International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 9.2, pp. 752-773
https://doi.org/10.1107/97809553602060000618

Chapter 9.2. Layer stacking

S. Ďurovič,a P. Krishnab and D. Pandeyc

a Department of Theoretical Chemistry, Slovak Academy of Sciences, Dúbravská cesta, 842 36 Bratislava, Slovakia,bRajghat Education Center, Krishnamurti Foundation India, Rajghat Fort, Varanasi 221001, India, and cPhysics Department, Banaras Hindu University, Varanasi 221005, India

References

First citation Adamsky, R. F. & Merz, K. M. (1959). Synthesis and crystallography of the wurtzite form of silicon carbide. Z. Kristallogr. 111, 350–361.Google Scholar
First citation Amelinckx, S. (1986). High-resolution electron microscopy in materials science. Examining the submicron world, edited by R. Feder, J. W. McGowan & M. Shinozaki, pp. 71–132. New York: Plenum.Google Scholar
First citation Andrade, M., Chandrasekaran, M. & Delaey, L. (1984). The basal plane stacking faults in 18R martensite of copper base alloys. Acta Metall. 32, 1809–1816.Google Scholar
First citation Angel, R. J. (1986). Polytypes and polytypism. Z. Kristallogr. 176, 193–204.Google Scholar
First citation Azaroff, L. V. (1960). Introduction to solids. London: McGraw-Hill.Google Scholar
First citation Backhaus, K.-O. & Ďurovič, S. (1984). Polytypism in micas. I. MDO polytypes and their derivation. Clays Clay Miner. 32, 453–464.Google Scholar
First citation Bailey, S. W. (1980). Structures of layer silicates. Crystal structures of clay minerals and their X-ray identification, edited by G. M. Brindley & G. Brown, pp. 1–123. London: Mineralogical Society.Google Scholar
First citation Bailey, S. W. (1988a). Editor. Hydrous phyllosilicates (Reviews in mineralogy, Vol. 19). Washington, DC: Mineralogical Society of America.Google Scholar
First citation Bailey, S. W. (1988b). X-ray diffraction identification of the polytypes of mica, sepentine, and chlorite. Clays Clay Miner. 36, 193–213.Google Scholar
First citation Bailey, S. W., Frank-Kamenetskii, V. A., Goldsztaub, S., Kato, A., Pabst, A., Schulz, H., Taylor, H. F. W., Fleischer, M. & Wilson, A. J. C. (1977). Report of the International Mineralogical Association (IMA)–International Union of Crystallography (IUCr) Joint Committee on Nomenclature. Acta Cryst. A33, 681–684.Google Scholar
First citation Baronnet, A. (1975). Growth spirals and complex polytypism in micas. I. Polytypic structure generation. Acta Cryst. A31, 345–355.Google Scholar
First citation Baronnet, A. (1986). Growth spirals and complex polytypism in micas. II. Occurrence frequencies in synthetic species. Bull Minéral. 109, 489–508.Google Scholar
First citation Baronnet, A. (1992). Polytypism and stacking disorder. In Reviews in mineralogy, Vol. 27, pp. 231–288. Washington DC: Mineralogical Society of America.Google Scholar
First citation Baumhauer, H. (1912). Über die Kristalle des Carborundums. Z. Kristallogr. 50, 33–39.Google Scholar
First citation Baumhauer, H. (1915). Über die verschiedenen Modificationen des Carborundums und die Erscheinung per Polytypie. Z. Kristallogr. 55, 249–259.Google Scholar
First citation Belokoneva, E. L. & Timchenko, T. I. (1983). Polytypic relations in the structures of borates with a general formula RAl3(BO3)4, (R = Y, Nd, Gd). Kristallografiya, 28, 1118–1123. [In Russian.]Google Scholar
First citation Belov, N. V. (1947). The structure of ionic crystals and metal phases. Moscow: Izd. Akad. Nauk SSSR. [In Russian.]Google Scholar
First citation Bertaut, E. F. (1978). The equivalent charge concept and its application to the electrostatic energy of charges and multipoles. J. Phys. (Paris), 39, 1331–1348.Google Scholar
First citation Boer, J. L. de, van Smaalen, S, Petříček, V., Dušek, M., Verheijen, M. A. & Meijer, G. (1994). Hexagonal close-packed C-60. Chem. Phys. Lett. 219, 469–472.Google Scholar
First citation Boerdijk, A. H. (1952). Some remarks concerning close-packing of equal spheres. Philips Res. Rep. 7, 303–313.Google Scholar
First citation Bontchev, R., Darriet, B., Darriet, J., Weill, F., Van Tendeloo, G. & Amelinckx, S. (1993). New cation deficient perovskite-like oxides in the system La4Ti3O12 – LaTiO3. Eur. J. Solid State Inorg. Chem. 30, 521–537.Google Scholar
First citation Brafman, O., Alexander, E. & Steinberger, I. T. (1967). Five new zinc sulphide polytype: 10L(82); 14L (5423); 24L (53)3; 26L (17 423) and 28L (9559). Acta Cryst. 22, 347–352.Google Scholar
