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9.2. Layer stacking

By S. DUROVIC P. KRISHNA AND D. PANDEY

9.2.1. Layer stacking in close-packed structures
(By D. Pandey and P. Krishna)

The crystal structures of a large number of materials can be
described in terms of stacking of layers of atoms. This chapter
provides a brief account of layer stacking in materials with
structures based on the geometrical principle of close packing of
equal spheres.

9.2.1.1. Close packing of equal spheres
9.2.1.1.1. Close-packed layer

In a close-packed layer of spheres, each sphere is in contact
with six other spheres as shown in Fig. 9.2.1.1. This is the
highest number of nearest neighbours for a layer of identical
spheres and therefore yields the highest packing density. A single
close-packed layer of spheres has two-, three- and sixfold axes of
rotation normal to its plane. This is depicted in Fig. 9.2.1.2(a),
where the size of the spheres is reduced for clarity. There are
three symmetry planes with indices (12.0), (21.0), and (11.0)
defined with respect to the smallest two-dimensional hexagonal
unit cell shown in Fig. 9.2.1.2(b). The point-group symmetry of
this layer is 6mm and it has a hexagonal lattice. As such, a layer
with such an arrangement of spheres is often called a hexagonal
close-packed layer. We shall designate the positions of spheres in
the layer shown in Fig. 9.2.1.1 by the letter ‘A’. This A4 layer has
two types of triangular interstices, one with the apex angle up
(A) and the other with the apex angle down (V). All interstices of
one kind are related by the same hexagonal lattice as that for the
A layer. Let the positions of layers with centres of spheres above
the centres of the A and V interstices be designated as ‘B’ and
‘C’, respectively. In the cell of the A layer shown in Fig. 9.2.1.1
(a = b = diameter of the sphere and y = 120°), the three
pos1t10ns A, B, and C on projection have coordinates (0,0),
3,%), and (3, 1), respectively.

9.2.1.1.2. Close-packed structures

A three-dimensional close-packed structure results from
stacking the hexagonal close-packed layers in the A, B, or C
position with the restriction that no two successive layers are in
identical positions. Thus, any sequence of the letters A, B, and
C, with no two successive letters alike, represents a possible
manner of stacking the hexagonal close-packed layers. There are
thus infinite possibilities for close-packed layer stackings. The
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Fig. 9.2.1.1. The close packing of equal spheres in a plane.

identity period n of these layer stackings is determined by the
number of layers after which the stacking sequence starts
repeating itself. Since there are two possible positions for a new
layer on the top of the preceding layer, the total number of
possible layer stackings with a repeat period of n is 2",

In all the close-packed layer stackings, each sphere is
surrounded by 12 other spheres. However, it is touched by all
12 spheres only if the axial ratio i/a is «/2/3, where A is the
separation between two close-packed layers and a is the diameter
of the spheres (Verma & Krishna, 1966). Deviations from the
ideal value of the axial ratio are common, especially in
hexagonal metals (Cottrell, 1967). The arrangement of spheres
described above provides the highest packing density of 0.7405
in the ideal case for an infinite lattice (Azaroff, 1960). There are,
however, other arrangements of a finite number of equal spheres
that have a higher packing density (Boerdijk, 1952).

9.2.1.1.3. Notations for close-packed structures

In the Ramsdell notation, close-packed structures are desig-
nated as nX, where n is the identity period and X stands for the
lattice type, which, as shown later, can be hexagonal (H),
rhombohedral (R), or in one special case cubic (C) (Ramsdell,
1947).

In the Zhdanov notation, use is made of the stacking offset
vector s and its opposite —s, which cause, respectively, a
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Fig. 9.2.1.2. (a) Symmetry axes of a single close-packed layer of
spheres and (b) the minimum symmetry of a three-dimensional close
packing of spheres.
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9.2. LAYER

Table 9.2.1.1. Common close-packed metallic structures

Stacking Identity | Ramsdell | Zhdanov |Jagodzinski | Proto-

sequence period | notation | notation | notation | type
AB,A. .. 2 2H 11 h Mg
ABC,A... 3 3C 00 c Cu
ABCB,A. .. 4 4H 22 hc La
ABCBCACAB, A . .. 9 9R 21 hhc Sm

cyclic (A — B— C — A) or anticyclic (4 > C— B— A)
shift of layers in the same plane. The vector s can be either
(1/3)[1100], (1/3)[0110], or (1/3)[1010]. Zhdanov (1945)
suggested summing the number of consecutive offsets of
each kind and designating them by numeral figures.
Successive numbers in the Zhdanov symbol have opposite
signs. The rhombohedral stackings have three identical sets of
Zhdanov symbols in an identity period. It is usually sufficient
to write only one set.

Yet another notation advanced, amongst others, by
Jagodzinski (1949a) makes use of configurational symbols for
each layer. A layer is designated by the symbol % or ¢ according
as its neighbouring layers are alike or different. Letter ‘k’ in
place of ‘c’ is also used in the literature.

Some of the common close-packed structures observed in
metals are listed in Table 9.2.1.1 in terms of all the
notations.

9.2.1.2. Structure of compounds based on close-packed layer
stackings

Frequently, the positions of one kind of atom or ion in
inorganic compounds, such as SiC, ZnS, Cdl,, and GaSe,
correspond approximately to those of equal spheres in a close
packing, with the other atoms being distributed in the voids.
All such structures will also be referred to as close-packed
structures though they may not be ideally close packed. In the
close-packed compounds, the size and coordination number
of the smaller atom/ion may require that its close-packed
neighbours in the neighbouring layers do not touch each
other.
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Fig. 9.2.1.3. Voids in a close packing: (a) tetrahedral void; (b)
tetrahedron formed by the centres of spheres; (c¢) octahedral void; (d)
octahedron formed by the centres of spheres.

