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9.7. The space-group distribution of molecular organic structures

By A.J. C. WiLsoN, V. L.

9.7.1. A priori classifications of space groups

The space group P2,/c accounts for about 1/3 of all known
molecular organic structures, whereas the space group P2/m has
no certain example. Why? Ultimately, the space group of a
crystal of a particular substance is determined by the minimum
(or a local minimum) of the thermodynamic potential (Gibbs free
energy) of the van der Waals and other forces, but a very simple
model goes a long way towards ‘explaining’ the relative
frequency of the various space groups within a crystal class or
larger grouping. Nowacki (1943) discussed the basic idea that
space-group frequency is determined by packing considerations,
and had earlier (1942) given statistics for the structures known at
the time. Nowacki’s statistics were used by Kitajgorodskij*
(1945), and recent writers tend to cite Kitajgorodskij as having
originated the idea. Kitajgorodskij pointed out that the most
frequent space groups are those that permit the close packing of
triaxial ellipsoids. Later, Kitajgorodskij (1955) showed that the
same space groups allowed close packing of objects of any
reasonable shape, ‘close packing’ meaning packing with 12-point
contact. Wilson (1988, 1990, 1993d) used the complementary
idea that space groups are rare when they contain symmetry
elements — notably mirror planes and rotation axes — that prevent
the molecules from freely choosing their positions within the unit
cell. A twofold axis excludes molecular centres from a column of
diameter equal to some molecular diameter (say M), a mirror
plane from a layer of thickness M, and a centre of symmetry
from a sphere of diameter M. The volumes excluded by screw
axes and glide planes are small in comparison.

9.7.1.1. Kitajgorodskij’s categories

In his bookt Organicheskaya Kristallokhimiya, Kitajgorodskij
(1955) treated the triclinic, monoclinic and orthorhombic space
groups in considerable detail, analysing the possibility of (a)
forming close-packed layers (six-point contact), and (b) close
stacking of the layers. On this basis, he divided the layers and the
space groups into four categories each. For the layers they are:

(1) Coordination close-packed layers. A coordination close-
packed layer is one in which molecules of arbitrary shape
and symmetry can be packed with six-point coordination.

(2) Closest-packed layers. A closest-packed layer is one in
which one can select the orientation of molecules of given
shape and symmetry so as to produce a cell of minimal
dimensions.

(3) Limitingly close-packed layers. A limitingly close-packed
layer for a given symmetry is a closest-packed layer in which
a molecule retains inherent symmetry; in other words, in
which it occupies a special position.

(4) Permissible layers. A permissible layer is coordination close
packed but neither closest packed nor limitingly close
packed.

The categories of space groups are:

*Names in Cyrillic characters are transliterated in many ways in non-Russian
languages. In this chapter, ‘Kitajgorodskij’ is used thoughout the text, but the
source transliteration is retained in the list of references. Similar complications
arise with other names in Cyrillic characters.

T The US translation (Kitajgorodskij, 1961) differs from the original in several
respects. Only relevant differences are noted in this chapter.
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(1) Closest-packed space groups are those that permit the closest
stacking of closest-packed layers — the packing can be made
no denser by varying the cell parameters and the orientation
of the molecules. Closest stackings can be made by a
monoclinic displacement (a translation making an arbitrary
angle with the layer plane), a centre of symmetry, a glide
plane, or a screw axis.
Limitingly close-packed space groups are those that contain
limitingly close-packed layers stacked as closely as possible.
Permissible space groups fall into three subcategories: (a)
Those containing closest-packed layers that can be closely
stacked if the layer relief is suitable; this group contains
layers stacked by centring (C,I,F) or by diad axes. (b)
Those containing limitingly close-packed layers that can be
most closely stacked if the layer relief is suitable. (c) Those
containing permissible layers stacked in the densest fashion.
(4) Impossible space groups fall into two subcategories: (a)
Those containing any layers (even closest-packed layers) that
are related by mirror planes and translations normal to the
layer plane. (b) Those containing permissible coordination
close-packed layers not stacked in the densest possible way.

@
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Kitajgorodskij expected the frequency of space groups to
decrease in the order (1) > (2) > (3) > (4). In particular,
‘permissible space groups should be found but rarely, as
exceptions’. The categorization is summarized in Table
9.7.1.1, based on Table 8 of Kitajgorodskij (1955).

Kitajgorodskij’s categorization proved very successful in
broad outline, but Wilson’s (1993b,¢) detailed statistics revealed
about a dozen anomalous space-group types. The anomalies were
of two kinds. The first was the frequent occurrence of molecules
in general positions in space groups in which Kitajgorodskij
expected molecules to use inherent symmetry in special
positions. Wilson (1993a) pointed out that in such cases
structural dimers* can be formed, with two molecules in general
positions related by the required symmetry elements - both
enantiomers would be required if the element were 1 or m. Such
space groups could therefore be added to Kitajgorodskij’s table,
in the column for ‘molecular symmetry 1°. The second kind of
anomaly was the fairly frequent occurrence of structures with the
‘impossible’ space groups Pc and P2/c. These could be
transferred from ‘impossible’ to ‘permissible’, subgroup (a),
by the same packing argument that Kitajgorodskij had used for
P1. These and a few other reclassifications are indicated in Table
9.7.1.1, the new entries being enclosed in square brackets for
distinction. Where the change is a transfer to a higher category,
the original position of the space group is indicated in round
brackets.

