laves
(1933). Sphere packings of that type (24) cannot be stable
because their contact number is 3 (¢f. Fig. 9.1.1.7). As discussed
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Fig. 9.1.1.4. Two square nets representing two layers of spheres
stacked in such a way that each sphere is in contact with two spheres
of the other layer.

Fig. 9.1.1.5. Sphere packing of type 8 (Table 9.1.1.2) represented by a
graph: k = 11, P4,/mnm, 4(f), xx0.
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by Fischer (1976), it is very probable that no homogeneous
sphere packings with lower density exist; those discussed by
Melmore (1942a,b) with p = 0.042 and p = 0.045 are hetero-
geneous ones. Recently, Koch & Fischer (1995) proved that the
Heesch-Laves packing is the least dense homogeneous sphere
packing with three contacts per sphere.

The least dense sphere packings with contact number 4
derived so far are described as type 23. All sphere packings of
this type are similar in the geometrical sense and are not stable.
In contrast, the sphere packings of type 22 are stable. Sphere
packings of type 21 (Heesch & Laves, 1933), which have been
supposed to be the most open stable ones (cf. Hilbert & Cohn-
Vossen, 1932, 1952), have a slightly higher density.

On the basis of the material known at that time, Slack (1983)
tried to develop empirical formulae for the minimal and the
maximal density of circle packings and sphere packings
depending on the contact number. A paper by O’Keeffe (1991)
on four-connnected nets pays special attention to the densest and
the least dense sphere packings with four contacts per sphere.

9.1.1.4. Applications

Sphere packings have been used for the description of
inorganic crystal structures in different ways and by several
authors (e.g. Brunner, 1971; Figueiredo & Lima-de-Faria, 1978;
Frank & Kasper, 1958; Hellner, 1965; Hellner, Koch &
Reinhardt, 1981; Koch, 1984, 1985; Laves, 1930, 1932;
Lima-de-Faria, 1965; Lima-de-Faria & Figueiredo, 1969a.,b;
Loeb, 1958; Morris & Loeb, 1960; Niggli, 1927; Smirnova,
1956a,b, 1958a,b, 1959a,b,c, 1964; Sowa, 1988, 1997).

In the simplest case, the structure of an element may be
described as a sphere packing if all atoms are interrelated by
equal or almost equal shortest distances. This does not imply that
the atoms really have to be considered as hard spheres of that
size. Often such sphere packings are homogeneous ones with a
high contact number k& (e.g. Cu, Mg with k = 12; Pa with
k =10; W with k = 8). Low values of k (e.g. diamond with
k = 4, white tin with k = 6) and heterogeneous sphere packings
(La with k£ = 12) have also been observed for structures of
elements.

Fig. 9.1.1.6. Sphere packing of type 19 (Table 9.1.1.2) represented by a
graph: k = 10, I4/m, 8(h), xy0.

Crystal structures consisting of different atoms may be related
to sphere packings in different ways:

(1) The structure as a whole may be considered as a
heterogeneous sphere packing. In that case, contacts at least
between different spheres are present (e.g. CsCl, NaCl, CaF,).
In addition, contacts between equal atoms may exist (I—I
contacts in CsI) or may even be necessary (Cdl,). In general,
a type of heterogeneous sphere packing is compatible with a
certain range of radius ratios (cf. alkali halides). In special
cases, a heterogeneous sphere packing may be derived from a
homogeneous one by subgroup degradation (e.g. NaCl, CsCl,
PtCu).

(2) Part of the crystal structure, e.g. the anions or the more
frequent kind of atoms, may be considered as a sphere packing
whereas the other atoms are located within the voids of that
sphere packing. For this approach, the atoms corresponding to
the sphere packing need not necessarily be in contact (cf. e.g. the
Cl—Cl distances in NaCl and LiCl). Voids within sphere
packings have been discussed in particular in connection with
closest packings (e.g. Cl in NaCl, O in Li,O, S in ZnS, O in
olivine), but numerous examples for non-closest packings are
known in addition (e.g. B in CaB; with k = 5; O in rutile with
k=11, type 8 in Table 9.1.1.2; Si in «-ThSi, with k = 3).
Sphere packings and their voids form the basis for Hellner’s
framework concept (cf. e.g. Hellner et al., 1981). Voids may be
calculated systematically as vertices of Dirichlet domains (cf.
Hellner et al., 1981; Koch, 1984). The tendency to form regular
voids of the appropriate size for the cations may counteract the
tendency to form an ideal sphere packing of the anions.
Examples are spinel and garnet (¢f. Hellner, Gerlich, Koch &
Fischer, 1979).

(3) Frequently, the cations within a crystal structure are also
distributed according to a sphere packing. This is explicable
because the repulsion between the cations also favours an
arrangement with equal but maximal shortest distances (cf.
Brunner, 1971). In this sense, many crystal structures may be

Fig. 9.1.1.7. Least dense sphere packing known so far (type 24 of
Table 9.1.1.2) represented by a graph: k=3, 4,32, 24(h),
4., —y. z coordinates given in multiples of 1/100.
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described as sets of several sphere packings (one for each kind of
atom) that are fitted into each other (e.g. NaCl, CaF,, CaBg,
a-ThSi,, rutile, Cu,0O, CaTiO,).

Because of their importance for problems in digital commu-
nication (error-correcting codes) and in number theory (solving
of diophantine equations), densest sphere packings in higher
dimensions are of mathematical interest (¢f. Conway & Sloane,
1988).