STACKING
9.2.1.2.1. Voids in close packing

Three-dimensional close packings of spheres have two kinds
of voids (Azaroff, 1960):

(i) If the triangular interstices in a close-packed layer have
spheres directly over them, the resulting voids are called
tetrahedral voids because the four spheres surrounding the void
are arranged at the corners of a regular tetrahedron (Figs.
9.2.1.3a,b). If R denotes the radius of the four spheres
surrounding a tetrahedral void, the radius of the sphere that
would just fit into this void is given by 0.225R (Verma &
Krishna, 1966). The centre of the tetrahedral void is located at a
distance 3%4/4 from the centre of the sphere on top of it.

(i) If the triangular interstices pointing up in one close-
packed layer are covered by triangular interstices pointing
down in the adjacent layer, the resulting voids are called
octahedral voids (Figs. 9.2.1.3c,d) since the six spheres
surrounding each such void lie at the corners of a regular
octahedron. The radius of the sphere that would just fit into an
octahedral void is given by 0.414R (Verma & Krishna, 1966).
The centre of this void is located half way between the two
layers of spheres.

While there are twice as many tetrahedral voids as the spheres
in close packing, the number of octahedral voids is equal to the
number of spheres (Krishna & Pandey, 1981).

9.2.1.2.2. Structures of SiC and ZnS

SiC has a binary tetrahedral structure in which Si and C layers
are stacked alternately, each carbon layer occupying half the
tetrahedral voids between successive close-packed silicon layers.
One can regard the structure as consisting of two identical
interpenetrating close packings, one of Si and the other of C,
with the latter displaced relative to the former along the stacking
axis through one fourth of the layer spacing. Since the positions
of C atoms are fixed relative to the positions of layers of Si
atoms, it is customary to use the letters A, B, and C as
representing Si—C double layers in the close packing. To be more
exact, the three kinds of layers need to be written as Ax, BS, and
Cy where Roman and Greek letters denote the positions of Si and
C atoms, respectively. Fig. 9.2.1.4 depicts the structure of
SiC-6H, which is the most common modification.

Fig. 9.2.1.4. Tetrahedral arrangement of Si and C atoms in the SiC-6H
structure.
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9. BASIC STRUCTURAL FEATURES

Table 9.2.1.2. List of SiC polytypes with known structures in
order of increasing periodicity (after Pandey & Krishna, 1982a)

Structure Structure
Polytype | (Zhdanov sequence) | Polytype | (Zhdanov sequence)
2H | 11 57TH | (23)43333
3C | 57R | (33),34
4H |22 69R, | (33);32
6H |33 69R, | 33322334
8H |44 75R, | (32):(23),
10H | 3322 81H | (33)535(33)434
14H | (22),33 84R | (33);(32),
15R 23 87R | (33),32
16H, | (33),22 90R | (23),3322
18H | (22);33 93R | (33),34
19H | (23);22 96R, | (33);3434
20H | (22),44 9R | (33),3222
21H | 333534 105R | (33)532
21H, | (33),63 111R | (33)534
21R 34 120R | (22)523222333
24R 35 123R | (33)¢32
27H | (33),(23), 126R | (33),2353433223
27R 2223 129R | (33)¢34
33R 3332 125R | 32(33),23(33),23
33H | (33),353334 141R | (33);32
34H | (33),2332 147R | (3332),32
36H, | (33),32(33),34 150R, | (23);32(23);322332
36H, | (33),3234 150R, | (23),(3223),
39H | (33),32(33);(32), 159R | (33)432
39R 3334 168R | (23),033
40H | (33)52332 174R | (33)46(33)s4
45R (23),32 189R | (34)443
51R, | (33),32 267R | (23),22
51R, | (22);23 273R | (23),,33
54H | (33)4323334 393R | (33),32

A large number of crystallographically different modifications
of SiC, called polytypes, has been discovered in commercial
crystals grown above 2273 K (Verma & Krishna, 1966; Pandey
& Krishna, 1982a). Table 9.2.1.2 lists those polytypes whose
structures have been worked out. All these polytypes have
a=b=3.078Aand ¢ =n x 2.518 A, where n is the number of
Si-C double layers in the hexagonal cell. The 3C and 2H
modifications, which normally result below 2273 K, are known
to undergo solid-state structural transformation to 6H
(Jagodzinski, 1972; Krishna & Marshall, 1971a,b) through a
non-random insertion of stacking faults (Pandey, Lele &
Krishna, 1980a,b,c; Kabra, Pandey & Lele, 1986). The lattice
parameters and the average thickness of the Si-C double layers
vary slightly with the structure, as is evident from the //a ratios
of 0.8205 (Adamsky & Merz, 1959), 0.8179, and 0.8165
(Taylor & Jones, 1960) for the 2H, 6H, and 3C structures,
respectively. Even in the same structure, crystal-structure
refinement has revealed variation in the thickness of Si-C
double layers depending on their environment (de Mesquita,
1967).

The structure of ZnS is analogous to that of SiC. Like the
latter, ZnS crystals grown from the vapour phase also display a
large variety of polytype structures (Steinberger, 1983). ZnS
crystals that occur as minerals usually correspond to the wurtzite
( /AB/...) and the sphalerite ( /ABC/...) modifications.
The structural transformation between the 2H and 3C structures
of ZnS is known to be martensitic in nature (Sebastian, Pandey &
Krishna, 1982; Pandey & Lele, 1986b). The h/a ratio for
ZnS-2H is 0.818, which is somewhat different from the ideal

value (Verma & Krishna, 1966). The structure of the stackings in
polytypic Agl is analogous to those in SiC and ZnS (Prager,
1983).