9.7.1.2. Symmorphism and antimorphism

Wilson (1993d) classified the space groups by degree of
symmorphism. A fully symmorphic space group contains only
the ‘syntropic’ symmetry elements

2,3,4,6:2=m,3=3+4+1,4,6=3/m

and a fully antimorphic space group contains only the ‘antitropic’
elements

* Empirically, only dimers involving a centre of symmetry or a diad axis are
important in the systems under consideration. In principle, n-mers involving any
point-group symmetry could be formed.
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9. BASIC STRUCTURAL FEATURES

Table 9.7.1.1. Kitajgorodskij’s categorization of the triclinic, monoclinic and orthorhombic space groups, as modified by Wilson
(1993a)

Wilson’s additions are enclosed in square brackets [- - -] and the original positions of space groups transferred by him by round brackets (- - -). Space

groups not listed belong to the ‘impossible’ category.

Molecular _
symmetry 1 1 2 m 2/m 222 mm mmm
Closest P1 P1
packed P2,
P2,/c P2, /c
[C2/c] C2/c [C2/c]
P2,2,2,
Pca2,
Pna2,
[Pbca] Pbca
Limitingly (C2/c¢) C2/m
close packed [P2,2,2] P2,2,2 C222
F222
1222
Pmc2, Fmm2
Cmc2,
[Pbcn] Pbcn Prnma Pmma, Pmmn
Cmca Ccca Cmmm
* Fmmm
Immm
Permissible P1
C2 C2
[Pc]
Cc Cm Pbam
[P2/c] [P2/c] P2,/m
(P2,2,2)
[C222,] [C222,]
Pmn2,
Aba2 Ama?2
[Fdd2] Ima2
(Pbca) Pbcmt
[Pccn] Pccn

* Kitajgorodskij (1961) includes Pnnm at this position, but this is inconsistent with the text of either the Russian or the English version.

+Kitajgorodskij (1961) correctly includes Pbcm at this position.

2y, 312, 413, 6,5; any glide plane.
The remaining symmetry elements
L1 4,; 4; 6,4 =2+3,6;=2,+3

are ‘atropic’. The two triclinic space groups, P1 and P1, contain
only ‘atropic’ elements, and are thus not classified by these
criteria. The rest are divided into five groups, in accordance with
the balance of symmetry elements within the unit cell. For the 71
non-triclinic space groups symmorphic in the strict sense
(Wilson, 1993d; Subsection 1.4.2.1), the classification gives:

(1) Fully symmorphic (only syntropic elements): 14.

(2) Tending to symmorphism (mainly syntropic elements): 28.

(3) Equally balanced (equal numbers of syntropic and
antitropic elements): 20.

(4) Tending to antimorphism (mainly antitropic elements): 9.

(5) Fully antimorphic (only antitropic elements): 0.

The distribution of the 230 space groups (11 enantiomorphic
couples merged) by arithmetic crystal class and degree of
symmorphism is given in Table 9.7.1.2.

A few points about the symmorphic groups are worth noting.
The 14 ‘fully symmorphic’ space groups are those that (i) have
primitive cells and (ii) have no secondary or tertiary axes (three
each monoclinic, orthorhombic, tetragonal, hexagonal; two
trigonal; no cubic). Secondary axes, even though syntropic in
the conventional space-group notation, generate additional
antitropic axes in accordance with the principles set out by
Bertaut (1995, Chap. 4.1). These additional axes are not
indicated in the ‘full’ Hermann-Mauguin space-group symbol,
but should appear in the ‘extended’ symbol (Bertaut, 1995, Table
4.3.17%). As a result of the additional axes, 21 symmorphic space
groups with primitive cells are shifted to the ‘tending to
symmorphism’ column (five tetragonal, six trigonal, five
hexagonal, five cubic). Lattice centring has a similar or greater
effect; the 36 centred symmorphic space groups are spread over
the three columns ‘tending to symmorphism’ (seven), ‘equally
balanced’ (20) and ‘tending to antimorphism’ (nine).

1 Table 4.3.1 is not strictly consistent in its treatment of the ‘extended’ symbols.
Tetragonal space groups are extended in full detail, but the extension of
orthorhombic space groups is minimal.
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9.7. THE SPACE-GROUP DISTRIBUTION OF MOLECULAR ORGANIC STRUCTURES

Table 9.7.1.2. Space groups arranged by arithmetic crystal class and degree of symmorphism (Wilson, 1993d), as frequented by
homomolecular structures with one molecule in the general position (in superscript numerals; according to Belsky, Zorkaya & Zorky,

1995)

(a) Triclinic, monoclinic and orthorhombic systems. The triclinic space groups are a special case, with ‘degree of symmorphism’ undefined, and
they are not assigned to any particular column. For *, T see Subsection 9.7.4.1.