First citation Brafman, O. & Steinberger, I. T. (1966). Optical band gap and birefringence of ZnS polytypes. Phys. Rev. 143, 501–505.Google Scholar
First citation Brindley, G. W. (1980). Order–disorder in clay mineral structures. Crystal structures of clay minerals and their X-ray identification, edited by G. W. Brindley & G. Brown, pp. 125–195. London: Mineralogical Society.Google Scholar
First citation Buerger, M. J. (1953). X-ray crystallography. New York: John Wiley.Google Scholar
First citation Burany, X. M. & Northwood, D. O. (1991). Polytypic structures in close-packed Zr(FeCr)2 Laves phases. J. Less-Common Met. 170, 27–35.Google Scholar
First citation Carlson, E. H. (1967). The growth of HgS and Hg3S2Cl2 single crystals by a vapour phase method. J. Cryst. Growth, 1, 271–277.Google Scholar
First citation Chadha, G. K. (1977). Identification of the rhombohedral lattice in CdI2 crystals. Acta Cryst. A33, 341.Google Scholar
First citation Chamberland, B. L. (1983). Crystal structure of the 6H BaCrO3 polytype. J. Solid State Chem. 48, 318–322.Google Scholar
First citation Císařová, I., Novák, C. & Petříček, V. (1982). The structure of twinned manganese(III) hydrogenbis(orthophosphite) dihydrate. Acta Cryst. B38, 1687–1689.Google Scholar
First citation Cottrell, A. (1967). An introduction to metallurgy. London: Edward Arnold.Google Scholar
First citation Cowley, J. M. (1976). Diffraction by crystals with planar faults. I. General theory. Acta Cryst. A32, 83–87.Google Scholar
First citation Darriet, B., Bovin, J.-O. & Galy, J. (1976). Un nouveau composé de l'antimoine III: VOSb2O4. Influence stéréochimique de la paire non lié E, relations structurales, mécanismes de la réaction chimique. J. Solid State Chem. 19, 205–212.Google Scholar
First citation Dornberger-Schiff, K. (1959). On the nomenclature of the 80 plane groups in three dimensions. Acta Cryst. 12, 173.Google Scholar
First citation Dornberger-Schiff, K. (1964). Grundzüge einer Theorie von OD-Strukturen aus Schichten. Abh. Dtsch. Akad. Wiss. Berlin. Kl. Chem. 3.Google Scholar
First citation Dornberger-Schiff, K. (1966). Lehrgang über OD-Strukturen. Berlin: Akademie Verlag.Google Scholar
First citation Dornberger-Schiff, K. (1979). OD structures – a game and a bit more. Krist. Tech. 14, 1027–1045.Google Scholar
First citation Dornberger-Schiff, K. (1982). Geometrical properties of MDO polytypes and procedures for their derivation. I. General concept and applications to polytype families consisting of OD layers all of the same kind. Acta Cryst. A38, 483–491.Google Scholar
First citation Dornberger-Schiff, K., Backhaus, K.-O. & Ďurovič, S. (1982). Polytypism of micas: OD interpretation, stacking symbols, symmetry relations. Clays Clay Miner. 30, 364–374.Google Scholar
First citation Dornberger-Schiff, K. & Ďurovič, S. (1975a). OD interpretation of kaolinite-type structures. I. Symmetry of kaolinite packets and their stacking possibilities. Clays Clay Miner. 23, 219–229.Google Scholar
First citation Dornberger-Schiff, K. & Ďurovič, S. (1975b). OD interpretation of kaolinite-type structures. II. The regular polytypes (MDO polytypes) and their derivation. Clays Clay Miner. 23, 231–246.Google Scholar
First citation Dornberger-Schiff, K., Ďurovič, S. & Zvyagin, B. B. (1982). Proposal for general principles for the construction of fully descriptive polytype symbols. Cryst. Res. Technol. 17, 1449–1457.Google Scholar
First citation Dornberger-Schiff, K. & Farkas-Jahnke, M. (1970). A direct method for the determination of polytype structures. I. Theoretical basis. Acta Cryst. A26, 24–34.Google Scholar
First citation Dornberger-Schiff, K. & Fichtner, K. (1972). On the symmetry of OD structures consisting of equivalent layers. Krist. Tech. 7, 1035–1056.Google Scholar
First citation Dornberger-Schiff, K. & Grell, H. (1982a). Geometrical properties of MDO polytypes and procedures for their derivation. II. OD families containing OD layers of M > 1 kinds and their MDO polytypes. Acta Cryst. A38, 491–498.Google Scholar
First citation Dornberger-Schiff, K. & Grell, H. (1982b). On the notions: crystal, OD crystal and MDO crystal. Kristallografiya, 27, 126–133. [In Russian.]Google Scholar
First citation Dubey, M. & Singh, G. (1978). Use of lattice imaging in the electron microscope in the structure determination of the 126R polytype of SiC. Acta Cryst. A34, 116–120.Google Scholar
First citation Dubey, M., Singh, G. & Van Tendeloo, G. (1977). X-ray diffraction and transmission electron microscopy study of extremely large-period polytypes in SiC. Acta Cryst. A33, 276–279.Google Scholar