9.2.1.2.3. Structure of Cdl,

The structure of cadmium iodide consists of a close packing of
the I ions with the Cd ions distributed amongst half the
octahedral voids. Thus, the Cd and I layers are not stacked
alternately; there is one Cd layer after every two I layers as
shown in Fig. 9.2.1.5. The structure actually consists of
molecular sheets (called minimal sandwiches) with a layer of
Cd ions sandwiched between two close-packed layers of I ions.
The bonding within the minimal sandwich is ionic in character
and is much stronger than the bonding between successive
sandwiches, which is of van der Waals type. The importance of
polarization energy for the stability of such structures has
recently been emphasized by Bertaut (1978). It is because of the
weak van der Waals bonding between the successive minimal
sandwiches that the material possesses the easy cleavage
characteristic of a layer structure. In describing the layer
stackings in the CdI, structure, it is customary to use Roman
letters to denote the I positions and Greek letters for the Cd
positions. The two most common modifications of Cdl, are 4H
and 2H with layer stackings AyBCaB... and AyBAyB,
respectively. In addition, this material also displays a number
of polytype modifications of large repeat periods (Trigunayat &
Verma, 1976; Pandey & Krishna, 1982a). From the structure of
Cdl,, it follows that the identity period of all such modifications
must consist of an even number of I layers. The h/a ratio in all
these modifications of Cdl, is 0.805, which is very different from
the ideal value (Verma & Krishna, 1966). The structure of Pbl,,
which also displays a large number of polytypes, is analogous to
CdI, with one important difference. Here, the distances between
two I layers with and without an intervening Pb layer are quite
different (Trigunayat & Verma, 1976).

9.2.1.2.4. Structure of GaSe

The crystal structure of GaSe consists of four-layered slabs,
each of which contains two close-packed layers of Ga (denoted
by symbols 4, B, C) and Se (denoted by symbols «, 8, y) each in
the sequence Se-Ga-Ga-Se (Terhell, 1983). The Se atoms sit on
the corners of a trigonal prism while each Ga atom is
tetrahedrally coordinated by three Se and one Ga atoms. If the
Se layers are of A type, then the stacking sequence of the four

6.84 A

Fig. 9.2.1.5. The layer structure of Cdl,: small circles represent Cd
ions and larger ones I ions (after Wells, 1945).

754



9.2. LAYER STACKING

layers in the slab can be written as ABBA or AyyA. There are
thus six possible sequences for the unit slab. These unit slabs
can be stacked in the manner described for equal spheres.
Thus, for example, the 2H structure can have three different
layer stackings: /ABBAByyB/..., [ABBABoauB/... and
JABBA CBBC/. Periodicities containing up to 21 unit slabs
have been reported for GaSe (see Terhell, 1983). The bonding
between the layers of a slab is predominantly covalent while that
between two adjacent slabs is of the van der Waals type, which
imparts cleavage characteristics to this material.

9.2.1.3. Symmetry of close-packed layer stackings of equal
spheres

It can be seen from Fig. 9.2.1.2(a) that a stacking of two or
more layers in the close-packed manner still possesses all three
symmetry planes but the twofold axes disappear while the
sixfold axes coincide with the threefold axes (Verma & Krishna,
1966). The lowest symmetry of a completely arbitrary periodic
stacking sequence of close-packed layers is shown in Fig.
9.2.1.2(b). Structures resulting from such stackings therefore
belong to the trigonal system. Even though a pure sixfold axis of
rotation is not possible, close-packed structures belonging to the
hexagonal system can result by virtue of at least one of the three
symmetry axes parallel to [00.1] being a 6; axis (Verma &
Krishna, 1966). This is possible if the layers in the unit cell are
stacked in special ways. For example, a 6H stacking sequence
JABCACB/ . .. has a 65 axis through 0, 0. It follows that, for an
nH structure belonging to the hexagonal system, » must be even.
A packing nH /nR with n odd will therefore necessarily belong to
the trigonal system and can have either a hexagonal or a
rhombohedral lattice (Verma & Krishna, 1966).

Other symmetries that can arise by restricting the arbitrariness
of the stacking sequence in the identity period are: (i) a centre of
symmetry at the centre of either the spheres or the octahedral
voids; and (ii) a mirror plane perpendicular to [00.1]. Since there
must be two centres of symmetry in the unit cell, the
centrosymmetric arrangements may possess both centres either
at sphere centres/octahedral void centres or one centre each at
the centres of spheres and octahedral voids (Patterson & Kasper,
1959).

9.2.1.4. Possible lattice types

Close packings of equal spheres can belong to the trigonal,
hexagonal, or cubic crystal systems. Structures belonging to the
hexagonal system necessarily have a hexagonal lattice, i.e. a
lattice in which we can choose a primitive unit cell with
a=b#c, a=p=90° and y = 120°. In the primitive unit
cell of the hexagonal close-packed structure /AB/ ... shown in
Fig. 9.2.1.6, there are two spheres associated with each lattice
point, one at 0, 0, 0 and the other at 1, 2, 1. Structures belonging
to the trigonal system can have either a hexagonal or a
rhombohedral lattice. By a rhombohedral lattice is meant a
lattice in which we can choose a primitive unit cell with
a=b=c, a=8=y#90°. Both types of lattice can be
referred to either hexagonal or rhombohedral axes, the unit cell
being non-primitive when a hexagonal lattice is referred to
rhombohedral axes and vice versa (Buerger, 1953). In close-
packed structures, it is generally convenient to refer both
hexagonal and rhombohedral lattices to hexagonal axes. Fig.
9.2.1.7 shows a rhombohedral lattice in which the primitive cell
is defined by the rhombohedral axes a,,a,,a;; but a non-
primitive hexagonal unit cell can be chosen by adopting the axes
Ay, Ay, C. The latter has lattice points at 0,0,0; 3,1,1; and
1,2 2 If this rhombohedral lattice is rotated through 60° around

[00.1], the hexagonal unit cell will then be centred at §,3,1 and
%.1.%. These two settings are crystallographically equivalent for
close packing of equal spheres. They represent twin arrange-
ments when both occur in the same crystal. The hexagonal unit
cell of an nR structure is made up of three elementary stacking
sequences of n/3 layers that are related to each other either by
an anticyclic shift of layers A — C — B — A (obverse setting)
or by a cyclic shift of layers A — B — C — A (reverse setting)
in the direction of z increasing (Verma & Krishna, 1966).
Evidently, n must be a multiple of 3 for nR structures.