Arithmetic crystal Fully Tending to
class symmorphic symmorphism Equally balanced Tending to antimorphism Fully antimorphic
1P *P11
1P *«P1117%8)
2P *P2© e P2, 1132
2C . xC27199 ...
mP *Pm©® - Pct®®
mC e *Cm© Cet
2/mP *P2/m© P2,/m©® P2, /et
P2/c(1V
2/mC *C2/m© C2/ct8
222P xP2220©) P2220 P2,2,200 P2,2,2, 137
222C e %2220 e €222, e
222F e xF2220 e
2221 #2220
12,2,2,1”
mm2P *Pmm2© Pma2©® e Pmc2\” Pca2\'?
Pcc2® Pna2,+%%"
Pnc2M
Pmn2(10)
Pba2®V
Pnn2®
mm2C - *Cmm2© Cme2,1°
Ccc2©
2mmC . xAmm2© Abm2©
Ama2©
Aba2+1
mm2F «Fmm2© Fdd2+"
mm2l «Imm2© Iba2+
Ima2©
mmmP *Pmmm© Pcem©® Pnnn©® PnnaV Pbcat®
Pmma® Pban© Pcca®
Pmna® Pbam©
Pmmn©® Pcen®?
Pbcm®
Pnnm©
Pbcn(®0
Pnma®
mmmC *Cmmm© Cmma® Cmem©®
Cmca®
Ccem©
Cecat®
mmmF «Fmmm©® Fddd+®
mmml sImmm© Ibam®
Ibca®
Imma®

From the nature of the definitions, no symmorphic space
group can be ‘fully antimorphic’. The 14 groups under the latter
heading consist of (i) 12 space groups with no special positions
(Subsection 9.7.4.1), and (i) two space groups whose only
special positions have symmetry 1 (Subsection 9.7.4.2). On
these criteria, the two triclinic groups excluded from discussion
would fall naturally into the column ‘fully antimorphic’. The
remaining space groups have no obvious outstanding character-
istics. Most of them fall under the heading ‘tending to

antimorphism’, though there are some in each of the columns
‘tending to symmorphism’ and ‘equally balanced’.

9.7.1.3. Comparison of Kitajgorodskij’s and Wilson’s classifi-

cations

Since both Kitajgorodskij’s and Wilson’s classifications were
made with a view to ‘explaining’ the empirically observed
frequencies of space groups - though neither makes any use of

899



9. BASIC STRUCTURAL FEATURES
Table 9.7.1.2. Space groups arranged by arithmetic crystal class and degree of symmorphism (cont.)

(b) Tetragonal space groups. For *, T see Subsection 9.7.4.1.

Arithmetic crystal Fully Tending to
class symmorphic symmorphism Equally balanced Tending to antimorphism Fully antimorphic
4p *P4© P4y - e P4, 5140
41 141T(3) %43
ap *«P41®
ar +I317
4/mP *P4 /m© P4,/m©® P4/n® P4, /nt? e
4/ml e e e «[4/m© 14, Jat®
422P #P4220 P42,20@ P4, ;2,2+%
P4,220 P4, ,220 P4,2,2®
4221 e 14,221 *[4220
4mmP *P4mm©® P4bm© P4,cm©
P4,nm©®
P4cc®
P4nc®
P4,mc®
P4,bct
dmml *[4mm©
T4cm®
14,md©
14, cd+®
2mpP *P42m©® P42 P42, ¢t
P42,m®
4m2P *P4m2® P4c2©
P4b2©
P4n2©
am2l *[4m2© 14c2+©
2ml - «142m© 14241
4/mmmP *P4/mmm® P4 /mcc® P4 /nbm©
P4, /mmc® P4 /nmm© P4 /nnc®
P4, /mem® P4/mbm©
P4 /mnc®
P4/ncc©®
P4, /nbc®
P4, /nnm©
P4, /mbc®
P4, /mnm©
P4, /nmc®
P4, /ncm®
4 /mmml *14 /mmm©® 14 /mem®
14, /amd©
14, Jacd+©

empirical frequencies — it would be expected that there should be
considerable correlation between them. All ‘closest-packed’
space groups are also ‘fully antimorphic’, and most of the
‘limitingly close packed’ and ‘permissible’ are ‘tending to
antimorphism’; a few requiring high molecular symmetry (222,
mm2, mmm) and a couple of others are ‘equally balanced’. Two
‘fully antimorphic’ groups, Pc and Cc, are merely ‘permissible’.
All “fully symmorphic’ space groups are ‘impossible’.

9.7.1.4. Relation to structural classes

Structural classes (Belsky & Zorky, 1977, and papers cited
there and below) are not an a priori classification of space groups
but are a classification of structures within a space-group type in
accordance with the number and kind of Wyckoff positions
occupied by the molecules. As a considerable knowledge of the
structures is required before their structural classes can be

assigned, they form an a posteriori classification, and will be
described (Section 9.7.5 below) after the empirical frequencies
of space groups have been discussed.

9.7.2. Special positions of given symmetry

As noted by Kitajgorodskij, in many crystal structures molecules
with inherent symmetry may occupy Wyckoff special positions,
so that molecular and crystallographic symmetry elements
coincide, and this may affect the relative frequencies of
occurrence of structures with particular space groups. Tables
of the frequency of occurrence of space groups have been
published by many authors, from Nowacki (1942) onwards.
Some typical recent papers are Brock & Dunitz (1994),
Donohue (1985), Mighell, Himes & Rodgers (1983), Padmaya,
Ramakumar & Viswamitra (1990), Wilson (1988, 1990,
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9.7. THE SPACE-GROUP DISTRIBUTION OF MOLECULAR ORGANIC STRUCTURES
Table 9.7.1.2. Space groups arranged by arithmetic crystal class and degree of symmorphism (cont.)

(c) Trigonal space groups. For *, 1 see Subsection 9.7.4.1.

