International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 9.1, p. 746

Section 9.1.1.2. Homogeneous packings of circles

E. Kocha and W. Fischera

a Institut für Mineralogie, Petrologie und Kristallographie, Universität Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany

9.1.1.2. Homogeneous packings of circles

| top | pdf |

The homogeneous packings of circles in the plane may be classified into 11 types (cf. Niggli, 1927[link], 1928[link]; Haag, 1929[link], 1937[link]; Sinogowitz, 1939[link]; Fischer, 1968[link]; Koch & Fischer, 1978[link]). These correspond to the 11 types of planar nets with equivalent vertices derived by Shubnikov (1916[link]). If, in addition, symmetry is used for classification, the number of distinct cases becomes larger (31 cases according to Sinogowitz, 1939[link]).

Table 9.1.1.1[link] gives a summary of the 11 types. In column 1, the type of circle packing is designated by a modified Schläfli symbol that characterizes the polygons meeting at one vertex of a corresponding Shubnikov net. The contact number k is given in column 2. The next column displays the highest possible symmetry for each type of circle packing. The corresponding parameter values are listed in column 4. The appropriate shortest distances d between circle centres and densities ρ are given in columns 5 and 6, respectively.

Table 9.1.1.1| top | pdf |
Types of circle packings in the plane

TypekSymmetryParametersDistance dDensity
366p6mm 1(a)0, 0 a0.9069
324345p4gm4(c)[x, x+{{1}\over{2}}] [x = {{1}\over{4}}\sqrt3 - {{1}\over{4}}][{{1}\over{2}} ( \sqrt6 - \sqrt2 )a]0.8418
33425c2mm4(d)x, 0[x = 1 - {{1}\over{2}}\sqrt3 ; \, b/a = 2 - \sqrt3]b0.8418
3465p66(d)x, y[x = {{3}\over{7}}; \, y = {{1}\over{7}}][{{1}\over{7}} \sqrt7 a]0.7773
444p4mm1(a)0, 0 a0.7854
34644p6mm6(e)[x, \bar x ][x = {{1}\over{2}} - {{1}\over{6}} \sqrt3 ][{{1}\over{2}} ( \sqrt3 - 1) a]0.7290
36364p6mm3(c)[ {{1}\over{2}},0] [ {{1}\over{2}} a]0.6802
633p6mm2(b)[ {{1}\over{3}}, {{2}\over{3}}] [ {{1}\over{3}} \sqrt3 a]0.6046
4823p4mm4(d)x, 0[x = 1 - {{1}\over{2}}\sqrt2 ][(\sqrt2-1)a]0.5390
46.123p6mm12(f)x, y[x = {{1}\over{6}}\sqrt3 + {{1}\over{6}}; \, y = {{1}\over{6}} \sqrt3 - {{1}\over{6}}][ ({{1}\over{2}} - {{1}\over{6}} \sqrt3)a]0.4860
3.1223p6mm6(c)[x,\bar x ][x = 1 - {{1}\over{3}}\sqrt3 ][(2-\sqrt3)a]0.3907

With three exceptions (36, 346, 46.12), all types include circle packings that are not similar in the mathematical sense and that differ, therefore, in their geometrical properties. The highest possible symmetry for a type of homogeneous circle packing corresponds necessarily to the lowest possible density ρ of that type. Therefore, homogeneous circle packings of type 3.122 with symmetry p6mm are the least dense. The highest possible density is achieved by the circle packings with contact number 6 referring to triangular nets with hexagonal symmetry.

All circle packings described in Table 9.1.1.1[link] are stable in the sense defined above. Only circle packings of types 3.122 and 482 may be unstable.

References

First citation Fischer, W. (1968). Kreispackungsbedingungen in der Ebene. Acta Cryst. A24, 67–81.Google Scholar
First citation Haag, F. (1929). Die Kreispackungen von Niggli. Z. Kristallogr. 70, 353–366.Google Scholar
First citation Haag, F. (1937). Die Polygone der Ebenenteilungen. Z. Kristallogr. 96, 78–80.Google Scholar
First citation Koch, E. & Fischer, W. (1978). Types of sphere packings for crystallographic point groups, rod groups and layer groups. Z. Kristallogr. 148, 107–152.Google Scholar
First citation Niggli, P. (1927). Die topologische Strukturanalyse I. Z. Kristallogr. 65, 391–415.Google Scholar
First citation Niggli, P. (1928). Die topologische Strukturanalyse II. Z. Kristallogr. 68, 404–466.Google Scholar
First citation Shubnikov, A. V. (1916). On the structure of crystals. Izv. Akad. Nauk SSSR Ser. 6, 10, 755–799.Google Scholar
First citation Sinogowitz, U. (1939). Die Kreislagen und Packungen kongruenter Kreise in der Ebene. Z. Kristallogr. 100, 461–508.Google Scholar








































to end of page
to top of page