In the special case of the close packing /ABC/ ... [with the
ideal axial ratio of 1/(2/3)], the primitive rhombohedral unit cell
has ¢ = B = y = 60°, which enhances the symmetry and enables
the choice of a face-centred cubic unit cell. The relationship
between the face-centred cubic and the rhombohedral unit cell is
shown in Fig. 9.2.1.8. The threefold axis of the rhombohedral
unit cell coincides with one of the (111) directions of the cubic
unit cell. The close-packed layers are thus parallel to the {111}
planes in the cubic close packing.

9.2.1.5. Possible space groups

It was shown by Belov (1947) that consistent combinations of
the possible symmetry elements in close packing of equal spheres
can give rise to eight possible space groups: P3ml, P3ml,

Fig. 9.2.1.7. A rhombohedral lattice (a,, a,, a;) referred to hexagonal
axes (4, A,, C) (after Buerger, 1953).
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9. BASIC STRUCTURAL FEATURES

P6m2, P6,mc, P6;/mmc, R3m, R3m, and Fm3m. The last space
group corresponds to the special case of cubic close packing
J/ABC/ . ... The tetrahedral arrangement of Si and C in SiC does
not permit either a centre of symmetry (1) or a plane of
symmetry (m) perpendicular to [00.1]. SiC structures can
therefore have only four possible space groups P3ml, R3ml,
P6,mc, and F43m. CdI, structures can have a centre of
symmetry on octahedral voids, but cannot have a symmetry
plane perpendicular to [00.1]. CdI, can therefore have five
possible space groups: P3ml, P3m, R3m, R3m, and P6;mc.
Cubic symmetry is not p0551ble in CdI, on account of the
presence of Cd atoms, the sequence /AyBCBABaC/ represent-
ing a 6R structure.

9.2.1.6. Crystallographic uses of Zhdanov symbols

From the Zhdanov symbols of a close-packed structure, it is
possible to derive information about the symmetry and lattice
type (Verma & Krishna, 1966). Let n, and n_ be the number of
positive and negative numerals in the Zhdanov sequence of a
given structure. The lattice is rhombohedral if n, —n_ =
+1mod3, otherwise it is hexagonal. The + sign corresponds
to the reverse setting and — to the obverse setting of the
rhombohedral lattice. Since this criterion is sufficient for the
identification of a rhombohedral structure, the practice of writing
three units of identical Zhdanov symbols has been abandoned in
recent years (Pandey & Krishna, 1982a). Thus the 15R polytype
of SiC is written as (23) rather than (23);.

As described in detail by Verma & Krishna (1966), if the
Zhdanov symbol consists of an odd set of numbers repeated
twice, e.g. (22), (33), (221221) etc., the structure can be
shown to possess a 6; axis. For the centre of symmetry at the
centre of a sphere or an octahedral void, the Zhdanov symbol
will consist of a symmetrical arrangement of numbers of like
signs surrounding a single even or odd Zhdanov number,
respectively. Thus, the structures (2)32(4)23 and (3)32(5)23
have centres of symmetry of the two types in the numbers
within parentheses. For structures with a symmetry plane
perpendicular to [00.1], the Zhdanov symbols consist of a
symmetrical arrangement of a set of numbers of opposite signs
about the space between two succession numbers. Thus, a
stacking |522|225| has mirror planes at positions indicated by
the vertical lines.

Fig. 9.2.1.8. The relationship between the f.c.c. and the primitive
rhombohedral unit cell of the c.c.p. structure.

The use of abridged symbols to describe crystal structures has
sometimes led to confusion in deciding the crystallographic
equivalence of two polytype structures. For example, the
structures (13) and (31) are identical for SiC but not for Cdl,
(Jain & Trigunayat, 1977a,b).

9.2.1.7. Structure determination of close-packed layer stackings
9.2.1.7.1. General considerations

The different layer stackings (polytypes) of the same material
have identical a and b parameters of the direct lattice. The a*b*
reciprocal-lattice net is therefore also the same and is shown in
Fig. 9.2.1.9. The reciprocal lattices of these polytypes differ
only along the ¢* axis, which is perpendicular to the layers. It is
evident from Fig. 9.2.1.9 that for each reciprocal-lattice row
parallel to ¢* there are five others with the same value of the
radial coordinate £. For example, the rows 10./, 01.7, 11.7, 10.7,
01.1, and 11.7 all have & = |a*|. Owing to symmetry considera-
tions, it is sufficient to record any one of them on X-ray
diffraction photographs. The reciprocal-lattice rows hk.l can be
classified into two categories according as # — k = Omod3 or
+1mod 3. Since the atoms in an nH or nR structure lie on three
symmetry axes A : [00.1],,, B : [00. 1] L and C :[00.1] 11 the

structure factor Fj;, can be split into ‘three parts:
F,y = P+ Qexp[2ni(h — k)/3] + Rexp[—2mi(h — k) /3],

where P =3, exp(2nilz,/n), 0 =>_,, exp(2nuilzp/n),
R=3_,. exp(2mlzc/n) and z,/n, zg/n, zo/n are the z
coordlnates of atoms at A, B, and C sites, respectively. For
h—k=0mod3,

n=-—1

Fuy=P+Q+R= ) exp(2milz/n),

z=0

which is zero except when [/ =0, n, 2n, .... Hence, the reflec-
tions 00./, 11.1, 30.l, etc., for which # — k = Omod 3, will be
extinguished except when [ = 0, n, 2n, . ... Thus, only those hk.l
reciprocal-lattice rows for which & — k # Omod 3 carry infor-
mation about the stacking sequence and contain in general
reflections with [ =0,1,2,..., n—1, etc. It is sufficient to
record any one such row, usually the 10./ row with £ = |a*|, on
an oscillation, Weissenberg, or precession photograph to obtain
information about the lattice type, identity period, space group,
and hence the complete structure (Verma & Krishna, 1966).

y*

ety
%

Fig. 9.2.1.9. The a*-b* reciprocal-lattice net for close-packed layer
stackings.
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9.2. LAYER
9.2.1.7.2. Determination of the lattice type