Arithmetic crystal Fully Tending to
class symmorphic symmorphism Equally balanced Tending to antimorphism Fully antimorphic
3P *P3© e P3,,1%
3R *R3T1D
3P xP310 e
3R e .. *xR31C0
312P 321P #P3120 5 P321© P3,,121% p3, 2141
32R e xR3270
3m1P 31mP *P3m1© % P31m© P3c119 P31c1©@
3mR e *R3m© R3ct!"
3mlP 31mP *P3m1© % P31m©® P3c11? P31c1©@
3mR e *R3m© R3¢t

(d) Hexagonal space groups. For *, 1 see Subsection 9.7.4.1.

Arithmetic crystal Fully Tending to

class symmorphic symmorphism Equally balanced Tending to antimorphism Fully antimorphic
6P #P6©) P63, PGy P6, s+
6P *«P6T® ... ...

6/mP *P6/m e P6;/mt? e

622P e xP6220 P6, 220 e P6;220 P6, 221

6mmP *P6mm©® P6cc®

P6,cm® P6;mc®
6m2P 62mP *P6m2© % P62m® P6c21© P62c1+®
6/mmmP %P6 /mmm® P6/mcct®
P6,/mecm® P6,/mmc®

(e) Cubic space groups. For *, 1, see Subsection 9.7.4.1. No examples with one molecule in general position were found, so the frequencies are

omitted.

Arithmetic crystal Fully Tending to Antimorphic
class symmorphic symmorphism Equally balanced Tending to antimorphism except for 3
23P *P23 e P23}
23F *F23F e
23] e x[23 12,37
m3P *Pm3 Pn3 o Pa3t
m3F e «Fm3 Fd3t e
m3I cee «Im3 Ia3%
432pP *P432 e P4,32%F P4, 3327
432F e *F432 F4,32%

4321 e 1432 14,32%

43mP *«P43m e P43n+

43mF e *«F43m F43ct

43ml *143m 1434+

m3mP *Pm3m Pm3n Pn3m Pn3nt e
m3mF *Fm3m Fm3c Fd3m Fd3ct
m3ml «Im3m Ia3d+ e

1993b,¢), but many of them hardly go beyond recognizing the
fact that structures frequently made use of molecular symmetry
- Wilson (1988) explicitly chose to ignore it. The early work of
Belsky, Zorky and their colleagues did not attract much attention
outside Russian-speaking areas. Recently, however, there has
been a spate of interest (Wilson, 1991, 1993b,c,d; Brock &
Dunitz, 1994; Belsky, Zorkaya & Zorky, 1995). Earlier lack of
results is partly due to the fact that the Cambridge Structural
Database (Section 9.7.3) did not provide a search program that
would distinguish between occupation of a general position and

multiple occupation of special positions of the required
symmetry (Wilson, 1993d, Section 3). Belsky, Zorkaya &
Zorky (1995) were able to make this distinction, and their paper
is the source of many of the statistics quoted without special
citation here.

It would be interesting to know which space groups possess
positions with the symmetry of each of the 32 point groups 1, 1,
2, m, 2/m, ..., m3m. Volume A of International Tables for
Crystallography (Hahn, 1995) enumerates the symmetry of all
the special positions of a given space group, but does not readily
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9. BASIC STRUCTURAL FEATURES

answer the reverse question: which space groups contain special
positions of given point group G? Some general points may be
noted.

(i) Special positions of symmetry G will be found in the
symmorphic, but not other, space groups of the geometric class
G. Thus, for example, there are special positions of symmetry
mmm in Pmmm, Cmmm, Fmmm, Immm, but not in any other
space group in the geometric class mmm.

(i) A ‘family tree’ of point groups is given in Fig. 10.3.2 of
Volume A of International Tables for Crystallography (Hahn,
1995). Special positions of symmetry G may be sought in space
groups of the geometric classes linked to G by a line (possibly
zigzag) having a generally upwards direction. Thus, to take the
same example, special positions of symmetry mmm are found in
certain space groups of 4/mmm (P4/mmm, P4/mbm, 4,/mmc,
P4,/mcm, P4,/mmm, I4/mmm, I4/mcm), in 6/mmm
(P6/mmm), in m3 (Pm3, Im3), and in m3m (Pm3m, Fm3m).

(iii) Obviously, the higher up the tree the symmetry G is, the
fewer will be the space groups in which it can occur - special
positions of symmetry m3m can occur only in the three
symmorphic space groups of the corresponding geometric
class. The lower symmetries (2, m, 1, 3), with nothing below
them but 1, can be traced upwards along many branches, and so
can occur in many space groups, but not all are equally favoured.
Special positions of symmetry 2 can be sought in all higher
geometric classes except 6, 3m, and 3, but those of symmetry 3
could occur only in the classes of the trigonal, hexagonal, and
cubic systems. An approximate count* (Table 9.7.2.1) shows
that special positions of symmetry 2 occur in 167 space groups,
of m in 99, of 1 in 38, and of 3 in 57. The only other special
positions with space-group frequencies of this order are 2/m
(39), 222 (30), and mm (57).

9.7.3. Empirical space-group frequencies

Empirical space-group frequencies are based on two major
collections of structural data for organic substances, in Cam-
bridge and Moscow, respectively.