First citation Ďurovič, S. (1968). The crystal structure of γ-Hg3S2Cl2. Acta Cryst. B24, 1661–1670.Google Scholar
First citation Ďurovič, S. (1974a). Notion of `packets' in the theory of OD structures of M > 1 kinds of layers. Examples: kaolinites and MoS2. Acta Cryst. B30, 76–78.Google Scholar
First citation Ďurovič, S. (1974b). Die Kristallstruktur des K4[Si8O18]: Eine desymmetrisierte OD-Struktur. Acta Cryst. B30, 2214–2217.Google Scholar
First citation Ďurovič, S. (1979). Desymmetrization of OD structures. Krist. Tech. 14, 1047–1053.Google Scholar
First citation Ďurovič, S. (1981). OD-Charakter, Polytypie und Identifikation von Schichtsilikaten. Fortschr. Mineral. 59, 191–226.Google Scholar
First citation Ďurovič, S. (1994). Classification of phyllosilicates according to the symmetry of their octahedral sheets. Ceramics-Silikáty, 38, 81–84.Google Scholar
First citation Ďurovič, S. & Dornberger-Schiff, K. (1981). New fully descriptive polytype symbols for the basic types of clay minerals. 8th Conference on Clay Mineralogy and Petrology, Teplice, Czechoslovakia, 1979, edited by S. Konta, pp. 19–25. Praha: Charles University.Google Scholar
First citation Ďurovič, S., Dornberger-Schiff, K. & Weiss, Z. (1983). Chlorite polytypism. I. OD Interpretation and polytype symbolism of chlorite structures. Acta Cryst. B39, 547–552.Google Scholar
First citation Ďurovič, S. & Weiss, Z. (1983). Polytypism of pyrophyllite and talc. Part I. OD interpretation and MDO polytypes. Silikáty, 27, 1–18.Google Scholar
First citation Ďurovič, S., Weiss, Z. & Backhaus, K.-O. (1984). Polytypism of micas. II. Classification and abundance of MDO polytypes. Clays Clay Miner. 32, 464–474.Google Scholar
First citation Effenberger, H. (1991). Structures of hexagonal copper(I) ferrite. Acta Cryst. C47, 2644–2646.Google Scholar
First citation Eggleton, R. A. & Guggenheim, S. (1994). The use of electron optical methods to determine the crystal structure of a modulated phyllosilicate: parsettensite. Am. Mineral. 79, 426–437.Google Scholar
First citation Evans, B. W. & Guggenheim, S. (1988). Talc, pyrophyllite, and related minerals. Reviews in mineralogy, Vol. 19, edited by S. W. Bailey, pp. 225–294. Washington, DC: Mineralogical Society of America.Google Scholar
First citation Farkas-Jahnke, M. (1983). Structure determination of polytypes. Crystal growth and characterization of polytypes structures, edited by P. Krishna, pp. 163–211. Oxford: Pergamon Press.Google Scholar
First citation Farkas-Jahnke, M. & Dornberger-Schiff, K. (1969). A direct method for the determination of polytype structures. II. Determination of a 66R structure. Acta Cryst. A25, 35–41.Google Scholar
First citation Fichtner, K. (1965). Zur Existenz von Gruppoiden verschiedener Ordnungsgrade bei OD-Strukturen aus gleichartigen Schichten. Wiss. Z. Tech. Univ. Dresden, 14, 1–13.Google Scholar
First citation Fichtner, K. (1977). Zur Symmetriebeschreibung von OD-Kristallen durch Brandtsche und Ehresmannsche Gruppoide. Beitr. Algebra Geom. 6, 71–79.Google Scholar
First citation Fichtner, K. (1979a). On the description of symmetry of OD structures (I). OD groupoid family, parameters, stacking. Krist. Tech. 14, 1073–1078.Google Scholar
First citation Fichtner, K. (1979b). On the description of symmetry of OD structures (II). The parameters. Krist. Tech. 14, 1453–1461.Google Scholar
First citation Fichtner, K. (1980). On the description of symmetry of OD structures (III). Short symbols for OD groupoid families. Krist. Tech. 15, 295–300.Google Scholar
First citation Fichtner, K. & Grell, H (1984). Polytypism, twinnings and disorder in 2,2-aziridinedicarboxamide. Acta Cryst. B40, 434–436.Google Scholar
First citation Fichtner-Schmittler, H. (1979). On some features of X-ray powder patterns of OD structures. Krist. Tech. 14, 1079–1088.Google Scholar
First citation Figueiredo, M. O. D. (1979). Características de empilhamento e modelos condensados das micas e filossilicatos afins. Lisboa: Junta de Investigacoes Científicas do Ultramar.Google Scholar
First citation Frank, F. C. (1951). Crystal dislocation – elementary concepts and definitions. Philos. Mag. 42, 809–819.Google Scholar
First citation Franzini, M. (1969). The A and B mica layers and the crystal structure of sheet silicates. Contrib. Mineral. Petrol. 21, 203–224.Google Scholar
First citation Frueh, A. J. & Gray, N. (1968). Confirmation and refinement of the structure of Hg3S2Cl2. Acta Cryst. B24, 156.Google Scholar