When the structure has a hexagonal lattice, the positions of
spots are symmetrical about the zero layer line on the c-axis
oscillation photograph. However, the intensities of the reflec-
tions on the two sides of the zero layer line are the same only if
the structure possesses a 6, axis, and not for the trigonal system.
An apparent mirror symmetry perpendicular to the ¢ axis results
from the combination of the 65 axis with the centre of symmetry
introduced by X-ray diffraction. For a structure with a
rhombohedral lattice, the positions of X-ray diffraction spots
are not symmetrical about the zero layer line because the
hexagonal unit cell is non-primitive causing the reflections Akl to
be absent when —h + k+1 #3n(£n =0, 1,2,...). For the 10./
row, this means that the permitted reflections will have
I =3n+1, which implies above the zero layer line 10.1,
10.4, 10.7, etc. reflections and below the zero layer line 10.2,
10.5, 10.8, etc. The zero layer line will therefore divide the
distance between the nearest spots on either side (namely 10.1
and 10.2) approximately in the ratio 1:2. This enables a quick
identification of a rhombohedral lattice. It is also possible to
identify rhombohedral lattices by the appearance of an apparent
‘doubling’ of spots along the Bernal row lines on a rotation
photograph. This is because of the threefold symmetry which
makes reciprocal-lattice rows such as 10., 11./, and 01./
identical with each other but different from the other identical
set, 01./, 10./, and 11./. The extinction condition for the second
set requires/ =3n—1,i.e.1=2,5,8,and 1,4, 7, etc., which is
different from that for the first set. Consequently, on the rotation
photograph, reciprocal-lattice rows with & = |a*| will have spots
for / = 3n % 1 causing the apparent ‘doubling’.

In crystals of layer structures, such as Cdl,, where a-axis
oscillation photographs are normally taken, the identification of
the rhombohedral lattice is performed by checking for the non-
coincidence of the diffraction spots with those for the 2H or 4H
structures. In an alternative method, one compares the positions
of spots in two rows of the type 10./ and 20... This can
conveniently be done by taking a Weissenberg photograph
(Chadha, 1977).

9.2.1.7.3. Determination of the identity period

The number of layers, n, in the hexagonal unit cell can be
found by determining the ¢ parameter from the c-axis rotation or
oscillation photographs and dividing this by the layer spacing &
for that compound which can be found from reflections with
h —k = 0mod 3. The density of reciprocal-lattice points along
rows parallel to ¢* depends on the periodicity along the ¢ axis.
The larger the identity period along ¢, the more closely spaced
are the diffraction spots along c*. In situations where there are
not many structural extinctions, n can be determined by counting
the number of spacings after which the sequence of relative
intensities begins to repeat along the 10./ row of spots on an
oscillation or Weissenberg photograph (Krishna & Verma,
1963). If the structure contains a random stacking disorder of
close-packed layers (stacking faults), this will effectively make
the ¢ parameter infinite (¢* — 0) and lead to the production of
characteristic continuous diffuse streaks along reciprocal-lattice
rows parallel to ¢* for reflections with 7z — k % O mod 3 (Wilson,
1942). It is therefore difficult to distinguish by X-ray diffraction
between structures of very large unresolvable periodicities and
those with random stacking faults. Lattice resolution in the
electron microscope has been used in recent years to identify
such structures (Dubey, Singh & Van Tendeloo, 1977). A better
resolution of diffraction spots along the 10./ reciprocal-lattice
row can be obtained by using the Laue method. Standard charts
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for rapid identification of SiC polytypes from Laue films are
available in the literature (Mitchell, 1953). Identity periods as
large as 594 layers have been resolved by this method (Honjo,
Miyake & Tomita, 1950). Synchrotron radiation has been used
for taking Laue photographs of ZnS polytypes (Steinberger,
Bordas & Kalman, 1977).

9.2.1.7.4. Determination of the stacking sequence of layers

For an nH or 3nR polytype, the n close-packed layers in the
unit cell can be stacked in 2"~! possible ways, all of which cannot
be considered for ultimate intensity calculations. A variety of
considerations has therefore been used for restricting the number
of trial structures. To begin with, symmetry and space-group
considerations discussed in Subsection 9.2.1.4 and 9.2.1.5 can
considerably reduce the number of trial structures.

When the short-period structures act as ‘basic structures’ for
the generation of long-period polytypes, the number of trial
structures is considerably reduced since the crystallographic unit
cells of the latter will contain several units of the small-period
structures with faults between or at the end of such units. The
basic structure of an unknown polytype can be guessed by noting
the intensities of 10./ reflections that are maximum near the
positions corresponding to the basic structure. If the unknown
polytype belongs to a well known structure series, such as
(33),,32 and (33),,34 based on SiC-6H, empirical rules framed by
Mitchell (1953) and Krishna & Verma (1962) can allow the
direct identification of the layer-stacking sequence without
elaborate intensity calculations.

It is possible to restrict the number of probable structures for
an unknown polytype on the basis of the faulted matrix model of
polytypism for the origin of polytype structures (for details see
Pandey & Krishna, 1983). The most probable series of structures
as predicted on the basis of this model for SiC contains the
numbers 2, 3, 4, 5 and 6 in their Zhdanov sequence (Pandey &
Krishna, 1975, 1976a). For Cdl, and Pbl, polytypes, the
possible Zhdanov numbers are 1, 2 and 3 (Pandey & Krishna,
1983; Pandey, 1985). On the basis of the faulted matrix model, it
is not only possible to restrict the numbers occurring in the
Zhdanov sequence but also to restrict drastically the number of
trial structures for a new polytype.

Structure determination of ZnS polytypes is more difficult
since they are not based on any simple polytype and any number
can appear in the Zhadanov sequence. It has been observed that
the birefringence of polytype structures in ZnS varies linearly
with the percentage hexagonality (Brafman & Steinberger,
1966), which in turn is related to the number of reversals in
the stacking sequence, i.e. the number of numbers in the
Zhdanov sequence. This drastically reduces the number of trial
structures for ZnS (Brafman, Alexander & Steinberger, 1967).

