International
Tables for Crystallography Volume C Mathematical, physical and chemical tables Edited by E. Prince © International Union of Crystallography 2006 |
International Tables for Crystallography (2006). Vol. C. ch. 9.8, pp. 910-911
|
For a modulated crystal structure with a one-dimensional modulation, the positions of the diffraction spots are given by vectors This set of vectors is a vector module M*. The vectors
form a basis of the reciprocal lattice Λ* of the basic structure and q is the modulation wavevector. The choice of the basis of Λ* has the usual freedom, the wavevector q is only determined up to a sign and up to a reciprocal-lattice vector of the basic structure.
A vector module M* has point-group symmetry K, which is the subgroup of all elements R of O(3) leaving it invariant.
In the case of an incommensurate one-dimensional modulation, M* is generated by the lattice Λ* of main reflections and the modulation wavevector q. It then follows that K is characterized by the following properties:
|
An element R of K then transforms the basic vectors ,
,
, q into ones of the form (9.8.1.15)
. If one denotes, as in (9.8.1.2)
, q by
, this implies
with Γ*(R) a 4 × 4 matrix with integral entries. In the case of an incommensurate modulated crystal structure, only two vectors with the same length as q are q and −q. As Λ* is left invariant, it follows that for a one-dimensionally modulated structure Γ*(R) has the form
This matrix represents the orthogonal transformation R when referred to the basis vectors
(i = 1, 2, 3, 4) of the vector module M*. As in the case of lattices, two vector modules of modulated crystals are equivalent if they have bases (i.e. a basis for the reciprocal lattice Λ* of the basic structure together with a modulation wavevector q) such that the set of matrices Γ*(K) representing their symmetry is the same for both vector modules. Equivalent vector modules form a Bravais class.
Again, as in the case of three-dimensional lattices, it is sometimes convenient to consider a vector module that includes as subset the one spanned by all diffraction spots as in (9.8.1.15). Within such a larger vector module, the actual diffraction peaks then obey centring conditions. For a vector module associated with a modulated structure, centring may involve main reflections (the basic structure then has a centred lattice), or satellites, or both. For example, if in a structure with primitive orthorhombic basic structure the modulation wavevector is given by
, one may describe the diffraction spots by means of the non-primitive lattice basis
,
,
and by the modulation wavevector
.
Crystallographic point groups are denoted generally by the same letter K.