First citation Gard, J. A. & Taylor, H. F. W. (1960). The crystal structure of foshagite. Acta Cryst. 13, 785–793.Google Scholar
First citation Grell, H. (1984). How to choose OD layers. Acta Cryst. A40, 95–99.Google Scholar
First citation Grell, H. & Dornberger-Schiff, K. (1982). Symbols for OD groupoid families referring to OD structures (polytypes) consisting of more than one kind of layer. Acta Cryst. A38, 49–54.Google Scholar
First citation Guinier, A., Bokij, G. B., Boll-Dornberger, K., Cowley, J. M., Ďurovič, S., Jagodzinski, H., Krishna, P., de Wolff, P. M., Zvyagin, B. B., Cox, D. E., Goodman, P., Hahn, Th., Kuchitsu, K. & Abrahams, S. C. (1984). Nomenclature of polytype structures. Report of the International Union of Crystallography Ad-Hoc Committee on the Nomenclature of Disordered, Modulated and Polytype Structures. Acta Cryst. A40, 399–404.Google Scholar
First citation Hamid, S. A. (1981). The crystal structure of the 11 Å natural tobermorite Ca2.25[Si3O7.5(OH)1.5].1H2O. Z. Kristallogr. 154, 189–198.Google Scholar
First citation Heinrich, A. R., Eggleton, R. A. & Guggenheim, S. (1994). Structure and polytypism of bementite, a modulated layer silicate. Am. Mineral. 79, 91–106.Google Scholar
First citation Hendricks, S. & Teller, E. (1942). X-ray interference in partially ordered layer lattices. J. Chem. Phys. 10, 147–167.Google Scholar
First citation Honjo, G., Miyake, S. & Tomita, T. (1950). Silicon carbide of 594 layers. Acta Cryst. 3, 396–397.Google Scholar
First citation Iijima, S. (1982). High-resolution electron microscopy of McGillite. II. Polytypism and disorder. Acta Cryst. A38, 695–702.Google Scholar
First citation Ingrin, J. (1993). TEM imaging of polytypism in pseudowollastonite. Phys. Chem. Miner. 20, 56–62.Google Scholar
First citation Ito, T., Sadanaga, R., Takéuchi, Y. & Tokonami, M. (1969). The existence of partial mirrors in wollastonite. Proc. Jpn Acad. 45, 913–918.Google Scholar
First citation Jagner, S. (1985). On the origin of the order–disorder structures (polytypes) of some transition metal hexacyano complexes. Acta Chem. Scand. 139, 717–724.Google Scholar
First citation Jagodzinski, H. (1949a). Eindimensionale Fehlordnung in Kristallen und ihr Einfluss auf die Rontgeninterferenzen. I. Berechnung des Fehlordnungsgrades aus den Rontgenintensitaten. Acta Cryst. 2, 201–207.Google Scholar
First citation Jagodzinski, H. (1949b). Eindimensionale Fehlordnung in Kristallen und ihr Einfluss auf die Rontgeninterferenzen. II. Berechnung de fehlgeordneten dichtesten Kugelpackungen mit Wechselwirkungen der Reichweite 3. Acta Cryst. 2, 208–214.Google Scholar
First citation Jagodzinski, H. (1964). Allgemeine Gesichtspunkte für die Deutung diffuser Interferenzen von fehlgeordneten Kristallen. Advances in structure research by diffraction methods, Vol. I, edited by R. Brill, pp.167–198. Braunschweig: Vieweg, and New York/London: Interscience.Google Scholar
First citation Jagodzinski, H. (1972). Transition from cubic hexagonal silicon carbide as a solid state reaction. Sov. Phys. Crystallogr. 16, 1081–1090.Google Scholar
First citation Jain, P. C. & Trigunayat, G. C. (1977a). On centrosymmetric space groups in close-packed MX2-type structures. Acta Cryst. A33, 255–256.Google Scholar
First citation Jain, P. C. & Trigunayat, G. C. (1977b). Resolution of ambiguities in Zhdanov notation: actual examples of homometric structures. Acta Cryst. A33, 257–260.Google Scholar
First citation Jarchow, O. & Schmalle, H. W. (1985). Fehlordnung, Polytypie und Struktur von Primetin: 5,8-Dihydroxy-2-phenylchromen-4-on. Z. Kristallogr. 173, 225–236.Google Scholar
First citation Johnson, C. A. (1963). Diffraction by FCC crystals containing extrinsic stacking faults. Acta Cryst. 16, 490–497.Google Scholar
First citation Kabra, V. K. & Pandey, D. (1988). Long range ordered phases without short range correlations. Phys. Rev. Lett. 61, 1493–1496.Google Scholar
First citation Kabra, V. K., Pandey, D. & Lele, S. (1986). On a diffraction approach for the study of the mechanism of 3C to 6H transformation in SiC. J. Mater. Sci. 21, 1654–1666.Google Scholar
First citation Kabra, V. K., Pandey, D. & Lele, S. (1988a). On the characterization of basal plane stacking faults in the N9R and N18R martensites. Acta Metall. 36, 725–734.Google Scholar
First citation Kabra, V. K., Pandey, D. & Lele, S. (1988b). On the calculation of diffracted intensities from SiC crystals undergoing 2H to 6H transformation by the layer displacement mechanism. J. Appl. Cryst. 21, 935–942.Google Scholar