Singh and his co-workers have successfully used lattice
imaging in conjunction with X-ray diffraction for determining
the structures of long-period polytypes of SiC that are not based
on a simple basic structure. After recording X-ray diffraction
patterns, single crystals of these polytypes were crushed to yield
electron-beam-transparent flakes. The one- and two-dimensional
lattice images were used to propose the possible structures for
the polytypes. Usually this approach leads to a very few
possibilities and the correct structure is easily determined by
comparing the observed and calculated X-ray intensities for the
proposed structures (Dubey & Singh, 1978; Rai, Singh, Dubey
& Singh, 1986).

Direct methods for the structure determination of polytypes
from X-ray data have also been suggested by several workers
(Tokonami & Hosoya, 1965; Dornberger-Schiff & Farkas-
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Jahnke, 1970; Farkas-Jahnke & Dornberger-Schiff, 1969) and
have been reviewed by Farkas-Jahnke (1983). These have been
used to derive the structures of ZnS, SiC, and TiS, ; polytypes.
These methods are extremely sensitive to experimental errors in
the intensities.

9.2.1.8. Stacking faults in close-packed structures

The two alternative positions for the stacking of successive
close-packed layers give rise to the possibility of occurrence of
faults where the stacking rule is broken without violating the law
of close packing. Such faults are frequently observed in crystals
of polytypic materials as well as close-packed martensites of
cobalt, noble-metal-based and certain iron-based alloys
(Andrade, Chandrasekaran & Delaey 1984; Kabra, Pandey &
Lele, 1988a; Nishiyama, 1978; Pandey, 1988).

The classical method of classifying stacking faults in 2H and
3C structures as growth and deformation types, depending on
whether the fault has resulted as an accident during growth or by
shear through the vector s, leads to considerable ambiguities
since the same fault configuration can result from more than one
physical process. For a detailed account of the limitations of the
notations based on the process of formation, the reader is
referred to the articles by Pandey (1984a) and Pandey & Krishna
(1982b).

Frank (1951) has classified stacking faults as intrinsic or
extrinsic purely on geometrical considerations. In intrinsic
faults, the perfect stacking sequence on each side of the fault
extends right up to the contact plane of the two crystal halves
while in extrinsic faults the contact plane does not belong to the
stacking sequence on either side of it. In intrinsic faults, the
contact plane may be an atomic or non-atomic plane whereas in
extrinsic faults the contact plane is always an atomic plane.
Instead of contact plane, one can use the concept of fault plane
defined with respect to the initial stacking sequence. This system
of classification is preferable to that based on the process of
formation. However, the terms intrinsic and extrinsic have been
used in the literature in a very restricted sense by associating
these with the precipitation of vacancies and interstitials,
respectively (see, for example, Weertman & Weertman, 1984).
While the precipitation of vacancies may lead to intrinsic fault
configuration, this is by no means the only process by which
intrinsic faults can result. For example, there are geometrically
18 possible intrinsic fault configurations in the 6H (33)
structure (Pandey & Krishna, 1975) but only two of these
can result from the precipitation of vacancies. Similarly, layer-
displacement faults involved in SiC transformations are
extrinsic type but do not result from the precipitation of
interstitials (see Pandey, Lele & Krishna, 1980a,b,c; Kabra,
Pandey & Lele, 1986). It is therefore desirable not to associate
the geometrical notation of Frank with any particular process of
formation.

The intrinsic-extrinsic scheme of classification of faults when
used in conjunction with the concept of assigning subscripts to
different close-packed layers (Prasad & Lele, 1971; Pandey &
Krishna, 1976b) can provide a very compact and unique way of
representing intrinsic fault configurations even in long-period
structures (Pandey, 1984b). We shall briefly explain this notation
in relation to one hexagonal (6H) and one rhombohedral (9R)
structure.

In the 6H (ABCACB, ... or hkkhkk) structure, six kinds of
layers that can be assigned subscripts 0, 1, 2, 3, 4, and 5 need to
be distinguished (Pandey, 1984b). Choosing the O-type layer in
‘h’ configuration such that the layer next to it is related through

Table 9.2.1.3. Intrinsic fault configurations in the 6H

(AyB;C,A;C,Bs, . ..) structure

Fault configuration Subscript

ABC sequence notation
...ABCACBA,|C,ABCBAC... Ino
...ABCACBA,| C,ABACBC... I,
..ABCACBA,| C,ACBABC... Iy,
...ABCACBA,| C;BACABC... Iy,
...ABCACBA,|C,BABCAC... Ips
..ABCACBA,|C;BCABAC... Iys
...ABCACBAB,|A4)BCACBA ... Iy
...ABCACBAB, A BCBACA... I,
..ABCACBAB, |A,BACBCA ... I,
...ABCACBAB, | A,CBABCA ... I,
...ABCACBAB, |A/CBCABA ... I,
...ABCACBAB, |A;CABCBA... Is
..ABCACBABC, |B,CABACB... Ly
..ABCACBABC, B,CACBAB... L,
..ABCACBABC, B, CBACAB ... L,
...ABCACBABC, |B,ACBCAB... L,
..ABCACBABC, B,ACABCRB... L,
..ABCACBABC, B;ABCACB... Ls

Notes:

(1) Dotted vertical lines represent the location of the fault plane with
respect to the initial stacking sequence on the left-hand side.