The Cambridge Structural Database (Allen et al., 1991)
contains assignments of space groups for a variety of different
types of organic compounds. The file can be computer searched
in many ways; it is easy, for example, to trace all structures
having a particular space group, or those having a particular
space group and a particular number of formula units per unit
cell. For the present purpose, a selection has to be made,
omitting space groups not substantiated by a full structure
determination or dubious because of disorder in the crystal. The
packing considerations discussed in previous paragraphs would
not apply to crystals in which the intermolecular binding was
ionic rather than van der Waals or the like, so that space groups
of ionic structures (for example salts of organic acids) are also
rejected. Unfortunately, as it is implemented at present (early
1995), it is not possible to search for structures with molecules
occupying general positions or specified special positions, so
that, in particular, the frequency data of Wilson (1993d) are
inflated by the inability to distinguish between single occupation
of a general position and multiple occupation of special
positions.

The file compiled by V. A. Belsky at the L. Ya. Karpov
Institute of Physical Chemistry in Moscow is the source of the
data used by Belsky, Zorkaya & Zorky (1995). This file differs
in objective from the Cambridge file; the latter includes all

* Such counts are tedious and subject to error, but the table should be correct
within a few units.

reasonably established organic structures short of proteins and
high polymers, whereas the former concentrates on structures
containing only a single type of molecule (‘homomolecular
structures’). It thus contains appreciably fewer entries than the
Cambridge file, even if structures of the types mentioned in the
previous paragraph are excluded from the latter. The Moscow
file is, of course, the primary source for the data of Belsky,
Zorkaya & Zorky (1995), in which the occupation of general and
special positions is explicitly presented.

9.7.4. Use of molecular symmetry

It has long been recognized that in many crystal structures
molecules with inherent symmetry occupy Wyckoff special
positions, so that molecular and crystallographic symmetry
elements coincide, but until recently systematic data have been
lacking. Now the occurrence of molecules of particular
symmetry in structures of various space-group types can be
traced in the data of Belsky, Zorkaya & Zorky (1995), and will
be discussed briefly.

9.7.4.1. Positions with symmetry 1

The empirical results for ‘homomolecular structures’ with one
molecule in the general position are given in Table 9.7.1.2. The
classification by arithmetic crystal class and degree of
symmorphism follows Wilson (1993d); the numerical data are
taken from Belsky, Zorkaya & Zorky (1995). Space groups
symmorphic in the technical sense (Wilson, 1993d) are prefixed
by an asterisk (x), and in each arithmetic crystal class the space
group most nearly antimorphic is followed by an obelus (7). The
number of known structures having precisely one molecule in the
general Wyckoff position is given as a superscript in brackets. It
will be noticed immediately that structures with space groups
‘fully symmorphic’ or ‘tending to symmorphism’ are extremely
rare. Most have no examples; three (P4,, P4/n and P3) are
credited with a single example each. The frequency of space
groups increases rapidly with increasing antimorphism. In the
monoclinic system, the ‘fully symmorphic’ space group P2/m
has no examples with one molecule in the general position, the
‘equally balanced” P2/c has 11 examples, the ‘tending to
antimorphism’ C2/c has 587, and the ‘fully antimorphic’ P2,/c
has 5951. Other systems have fewer examples, but the trend is
the same; the really popular space groups are the ‘fully
antimorphic’ plus P1 and PI.

All space groups, of course, possess general positions of
symmetry 1, and the data in Table 9.7.2.1 show that 116 of them
exhibit structures of some kind, and that 57 exhibit structures in
which one or more general positions are used. 13 space groups
(P1, P2, Pc, Cc, P2,2,2,, Pca2,, Pna2,, P4, ;, P3,,, P6,5)
have no positions with symmetry higher than 1. These space
groups contain no syntropic symmetry elements, and all are
relatively popular.

9.7.4.2. Positions with symmetry 1

Many space groups are centrosymmetric (all those in the
geometric classes 1, 2/m, mmm, 4/m, 4/mmm, 3, 3m, 6/m,
6/mmm, m3, m3m), but comparatively few of them possess
special positions of symmetry 1, as the centres of symmetry are
often encumbered by other symmetry elements. All centres of
symmetry in P1, P2,/c and Pbca are free, as are some of those
in P3 and R3. When the encumbrance is an antitropic symmetry
element, the special position can still be occupied by a molecule
of symmetry 1 only, but when the encumbrance is syntropic or
atropic the position cannot accommodate such a molecule. Table
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9.7. THE SPACE-GROUP DISTRIBUTION OF MOLECULAR ORGANIC STRUCTURES

Table 9.7.2.1. Statistics of the use of Wyckoff positions of specified symmetry G in the homomolecular organic crystals, based on the
data by Belsky, Zorkaya & Zorky (1995)

Space groups with
positions of Space groups Space groups using

g symmetry G actually occurring such positions
1 230 116 57
2 167 79 38
m 99 42 25
1 38 28 10
3 57 18 7
4 24 6 4
4 29 17 8
222 50 15 5
mm?2 57 18 5
2/m 39 21 6
6 5 1 0
6 8 3 1
32 22 5 1
3m 22 8 5
3 14 7 4
422 9 1 1
42m, 4m2 19 5 3
4mm 8 3 0
4/m 7 2 1
mmm 16 3 2
23 12 3 2
622 2 1 0
62m, 6m2 5 1 1
6mm 2 0 0
6/m 2 1 0
3m 8 3 1
4/mmm 4 2 1
432 5 0 0
43m 6 2 1
m3 5 2 1
6/mmm 1 0 0
m3m 3 2 2

9.7.2.1 indicates that there are 38 space groups with special
positions of symmetry 1, that 28 of them have examples of
structures of some kind, and that ten have structures in which the
centre of symmetry is actually used by a molecule.