First citation Kakinoki, J. & Komura, Y. (1954). Intensity of X-ray diffraction by a one-dimensionally disordered crystal. III. The close-packed structure. J. Phys. Soc. Jpn, 9, 177–183.Google Scholar
First citation Kaneko, F., Sakashita, H., Kobayashi, M., Kitagawa, Y., Matsuura, U. & Suzuki, M. (1994). Double-layered polytypic structure of the E form of octadecanoic acid, C18H36O2. Acta Cryst. C50, 247–250.Google Scholar
First citation Kowalski, M. (1985). Polytypic structures of chromium iron [(Cr,Fe)7C3] carbides. J. Appl. Cryst. 18, 430–435.Google Scholar
First citation Krishna, P. & Marshall, R. C. (1971a). The structure, perfection and annealing behaviour of SiC needles grown by a VLS mechanism. J. Cryst. Growth, 9, 319–325.Google Scholar
First citation Krishna, P. & Marshall, R. C. (1971b). Direct transformation from the 2H to 6H structure in single-crystal SiC. J. Cryst. Growth, 11, 147–150.Google Scholar
First citation Krishna, P. & Pandey, D. (1981). Close-packed structures. Teaching Pamphlet of the International Union of Crystallography. University College Cardiff Press.Google Scholar
First citation Krishna, P. & Verma, A. R. (1962). An X-ray diffraction study of silicon carbide structure types [(33)n34]3 R. Z. Kristallogr. 117, 1–15.Google Scholar
First citation Krishna, P. & Verma, A. R. (1963). Anomalies in silicon carbide polytypes. Proc. R. Soc. London Ser. A, 272, 490–502.Google Scholar
First citation Kuban, R.-J. (1985). Polytypes of the system Fe1−xS. Cryst. Res. Technol. 20, 1649–1656.Google Scholar
First citation Kutschabsky, L. Kretschmer, R.-G. Schrauber, H., Dathe, W. & Schneider, G. (1986). Structure of the OD disordered 2-hydroxy-4-methoxy-2H-1,4-benzoxazin-3-one, C9H9NO4. Cryst. Res. Technol. 21, 1521–1529.Google Scholar
First citation McLarnan, T. J. (1981a). Mathematic tools for counting polytypes. Z. Kristallogr. 155, 227–245.Google Scholar
First citation McLarnan, T. J. (1981b). The number of polytypes of sheet silicates. Z. Kristallogr. 155, 247–268.Google Scholar
First citation McLarnan, T. J. (1981c). The number of polytypes in close packings and related structures. Z. Kristallogr. 155, 269–291.Google Scholar
First citation Makovický, E., Leonardsen, E. & Moelo, Y. (1994). The crystallography of lengenbachite, a mineral with the non-commensurate layer structure. N. Jahrb. Mineral. Abh. 166, 169–191.Google Scholar
First citation Mellini, M., Merlino, S. & Pasero, M. (1986). X-ray and HRTEM structure analysis of orientite. Am. Mineral. 71, 176–187.Google Scholar
First citation Merlino, S., Orlandi, P., Perchiazzi, N., Basso, R. & Palenzona, A. (1989). Polytypism in stibivanite. Can. Mineral. 27, 625–632.Google Scholar
First citation Merlino, S., Pasero, M., Artioli, G. & Khomyakov, A. P. (1994). Penkvilskite, a new kind of silicate structure – OD character, X-ray single-crystal (1M), and powder Rietveld (2O) refinements of 2 MDO polytypes. Am. Mineral 79, 1185–1193.Google Scholar
First citation Merlino, S., Pasero, M. & Perchiazzi, N. (1993). Crystal structure of paralaurionite and its OD relationship with laurionite. Mineral. Mag. 57, 323–328.Google Scholar
First citation Merlino, S., Pasero, M. & Perchiazzi, N. (1994). Fiedlerite – revised chemical formula (Pb3Cl4F(OH).H2O), OD description and crystal-structure refinement of the 2 MDO polytypes. Mineral Mag. 58, 69–78.Google Scholar
First citation Mesquita, A. H. G. de (1967). Refinement of the crystal structure of SiC type 6H. Acta Cryst. 23, 610–617.Google Scholar
First citation Mitchell, R. S. (1953). Application of the Laue photograph to the study of polytypism and syntaxic coalescence in silicon carbide. Am. Mineral. 38, 60–67.Google Scholar
First citation Mogami, K., Nomura, K., Miyamoto, M., Takeda, H. & Sadanaga, R. (1978). On the number of distinct polytypes of mica and SiC with a prime layer-number. Can. Mineral. 16, 427–435.Google Scholar
First citation Müller, U. & Conradi, E. (1986). Fehlordnung bei Verbindungen MX3 mit Schichtenstruktur. I. Berechnung des Intensitätsverlaufs auf den Streifen der diffusen Röntgenstreuung. Z. Kristallogr. 176, 233–261.Google Scholar
First citation Nikolin, B. I. (1984). Multi-layer structures and polytypism in metallic alloys. Kiev: Naukova dumka. [In Russian.]Google Scholar
First citation Nikolin, B. I., Babkevich, A. Yu., Izdkovskaya, T. V. & Petrova, S. N. (1993). Effect of heat-treatment on the crystalline structure of martensite in iron-doped, nickel-doped, manganese-doped and silicon-doped Co–W and Co–Mo alloys. Acta Metall. 41, 513–515.Google Scholar