9.1.1.5. Interpenetrating sphere packings

Special homogeneous or heterogeneous sets of spheres may be
subdivided into a small number i of subsets such that each subset,
regarded by itself, forms a sphere packing and that spheres of
different subsets do not have mutual contact. Sets of spheres with
these properties are called interpenetrating sphere packings.

The cubic Laves phases are a well known example for
heterogeneous interpenetrating sphere packings. The Mg atoms
in MgCu, [Fd3m, 8(a)], for example, correspond to a sphere
packing with shortest distances d; = +/3a/4 and contact number
k = 4 whereas the copper atoms [16(d)] refer to another sphere
packing with shortest distances d, = +/2a/4 and k = 6. The
shortest distances between centres of different spheres are
dy; = /11a/8 > (d, + d,)/2.

The crystal structure of Cu,O gives an example of a different
kind. If one takes into account the size of the atoms, sphere
contacts can only be expected between different spheres. As a
consequence, the heterogeneous set of spheres disintegrates into
two heterogeneous but congruent subsets with no mutual contact.

In the case of homogeneous interpenetrating sphere packings,
all i subsets have to be symmetry-equivalent. Then the symmetry
of each subset is a subgroup of index i of the original space
group. Homogeneous interpenetrating sphere packings with
cubic symmetry have been derived completely by Fischer &
Koch (1976). They may be classified into 39 types. For 33 of the
39 types, the number i of subsets is 2; i is 3, 4, and 8 for 1, 3,
and 2 types, respectively.

Remarkable are those homogeneous interpenetrating sphere
packings that are built up from sphere packings of type 24 (Table
9.1.1.2), i.e. that type with the least dense sphere packing.
Combinations of 2, 4, or 8 such sphere packings result in
altogether 8 different types of interpenetrating sphere packings
(Fischer, 1976). The P atoms in the crystal structure of Th;P,
give an example for such interpenetrating sphere packings built
up from two congruent subsets (Koch, 1984).

Complete results for other crystal systems are not available.
With tetragonal symmetry, interpenetrating sphere packings are
known, built up from 2, 3, or 5 congruent subsets (Fischer,
1970). Analogous interpenetration patterns are formed by
hydrogen bonds within certain molecular structures (Ermer,
1988; Ermer & Eling, 1988).

Interpenetrating sphere packings may be brought in relation
to interpenetrating labyrinths as formed by periodic minimal
surfaces or by periodic zero-potential surfaces without self-
intersection (cf. e.g. Andersson, Hyde & von Schnering,
1984; Fischer & Koch, 1987, 1996; von Schnering & Nesper,
1987).

9.1.2. Packings of ellipses and ellipsoids

The problem of deriving packings of ellipses in two-dimensional
space or of ellipsoids in three-dimensional space may be
regarded as a generalization of the problem of deriving circle
packings and sphere packings. It is much more complicated,
however, because a circle or sphere is fully determined by its
centre and its radius, whereas the knowledge of the centre, the
lengths of the two semiaxes, and the direction of one of them is
needed to construct an ellipse. For an ellipsoid, the knowledge of
its centre, the length of its three semiaxes, and the directions of
two of them is necessary. Accordingly, the point configuration
corresponding to the ellipsoid centres does not define the
ellipsoid packing and not even its type.

Nowacki (1948) derived 54 homogeneous ‘essentially differ-
ent packings of ellipses’. In contrast to the definition of types of
sphere (circle) packings (Section 9.1.1), Nowacki distinguished
between similar packings with different plane-group symmetry,
i.e. between packings that may differ in the orientation of their
ellipses. Under an equivalent classification, Griinbaum &
Shephard (1987) derived 57 different cases of ellipse packings,
thus correcting and completing Nowacki’s list. Each of these 57
cases corresponds uniquely to one of the 11 types of circle
packings if one takes into account only the contact relations
between ellipses and circles. In eight cases, each ellipse has six
contacts. Two of these cases can be derived from the densest
packing of circles by affine transformations and, therefore, have
the same density, namely p = 0.9069, irrespective of the shape
of the ellipses (Matsumoto & Nowacki, 1966). Presumably for
the other six cases this density can only be reached (but not
exceeded) if the ellipses become circles. A corresponding proof
is in progress (Matsumoto, 1968; Tanemura & Matsumoto,
1992; Matsumoto & Tanemura, 1995).

Very little systematic work seems to be carried out
on homogeneous or heterogeneous packings of ellipsoids.
Matsumoto & Nowacki (1966) derived packings of ellipsoids
with contact numbers 12 and high densities by affine deformation
of cubic and hexagonal closest packings of spheres. They
postulate (without proof) the following: Densest packings of
ellipsoids have the same contact number and density as closest
packings of spheres and can be derived always from closest
sphere packings by affine transformations. If this assumption is
true, densest packings of ellipsoids would necessarily consist of
parallel ellipsoids only.

Packings of ellipsoids seemed to be useful for the interpreta-
tion of the arrangements of organic molecules in crystals. The
studies of Kitaigorodsky (1946, 1961, 1973), however, showed
that molecular crystals may rather be regarded as dense packings
of molecules with irregular shape.

Heterogeneous packings of ellipsoids may possibly be
adequate for the geometrical interpretation of some inter-
metallic compounds like cubic MgCu, (cf. Subsection 9.1.1.4)
or Cr;Si. The ellipsoids enable the use of different ‘atomic
radii’ with respect to neighbouring atoms of the same kind or
of different kinds. In MgCu,, for example, the magnesium
atoms have cubic site symmetry 43m [Fd3m, 8(a)] and
therefore can only be represented by spheres. The Cu atoms
[16(d)] with site symmetry .3m, however, may be represented
by flattened ellipsoids of revolution.
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