The three space groups with no special positions except those
of symmetry 1 are very popular, whether or not the centre of
symmetry is actually used by the molecule. The single criterion
‘no special positions except possibly free centres of symmetry’
thus selects the space groups favoured by structures in which
inherent molecular symmetry is not used.

9.7.4.3. Other symmetries

Table 9.7.2.1 gives statistics for the number of space groups
possessing Wyckoff positions of symmetry G, where G is one of
the 32 point groups, the number exhibiting structures of some
kind, and the number in which the special position of symmetry
G is actually used. It has to be remembered that this table
represents the state of knowledge in 1994, that there may be
small errors in the counts in the second column, and that new
structures will gradually increase the numbers in the third and

fourth columns. Nevertheless, some trends are clear. The
arrangement of the point groups is in ascending order of their
‘order’ (Hahn, 1995, p. 781), and all numbers show a general
decrease with increasing order. When molecular symmetry is
used, the favourite is the diad axis 2, closely followed by the
mirror plane m, with the centre of symmetry 1, the triad axis 3
and the tetrad inversion axis 4 trailing. It must also be
remembered that these data are for numbers of space groups,
not numbers of structures.

9.7.4.4. Positions with the full symmetry of the geometric class

The symmorphic space groups are in a one-to-one correspon-
dence with the arithmetic crystal classes, and each has at least
one Wyckoff position with the full symmetry of the geometric
crystal class. It would thus be possible for each symmorphic
space group to accommodate molecules with the full symmetry
of the point group corresponding to the geometric crystal class.
With the obvious exceptions of P1 and P1, there seem to be no
symmorphic space groups with primitive cells and one molecule
only in the cell that do so, but the data of Belsky, Zorkaya &
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Zorky (1995) show that about half the possibilities are realized in
symmorphic space groups with centred cells. The situation is set
out in Table 9.7.4.1.

Although about half the point groups are not represented in
symmorphic space groups with one molecule in the appropriate
special position, it is interesting to look for molecules of these
symmetries in space groups of higher symmetry. A few are in
fact to be found in non-symmorphic space groups, but seven
point groups have no established examples.

9.7.5. Structural classes

As developed so far (Belsky, Zorkaya & Zorky, 1995),
structural classes relate primarily to homomolecular structures
- structures in which all molecules are the same. Nevertheless,
they are important in a study of the space-group distribution of
molecular organic structures, as structures belonging to the same
space-group type but to different structural classes are found to
have very different frequencies. The germ of the idea is implicit
in Kitajgorodskij’s subdivision of his four categories by
molecular symmetry.

In its general form, the symbol of a structural class has the
form

SG,Z = n[(x)", ), .. ],

where S is the standard space-group symbol, 7 is the number of
molecules in the unit cell, x, y, ... are the symbols of the point-
group symmetries of the Wyckoff positions occupied, and
a,b,... are the numbers of occupied Wyckoff positions of
those symmetries. An example will make this clearer. There is a
structural class

Pdm2,Z = 32[(mm)*, m*, 1].

This indicates that the space group is P4m2 and that there are 32
molecules in the unit cell occupying four positions of symmetry
mm, four of symmetry m, and one general position. On
consulting the multiplicity of the special positions for this
space group in Volume A of International tables for crystal-
lography (Hahn, 1995), one finds that the 32 molecule total is
accounted for as (4 x 2) + (4 x 4) + (1 x 8). If (as is usually the
case) the square brackets are unnecessary, they are omitted, as in

P4n2,Z = 2(222) and P4/nnc, Z = 4(4).

Occasionally, two distinguishable structural classes will lead to
the same symbol. As yet, Belsky, Zorkaya & Zorky prefer to
deal with this problem on an ad hoc basis, rather than by
attempting to devise any general rules.

Belsky, Zorkaya & Zorky divide the structural classes into six
groups, in accordance with the number of examples found. The
groups are ‘anomalous’ (up to five examples, 199 structural
classes); ‘rare’ (up to 19 examples, 55 classes); ‘small’ (up to 49
examples, 24 classes); ‘big’ (13 classes); ‘giant’ (eight classes);
and ‘supergiant’ (six classes). The last three are not explicitly
defined, but examination of the tables shows that the dividing
line between ‘big’ and ‘giant’ is about 250, and between ‘giant’
and ‘supergiant’ is about 750. All these statistics, of course, are
subject to modification as the number of known structures
increases.

9.7.6. A statistical model

Wilson (1988, 1990, 1991) has discussed the factors that, on
statistical analysis, appear to govern the relative frequency of
occurrence of the space groups of molecular organic crystals. In

its developed form (Wilson, 1990), the statistical model
postulated that, within an arithmetic crystal class (see Chapter
1.4), the number of examples, N,, of a space-group type would
depend exponentially on the numbers of symmetry elements
within the unit cell, thus:

Ny =Aexn{ - S Ble], }. (9.7.6.1)

J

In this equation, A is a normalizing constant depending on the
arithmetic crystal class, [¢],, is the number of symmetry
elements of type e; within the unit cell in the space group, and
B; is a parameter depending on the arithmetic crystal class and
the symmetry element e;; A and B; are independent of the space
group. Empirically, B; has a positive sign for the syntropic
symmetry elements (k and k, where n = 2, 3, 4, 6) and a negative
sign for 1 and the antitropic symmetry elements (glide planes and
screw axes). Often, however, laws of ‘conservation of symmetry
elements’, of the type