First citation Nishiyama, Z. (1978). Martensitic transformation. New York: Academic Press.Google Scholar
First citation Pandey, D. (1984a). Stacking faults in close-packed structures: notations & definitions. Deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 39176 (23 pp.). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.Google Scholar
First citation Pandey, D. (1984b). A geometrical notation for stacking faults in close-packed structures. Acta Cryst. B40, 567–569.Google Scholar
First citation Pandey, D. (1985). Origin of polytype structures in CdI2: application of faulted matrix model revisited. J. Cryst. Growth, 71, 346–352.Google Scholar
First citation Pandey, D. (1988). Role of stacking faults in solid state transformations. Bull. Mater. Sci. 10, 117–132.Google Scholar
First citation Pandey, D., Kabra, V. K. & Lele, S. (1986). Structure determination of one-dimensionally disordered polytypes. Bull. Minéral. 109, 49–67.Google Scholar
First citation Pandey, D. & Krishna, P. (1975). On the spiral growth of polytype structures in SiC from a faulted matrix. I. Polytypes based on the 6H structure. Mater. Sci. Eng. 20, 243–249.Google Scholar
First citation Pandey, D. & Krishna, P. (1976a). On the spiral growth of polytype structures in SiC from a faulted matrix. II. Polytypes based on the 4H and 15R structures. Mater. Sci. Eng. 26, 53–63.Google Scholar
First citation Pandey, D. & Krishna, P. (1976b). X-ray diffraction from a 6H structure containing intrinsic faults. Acta Cryst. A32, 488–492.Google Scholar
First citation Pandey, D. & Krishna, P. (1977). X-ray diffraction study of stacking faults in single-crystal of 2H SiC. J. Phys. D, 10, 2057–2068.Google Scholar
First citation Pandey, D. & Krishna, P. (1982a). Polytypism in close-packed structures. Current topics in materials science, Vol. IX, edited by E. Kaldis, pp. 415–491. Amsterdam: North-Holland.Google Scholar
First citation Pandey, D. & Krishna, P. (1982b). X-ray diffraction study of periodic and random faulting in close-packed structures. Synthesis, crystal growth and characterization of materials, edited by K. Lal, pp. 261–285. Amsterdam: North-Holland.Google Scholar
First citation Pandey, D. & Krishna, P. (1983). The origin of polytype structures. Crystal growth and characterization of polytype structures, edited by P. Krishna, pp. 213–257. Oxford: Pergamon Press.Google Scholar
First citation Pandey, D. & Lele, S. (1986a). On the study of the FCC–HCP martensitic transformation using a diffraction approach. I. FCC[\rightarrow]HCP transformation. Acta Metall. 34, 405–413.Google Scholar
First citation Pandey, D. & Lele, S. (1986b). On the study of the FCC–HCP martensitic transformation using a diffraction approach. II. HCP[\rightarrow]FCC transformation. Acta Metall. 34, 415–424.Google Scholar
First citation Pandey, D., Lele, S. & Krishna, P. (1980a). X-ray diffraction from one-dimensionally disordered 2H crystals undergoing solid state transformation to the 6H structure. I. The layer displacement mechanism. Proc. R. Soc. London Ser. A, 369, 435–449.Google Scholar
First citation Pandey, D., Lele, S. & Krishna, P. (1980b). X-ray diffraction from one-dimensionally disordered 2H crystals undergoing solid state transformation to the 6H structure. II. The deformation mechanism. Proc. R. Soc. London Ser. A, 369, 451–461.Google Scholar
First citation Pandey, D., Lele, S. & Krishna, P. (1980c). X-ray diffraction from one-dimensionally disordered 2H crystals undergoing solid state transformation to the 6H structure. III. Comparison with experimental observations on SiC. Proc. R. Soc. London Ser. A, 369, 463–477.Google Scholar
First citation Pandey, D., Prasad, L., Lele, S. & Gauthier, J. P. (1987). Measurement of the intensity of directionally diffuse streaks on a four-circle diffractometer: divergence correction factors for bisecting setting. J. Appl. Cryst. 20, 84–89.Google Scholar
First citation Pasero, M. & Reinecke, T. (1991). Crystal-chemistry, HRTEM analysis and polytypic behavior ardennite. Eur. J. Mineral. 3, 819–830.Google Scholar
First citation Paterson, M. S. (1952). X-ray diffraction by face-centred cubic crystals with deformation faults. J. Appl. Phys. 23, 805–811.Google Scholar
First citation Patterson, A. L. & Kasper, J. S. (1959). Close-packing. International tables for X-ray crystallography, Vol. II, edited by J. S. Kasper & K. Lonsdale, pp. 342–354. Birmingham: Kynoch Press.Google Scholar