(2 Iy, and L, Iy, and I,;, I;; and L,,, and I, , and I, 5 are
crystallographically equivalent. ' '

the shift vector +s (which causes cyclic 4 — B — C — A4 shift),
the perfect 6H structure can be written as

h kK k h kK kK h kK kK h k k
4+s +s 48 —s —s —s +s 4+s +s —s —s

There are six crystallographically equivalent ways of writing
this structure with the first layer in position A: (i)
AyB,C,A;C,Bs; (ii)) A,B,C3B,AsCy; (iii) A,B3A4,CsB,C,; (iv)
A,CyBsA\B,C,; (v) A4,CsByC,A,B5; and (vi) AsCy4,B,C;B,.
Similarly, there are six ways of writing the 6H structure with
the starting layer in position B or C. Since an intrinsic fault
marks the beginning of a fresh 6H sequence, there can be
36 possible intrinsic fault configurations in the 6H
(ABCACRB, ...) structure. All these intrinsic fault configura-
tions can be described by symbols like I, ,, where r and s
stand for the subscript of the layer on the left- and right-hand
sides of the fault plane while I represents intrinsic. Knowing
the two symbols (r and s), one can write down the complete
ABC stacking sequence. It may be noted that, of the 36
possible intrinsic fault configurations, only 14 are crystal-
lographically indistinguishable (for details, see Pandey,
1984b). This notation can be used for any hexagonal
polytype and requires only the identification of various
layer types in the structure. For rhombohedral polytypes,
one must consider the layer types in both the obverse and the
reverse settings. For example, six layer types need to be
distinguished in the 9R (hhk) structure:

Obverse:
h h kK h h kK h h k

Ay, B, 4, ¢, A, C, B, C, B, ...;
+s —S —Ss 48 —s —s +s —sS
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Table 9.2.1.4. Intrinsic fault configurations in the 9R (A,B;A,CyA4,C,B,C;B,, ..

.) structure

Fault configuration Subscript
ABC sequence notation
..ABACACBCBA,|CACBCBABA ... Ly
..ABACACBCBA,|CBABACACB ... Iy,
..ABACACBCBA,|C;BCBABACA... Iy,
..ABACACBCBA,|CgBCACABAB ... Iy
..ABACACBCBA,|Ci;ABABCBCA... Iy;
..ABACACBCBA,|GACABABCB ... Iy;
...ABACACBCBABI'COACBCBABA... I
..ABACACBCBAB |C,BABACACB ... I,
..ABACACBCBAB, |C,BCBABACA... I,
..ABACACBCBAB, |CGGBCACABAB... I
..ABACACBCBAB |C;ABABCBCA... I i
..ABACACBCBAB |CGGACABABCB ... I 5
..ABACACBCBABA,| ByCBABACAC... Ly
..ABACACBCBABA,|BBACACBCBA... L,
..ABACACBCBABA,| B,ABACACBC... L,
..ABACACBCBABA, | BABCBCACA... L;
..ABACACBCBABA, | BiCACABABC... L
..ABACACBCBABA, | BCBCACABA ... L5

Note: Iygand I, 7, Iy; and [, 5, 1,5 and I, 1, and I, , and I, ; are crystallographically equivalent.

Reverse:

h h k h h k h h &k
Ay G A4 By A; B; G By G ...
—s +s +s —s +s +s —s +s

(=1}
—_
(S]]
(=)
—_1
(S]]
—_1

In the obverse setting, we choose the origin layer (O type) in
the h conﬁguratlon such that the next layer is cychcally shifted
whereas in the reverse setting the origin layer (0type) in the &
configuration is related to the next layer through an anticyclic
shift. Tables 9.2.1.3 and 9.2.1.4 list the crystallographically
unique intrinsic fault configurations in the 64 and 9R structures.

9.2.1.8.1. Structure determination of one-dimensionally
disordered crystals

Statistical distribution of stacking faults in close-packed
structures introduces disorder along the stacking axis of the
close-packed layers. As a result, one observes on a single-
crystal diffraction pattern not only normal Bragg scattering
near the nodes of the reciprocal lattice of the average
structure but also continuous diffuse scattering between the
nodes owing to the incomplete destructive interference of
scattered rays. Just like the extra polytype reflections, the
diffuse streaks are also confined to only those rows for which
h—k #0mod3. A complete description of the real structure
of such one-dimensionally disordered polytypes requires
knowledge of the average structure as well as a statistical
specification of the fluctuations due to stacking faults in the
electron-density distribution of the average structure. This
cannot be accomplished by the usual consideration of the
normal Bragg reflections alone but requires a careful analysis
of the diffuse intensity distribution as well (Pandey, Kabra &
Lele, 1986).

The first step in the structure determination of one-
dimensionally disordered structures is the specification of
the geometry of stacking faults and their distribution, both of
which require postulation of the physical processes respon-
sible for their formation. An entirely random distribution of
faults may result during the layer-by-layer growth of a

crystal (Wilson, 1942) or during plastic deformation (Paterson,
1952). On the other hand, when faults bring about the change
in the stacking sequence of layers during solid-state
transformations, their distribution is non-random (Pandey,
Lele & Krishna, 1980a,b,c; Pandey & Lele, 1986a,b; Kabra,
Pandey & Lele, 1986). Unlike growth faults, which are
accidentally introduced in a sequential fashion from one end
of the stack of layers to the other during the actual crystal
growth, stacking faults involved in solid-state transformations
are introduced in a random space and time sequence (Kabra,
Pandey & Lele, 1988b). Since the pioneering work of Wilson
(1942), several different techniques have been advanced for
the calculation of intensity distributions along diffuse streaks
making use of Markovian chains, random walk, stochastic
matrices, and the Paterson function for random and non-
random distributions of stacking faults on the assumption that
these are introduced in a sequential fashion (Hendricks &
Teller, 1942; Jagodzinski 1949a,b; Kakinoki & Komura,
1954; Johnson, 1963; Prasad & Lele, 1971; Cowley, 1976;
Pandey, Lele & Krishna, 1980a,b). The limitations of these
methods for situations where non-randomly distributed faults
are introduced in the random space and time sequence have
led to the use of Monte Carlo techniques for the numerical
calculation of pair correlations whose Fourier transforms
directly yield the intensity distributions (Kabra & Pandey,
1988).

The correctness of the proposed model for disorder can be
verified by comparing the theoretically calculated intensity
distributions with those experimentally observed. This step is
in principle analogous to the comparison of the observed Bragg
intensities with those calculated for a proposed structure in the
structure determination of regularly ordered layer stackings.
This comparison cannot, however, be performed in a straight-
forward manner for one-dimensionally disordered crystals due to
special problems in the measurement of diffuse intensities using
a single-crystal diffractometer, stemming from incident-beam
divergence, finite size of the detector slit, and multiple
scattering. The problems due to incident-beam divergence in
the measurement of the diffuse intensity distributions were first
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pointed out by Pandey & Krishna (1977) and suitable correction
factors have recently been derived by Pandey, Prasad, Lele &
Gauthier (1987). A satisfactory solution to the problem of
structure determination of one-dimensionally disordered stack-
ings must await proper understanding of all other factors that
may influence the true diffraction profiles.