(9.7.6.2)
or in general
(9.7.6.3)

where c is a constant for the crystal class, eliminate a separate
dependence on one or more of the ¢;’s (Wilson, 1990). Often a
cohort larger than an arithmetic crystal class can be used, with
arithmetic crystal class included as an additional factor.* With
this adjustment, the model can be used for such cohorts as
geometric crystal class or even crystal system, giving fits within
the usual crystallographic range (R, <0.05), but, for some
classes (in particular mmm), statistical tests based on the scaled
deviance indicated residual systematic error (Wilson, 1980).
This was traced (Wilson, 1991) to the failure of an explicit
postulate: ‘The second possibility is that the distribution is
seriously affected by molecular symmetry. Some molecules
possess inherent symmetry . . ., and this symmetry could coincide
with the corresponding crystallographic symmetry element,
again increasing the variance and/or bias of the number of
examples per space group. ... The comparative rarity of
utilization of molecular symmetry suggests that it can be ignored
in an exploratory statistical survey ..." (abbreviated from
Wilson, 1988). This procedure was perhaps reasonable in a
first ‘exploratory’ survey, and in fact agreement in the usual
crystallographic range (R, < 0.05) was achieved (Wilson, 1988,
1990). However, the scaled deviance indicated that systematic
errors still remained (Wilson, 1980), and the discrepancy was
traced to the use of molecular symmetry in many structures
(Wilson, 1990, 1992). If such structures are eliminated, R, falls
to trivial values, and the agreement between observed and
calculated frequencies becomes too good to be interesting.

9.7.7. Molecular packing
9.7.7.1. Relation to sphere packing

The effect of molecular symmetry cannot be ignored in overall
statistical surveys as well as in structure prediction. However, in
most structures, the molecular symmetry is low or it is not used

* Statistical modelling programs distinguish between variates and factors. The
values of variates are ordinary numbers; [2], [m], ... are variates. Factors are
qualitative. In the immediate context, ‘arithmetic crystal class’ is a factor, but
other categories, such as metal-organic compound, polypeptide, structural class
(Belsky & Zorky, 1977), ..., could be included if desired. The programs allow
appropriately for both variates and factors; see Baker & Nelder (1978, Sections
1.2.1, 8.5.2, 22.1 and 22.2.1).
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9.7. THE SPACE-GROUP DISTRIBUTION OF MOLECULAR ORGANIC STRUCTURES

Table 9.7.4.1. Occurrence of molecules with specified point group in centred symmorphic and other space groups, based on the
statistics by Belsky, Zorkaya & Zorky (1995)

There is no entry in the ‘other space group’ column if examples are found in the centred symmorphic group.

Point group Symmorphic space group Other space group Frequency
2 C2 18
m Cm 6

2/m C2/m 20
222 None Ccca 4
Fddd 2
P4n2 2
P4 /ncc 1
e 14, /acd 3
mm2 Fmm?2 e 2
mmm None P4, /mnm 6
Im3 1
4 14 e 1
4 None P4/n 1
P4,/n 3
14,/a 12
PA&2,c 17
142d 1
e 14, /acd 1
4/m I14/m ‘e 1
422 None P4 /nnc 1
4mm None None None
42m 142m 3
4 /mmm 14 /mmm 1
3 R3 8
3 R3 6
32 None R3c 5
3m R3m 10
3m R3m 2
6 None None None
6 None P6,/m 12
6/m None None None
622 None None None
6mm None None None
6m2 None P6,/mmc 1
6/mmm None None None
23 None F43¢ 1
m3 Fm3 2
432 None None None
43m 143m 4
m3m Fm3m 9
Im3m 2

in the packing. In about 90% of crystalline compounds, the
molecules crystallize in low-symmetry space groups, so that a
given molecule has a 12-point contact with neighbouring
molecules. As 12 corresponds to the number of nearest
neighbours in cubic and hexagonal closest packing of spheres,
the periodic assembly of most molecular structures can be
regarded as the closest packing of distorted spheres, where
symmetry ensures the interlocking of complex shapes (Gavez-
zotti, 1994).

For the relatively infrequent cases where high molecular
symmetry is reflected in high crystal symmetry, the packing of
molecules can be derived from the appropriate, though not
necessarily the densest, packing of spheres. For example, ten-
point, eight-point and six-point molecular contacts can be

achieved, respectively, by tetragonal close packing (I4/mmm),
by I-centred cubic packing (Im3m), and by primitive cubic
packing (Pm3m). For a review and some derivations of the
densest packing of equal spheres, see Chapter 9.1 and Patterson
& Kasper (1959), Coutanceau Clarke (1972), and Smith (1973);
and for packing of clusters of unequal spheres, see Williams
(1987).

With spheres having infinite point symmetry KC_,, every
sphere can be located on syntropic symmetry elements at special
positions with high symmetry up to the symmetry of the lattice.
The lattice translations, pertinent to the fully symmorphic space
group, are then able to generate the entire crystal structure.
When spheres are deformed, symmetry is removed and the non-
lattice translations involved with antimorphic space groups
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(which must be subgroups of the sphere-packing groups) become
necessary to ensure space filling with the repetitive patterns of
complex molecular shapes. In a similar manner, other objects
with infinite elements of symmetry (e.g. rods; Lidin, Jacob &
Andersson, 1995) can be subjected to a rigorous analysis of close
packing.