First citation Pauling, L. (1930a). Structure of micas and related minerals. Proc. Natl Acad. Sci. USA, 16, 123–129.Google Scholar
First citation Pauling, L. (1930b). Structure of the chlorites. Proc Natl Acad. Sci. USA, 16, 578–582.Google Scholar
First citation Phelps, A. W., Howard, W. & Smith, D. K. (1993). Space groups of the diamond polytypes. J. Mater. Res. 8, 2835–2839.Google Scholar
First citation Prager, P. R. (1983). Growth and characterization of AgI polytypes. Crystal growth and characterization of polytype structures, edited by P. Krishna, pp. 451–491. Oxford: Pergamon Press.Google Scholar
First citation Prasad, B. & Lele, S. (1971). X-ray diffraction from double hexagonal close-packed crystals with stacking faults. Acta Cryst. A27, 54–64.Google Scholar
First citation Pring, A. & Graeser, S. (1994). Polytypism in baumhauerite. Am. Miner. 79, 302–307.Google Scholar
First citation Radoslovich, E. W. (1961). Surface symmetry and cell dimensions of layer-lattice silicates. Nature (London), 191, 67–68.Google Scholar
First citation Rai, R. S., Singh, S. R., Dubey, M. & Singh, G. (1986). Lattice imaging studies on structure and disorder in SiC polytypes. Bull. Minéral. 109, 509–527.Google Scholar
First citation Ramsdell, L. S. (1947). Studies on silicon carbide. Am. Mineral. 32, 64–82.Google Scholar
First citation Reck, G. & Dietz, G. (1986). The order–disorder structure of carbamazepine dihydrate: 5H-dibenz[b,f]azepine-5-carboxamide dihydrate, C15H12N2O.2H2O. Cryst Res. Technol. 21, 1463–1468.Google Scholar
First citation Reck, G., Dietz, G., Laban, G., Günther, W., Bannier, G. & Höhne, E. (1988). X-ray studies on piroxicam modifications. Pharmazie, 43, 477–481.Google Scholar
First citation Ross, M., Takeda, H. & Wones, D. R. (1966). Mica polytypes: systematic description and identification. Science, 151, 191–193.Google Scholar
First citation Schwarz, W. & Blaschko, O. (1990). Polytype structures of lithium at low-temperatures. Phys. Rev. Lett. 65, 3144–3147.Google Scholar
First citation Sebastian, M. T., Pandey, D. & Krishna, p. (1982). X-ray diffraction study of the 2H to 3C solid state transformation of vapour grown single crystals of ZnS. Phys. Status Solidi A, 71, 633–640.Google Scholar
First citation Sedlacek, P., Kuban, R.-J. & Backhaus, K.-O. (1987a). Structure determination of polytypes. (I). Cryst. Res. Technol. 22, 793–798.Google Scholar
First citation Sedlacek, P., Kuban, R.-J. & Backhaus, K.-O. (1987b). Structure determination of polytypes. (II). Cryst. Res. Technol. 22, 923–928.Google Scholar
First citation Smaalen, S. van & de Boer, J. L. (1992). Structure of polytype of the inorganic misfit-layer compound (PbS)1.18TiS2. Phys. Rev B, 46, 2750–2757.Google Scholar
First citation Smith, J. V. & Yoder, H. S. (1956). Experimental and theoretical studies of the mica polymorphs. Mineral. Mag. 31, 209–235.Google Scholar
First citation Sorokin, N. D., Tairov, Yu. M., Tsvetkov, V. F. & Chernov, M. A. (1982). The laws governing the changes of some properties of different silicon carbide polytypes. Dokl. Akad. Nauk SSSR, 262, 1380–1383. [In Russian]. See also Kristallografiya, 28, 910–914.Google Scholar
First citation Steinberger, I. T. (1983). Polytypism in zinc sulfide. Crystal growth and characterization of polytype structures, edited by P. Krishna, pp. 7–53. Oxford: Pergamon Press.Google Scholar
First citation Steinberger, I. T., Bordas, J. & Kalman, Z. H. (1977). Microscopic structure studies of ZnS crystals using synchrotron radiation. Philos. Mag. 35, 1257–1267.Google Scholar
First citation Szymański, J. T. (1980). A redetermination of the structure of Sb2VO5, stibivanite, a new mineral. Can. Mineral. 18, 333–337.Google Scholar
First citation Takéuchi, Y., Ozawa, T. & Takahata, T. (1983). The pyrosmalite group of minerals. III. Derivation of polytypes. Can. Mineral. 21, 19–27.Google Scholar
First citation Taxer, K. (1992). Order–disorder and polymorphism of the compound with the composition of scholzite, CaZn2[PO4]2.2H2O. Z. Kristallogr. 198, 239–255.Google Scholar
First citation Taylor, A. & Jones, R. M. (1960). The crystal structure and thermal expansion of cubic and hexagonal silicon carbide. Silicon carbide – a high temperature semiconductor, edited by J. R. O'Connor & J. Smiltens, pp. 147–154. Oxford: Pergamon Press.Google Scholar
First citation Terhell, J. C. J. M. (1983). Polytypism in the III–VI layer compounds. Crystal growth and characterization of polytype structures, edited by P. Krishna, pp. 55–109. Oxford: Pergamon Press.Google Scholar