9.2.2. Layer stacking in general polytypic structures
(By S. Durovic)

9.2.2.1. The notion of polytypism

The common property of the structures described in Section
9.2.1 was the stacking ambiguity of adjacent layer-like structural
units. This has been explained by the geometrical properties of
close packing of equal spheres, and the different modifications
thus obtained have been called polytypes.

This phenomenon was first recognized by Baumhauer (1912,
1915) as a result of his investigations of many SiC single crystals
by optical goniometry. Among these, he discovered three types
and his observations were formulated in five statements:

(1) all three types originate simultaneously in the same melt
and seemingly also under the same, or nearly the same,
conditions;

(2) they can be related in a simple way to the same axial ratio
(each within an individual primary series);

(3) any two types (I and II, IT and III) have certain faces in
common but, except the basal face, there is no face occurring
simultaneously in all three types;

(4) the crystals belonging to different, but also to all three,
types often form intergrowths with parallel axes;

(5) any of the three types exhibits a typical X-ray diffraction
pattern and thus also an individual molecular or atomic structure.

Baumhauer recognized the special role of these types within
modifications of the same substance and called this phenomenon
polytypism - a special case of polymorphism. The Ilater
determination of the crystal structures of Baumhauer’s three
types indicated that his results can be interpreted by a family of
structures consisting of identical layers with hexagonal symme-
try and differing only in their stacking mode.

The stipulation that the individual polytypes grow from the
same system and under (nearly) the same conditions influenced
for years the investigation of polytypes because it logically led to
the question of their growth mechanism.

In the following years, many new polytypic substances have
been found. Their crystal structures revealed that polytypism is
restricted neither to close packings nor to heterodesmic ‘layered
structures’ (e.g. Cdl, or GaSe; cf. homodesmic SiC or ZnS; see
§§9.2.1.2.2 to 9.2.1.2.4), and that the reasons for a stacking
ambiguity lie in the crystal chemistry - in all cases the geometric
nearest-neighbour relations between adjacent layers are pre-
served. The preservation of the bulk chemical composition was
not questioned.

Some discomfort has arisen from refinements of the structures
of various phyllosilicates. Here especially the micas exhibit a
large variety of isomorphous replacements and it turns out that
a certain chemical composition stabilizes certain polytypes,
excludes others, and that the layers constituting polytypic
structures need not be of the same kind. But subsequently the
opinion prevailed that the sequence of individual kinds of layers
in polytypes of the same family should remain the same and that
the relative positions of adjacent layers cannot be completely
random (e.g. Zvyagin, 1988). The postulates declared mixed-
layer and turbostratic structures as non-polytypic. All this led to
certain controversies about the notion of polytypism. While

Thompson (1981) regards polytypes as ‘arising through
different ways of stacking structurally compatible tabular units
... [provided that this] ... should not alter the chemistry of the
crystal as a whole’, Angel (1986) demands that ‘polytypism
arises from different modes of stacking of one or more
structurally compatible modules’, dropping thus any chemical
constraints and allowing also for rod- and block-like modules.
The present official definition (Guinier et al., 1984) reads:

““An element or compound is polytypic if it occurs in
several different structural modifications, each of which
may be regarded as built up by stacking layers of (nearly)
identical structure and composition, and if the modifica-
tions differ only in their stacking sequence. Polytypism is a
special case of polymorphism: the two-dimensional
translations within the layers are (essentially) preserved
whereas the lattice spacings normal to the layers vary
between polytypes and are indicative of the stacking
period. No such restrictions apply to polymorphism.

Comment: The above definition is designed to be
sufficiently general to make polytypism a useful concept.
There is increasing evidence that some polytypic structures
are characterized either by small deviations from stoichi-
ometry or by small amounts of impurities. (In the case of
certain minerals like clays, micas and ferrites, deviations
in composition up to 0.25 atoms per formula unit are
permitted within the same polytypic series: two layer
structures that differ by more than this amount should not
be called polytypic.) Likewise, layers in different poly-
typic structures may exhibit slight structural differences
and may not be isomorphic in the strict crystallographic
sense.

The Ad-Hoc Committee is aware that the definition of
polytypism above is probably too wide since it includes,
for example, the turbostratic form of graphite as well as
mixed-layer phyllosilicates. However, the sequence and
stacking of layers in a polytype are always subject to well-
defined limitations. On the other hand, a more general
definition of polytypism that includes ‘rod’ and ‘block’
polytypes may become necessary in the future.”’

This definition was elaborated as a compromise between
members of the [UCr Ad-Hoc Committee on the Nomenclature
of Disordered, Modulated and Polytype Structures. It is a
slightly modified definition proposed by the IMA/IUCr Joint
Committee on Nomenclature (Bailey er al., 1977), which was the
target of Angel’s (1986) objections.

The official definition has indeed its shortcomings, but not so
much in its restrictiveness concerning the chemical composition
and structural rigidity of layers, because this can be overcome by
a proper degree of abstraction (see below). More critical is the
fact that it is not ‘geometric’ enough. It specifies neither the
‘layers’ (except for their two-dimensional periodicity), nor the
limitations concerning their sequence and stacking mode, and it
does not state the conditions under which a polytype belongs to a
family.

Very impressive evidence that even polytypes that are in
keeping with the first Baumhauer’s statement may not have
exactly the same composition and the structure of their
constituting layers cannot be identical has been provided by
studies on SiC carried out at the Leningrad Electrotechnical
Institute (Sorokin, Tairov, Tsvetkov & Chernov, 1982;
Tsvetkov, 1982). They indicate also that each periodic polytype
is sensu stricto an individual polymorph. Therefore, it appears
that the question whether some real polytypes belong to the same
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