9.7.7.2. The hydrogen bond and the definition of the packing
units

The variously shaped molecular packing units of organic
crystal structures are not necessarily identical with the individual
molecule. The molecule (of a shape defined by chemical bonds
on the inside and van der Waals forces on the outside) can be
subjected to clustering under formation of intermolecular
hydrogen bonds. Although far weaker than the chemical bond,
hydrogen bonds are strong enough to alter the shape of the
packing units of the crystal structure significantly. This may have
far-reaching consequences for the adopted packing and symme-
try. An extreme example is represented by the clustering of H,O
molecules, where two hydrogen bonds and two regular O—H
bonds create a 43m point symmetry at each O atom, and a highly
symmetrical structure emerges with an infinite bond network,
similar to that in quartz, SiO,. From the point of view of an
individual H,O molecule, the structure is very open. In contrast,
a pseudo-close-packed structure of crystalline water, assuming
an effective H,O radius of 1.38 A, would have specific density of
1.8 gcm™3.

Analogous principles apply to organic structures with hydro-
gen bonding. CH;OH, for example, forms hydrogen-bonded zig-
zag chains in its crystal structure. Obviously, the shape of the
hydrogen-bonded cluster of molecules depends on the number
and orientations of the hydrogen bonds relative to the size and
shape of the molecule, causing three-dimensional, planar and
linear ‘polymers’, or the formation of dimers and trimers. As in
the example of water, this introduces additional symmetry
elements and decreases the degree of space filling.

There is a general rule that ensures that this phenomenon is
widespread. The principle of maximum hydrogen bonding states
that all the H atoms in the active (polar) groups of a molecule are
employed in hydrogen-bond formation (Evans, 1964). There-
fore, as the O---HO and O---HN hydrogen bonds are both
energetic and common, they are also of the greatest importance
in this respect. Although most pronounced in smaller molecules,
the symmetry-altering influence of hydrogen bonding also
applies to relatively large molecules with a lower proportion of
hydrogen bonding as, for example, in long-chain carboxylic
acids that are linked in pairs. In large molecules with many
active groups, however, the hydrogen bonds merely become the
new delimiters of the shape of the individual molecule. The
perils of the symmetry-statistical treatments of the hydrogen-
bonded structures are well recognized and, for some purposes,
the strategy adopted is to exclude such systems from the
statistical pool (Filippini & Gavezzotti, 1992).

9.7.8. A priori predictions of molecular crystal structures

As physical properties of a molecular compound are a function of
the spatial arrangement of molecules, an important goal of the

structural chemist is to predict the space group and crystal
structure from the molecular shape. On the basis of the
observation that many structures of organic compounds are
formed on the principle of periodic close packing of variously
shaped molecules, it seems that such prediction would be a more
or less straightforward computational task. However, the task of
predicting the crystal structure of a specific molecular solid is
complicated owing to the occurrence of hydrogen bonding
(Subsection 9.7.7.2) and the widespread phenomenon of
polymorphism (Gavezzotti, 1994). With only subtle differences
in their Gibbs free energies, the occurrence of the structural
modifications can be influenced by various non-equilibrium
factors during crystallization.

In spite of the above problems, experience has shown that
prediction algorithms can often be used to generate several
reasonable structures for any given molecule and that in many
cases the correct structure is among them. There are two
general strategies that have been adapted for structure predic-
tion. In the first one, developed by Kitajgorodskij (1955, 1973),
the molecular shape is physically constructed from models of
atoms having van der Waals radii, resulting in the calot model.
The physical calot model is then used for an analogue
calculation of the space filling using a mechanical instrument
that relates the molecules in three-dimensional space so that the
projection of one molecule fits into the voids of other molecules.
When the unit-cell dimensions are known, the entire crystal
structure can be derived in this way. In the second approach, the
same yet abstract ‘fused sphere model’ is analysed for its
symmetry by what can be called a ‘morphic’ (as opposed to
metric) transformation by the methods of molecular topology
(Mezey, 1993). The abstract topological molecular shapes can
in principle be treated more rigorously and are computable into
probable crystal structures.

Such a priori predictions of molecular structures are still
in a relatively early stage of development. Several recent
studies are indicative of the current progress in the field. For
layered structures, good predictions can be obtained using
construction techniques, symmetry probabilities, and potential
energy functions (Scaringe, 1991). An algorithm for the
generation of crystal structures by the optimization of packing
potential energy over several possible space groups has been
devised by Gavezzotti (1991, 1994). In a third approach,
energy minimization without symmetry constraints is used for
determining molecular crystal structures (Gibson & Scheraga,
1995).

In spite of recent progress, the conceptual link between the
molecular and crystal structures still relies to a large extent on
the chemical intuition of scientists. The space-group statistics
have played a critical role, as they provide the researcher with a
summary of what happens in nature. It is likely that the
prediction process can be enhanced by calculating statistics of
the space-group frequencies and symmetry for molecules that
are the most closely related to the shape or chemistry of the
molecule under study. As such statistical subsets are often
significantly different from the overall statistics, they may prove
more valuable in the a priori prediction of the crystal structure
for a specific molecule. The space-group frequencies and
symmetry statistics remain one of the important strings in this
link.
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