First citation Thompson, J. B. (1981). Polytypism in complex crystals: contrasts between mica and classical polytypes. Structure and bonding in crystals II, edited by M. O'Keefe & A. Navrotsky, pp. 168–196. New York/London/Toronto/Sydney/San Francisco: Academic Press.Google Scholar
First citation Tokonami, M. & Hosoya, S. (1965). A systematic method for unravelling a periodic vector set. Acta Cryst. 18, 908–916.Google Scholar
First citation Tomaszewski, P. E. (1992). Polytypism of α-LiNH4SO4 crystals. Solid State Commun. 81, 333–335.Google Scholar
First citation Trigunayat, G. C. & Verma, A. R. (1976). Polytypism and stacking faults in crystals with layer structure. Crystallography and crystal chemistry of materials with layered structures, edited by F. Levy, pp. 269–340. Dordrecht: Reidel.Google Scholar
First citation Tsvetkov, V. F. (1982). Problems and prospects of growing large silicon carbide single crystals. Isv. Leningr. Elektrotekh. Inst. 302, 14–19. [In Russian.]Google Scholar
First citation Verma, A. R. & Krishna, P. (1966). Polymorphism and polytypism in crystals, New York: John Wiley.Google Scholar
First citation Weertman, J. & Weertman, J. R. (1984). Elementary dislocation theory. New York: Macmillan.Google Scholar
First citation Weiss, Z. & Ďurovič, S. (1980). OD interpretation of Mg-vermiculite. Symbolism and X-ray identification of its polytypes. Acta Cryst. A36, 633–640.Google Scholar
First citation Weiss, Z. & Ďurovič, S. (1983). Chlorite polytypism. II. Classification and X-ray identification of trioctahedral polytypes. Acta Cryst. B39, 552–557.Google Scholar
First citation Weiss, Z. & Ďurovič, S. (1985a). Polytypism of pyrophyllite and talc. Part II. Classification & X-ray identification of MDO polytypes. Silikáty, 28, 289–309.Google Scholar
First citation Weiss, Z. & Ďurovič, S. (1985b). A unified classification and X-ray identification of polytypes of 2:1 phyllosilicates. 5th Meeting of the European Clay Groups, Prague, 1983, edited by J. Konta, pp. 579–584. Praha: Charles University.Google Scholar
First citation Weiss, Z. & Wiewióra, A. (1986). Polytypism in micas. III. X-ray diffraction identification. Clays Clay Miner. 34, 53–68.Google Scholar
First citation Wells, A. F. (1945). Structural inorganic chemistry. Oxford: Clarendon Press.Google Scholar
First citation Wennemer, M. & Thompson, A. B. (1984). Tridymite polymorphs and polytypes. Schweiz. Mineral. Petrog. Mitt. 64, 335–353.Google Scholar
First citation White, T. J., Segall, R. L., Hutchison, J. L. & Barry, J. C. (1984). Polytypic behaviour of zirconolite. Proc. R. Soc. London Ser. A, 392, 343–358.Google Scholar
First citation Wilson, A. J. C. (1942). Imperfection in the structure of cobalt. II. Mathematical treatment of proposed structure. Proc. R. Soc. London Ser A, 180, 277–285.Google Scholar
First citation Yamanaka, T. & Mori, H. (1981). The crystal structure and polytypes of α-CaSiO3 (pseudowollastonite). Acta Cryst. B37, 1010–1017.Google Scholar
First citation Zhdanov, G. S. (1945). The numerical symbol of close-packing of spheres and its application in the theory of close-packings. C. R. Dokl. Acad. Sci. URSS, 48, 43.Google Scholar
First citation Zhukhlistov, A. P., Zvyagin, B. B. & Pavlishin, V. I. (1990). The polytype 4M of the Ti-biotite displayed on oblique-texture electron-diffraction pattern. Kristallografiya, 35, 406–413. [In Russian.]Google Scholar
First citation Zoltai, T. & Stout, J. H. (1985). Mineralogy: concepts and principles. Minneapolis, Minnesota: Burgess.Google Scholar
First citation Zorkii, P. M. & Nesterova, Ya. M. (1993). Interlayered polytypism in organic crystals. Zh. Fiz. Khim. 67, 217–220. [In Russian.]Google Scholar
First citation Zvyagin, B. B. (1964). Electron diffraction analysis of clay minerals. Moskva: Nauka. [In Russian.]Google Scholar
First citation Zvyagin, B. B. (1967). Electron diffraction analysis of clay minerals. New York: Plenum.Google Scholar
First citation Zvyagin, B. B. (1988). Polytypism in crystal structures. Comput. Math. Appl. 16, 569–591.Google Scholar
First citation Zvyagin, B. B. & Fichtner, K. (1986). Geometrical conditions for the formation of polytypes with a supercell in the basis plane. Bull. Minéral. 109, 45–47.Google Scholar
First citation Zvyagin, B. B., Vrublevskaya, Z. V., Zhukhlistov. A. P., Sidorenko, O. V., Soboleva, S. V. & Fedotov, A. F. (1979). High-voltage electron diffraction in the investigation of layered minerals. Moskva: Nauka [In Russian.]Google Scholar