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This results in a change for 7. For example, the
(3 4 1)-dimensional space group Pmmm(30y)000 = A™""" has
a mirror perpendicular to the a axis with associated value 7 = 0.
The parallel mirror at a distance a/2 has v = a and consequently
7 = 4. Hence, the symbols Pmmm(}0y)000 and Pmmm(}0y)s00
indicate the same group. This non-uniqueness in the symbol,
however, does not have serious practical consequences.

Another source of ambiguity is the fact that the assignment of
a satellite to a main reflection is not unique. For example, the
reflection conditions for the group 72cb(00y)0s0 = P> are
h + k + [ = even because of the centring and / + m = even and
h+m=-even for hOlm because of the two glide planes
perpendicular to the b axis. When one takes for the modulation
vector q = y'¢* = (1 — y)c*, the new indices are h, k, I', and m/
with /' =1+ m and m' = —m. Then the reflection conditions
become /' = even and & + m = even for h0/'m’. The first of these
conditions implies the symbol I2ch(00y)000 = P22 for the
group considered. This, however, is the symbol for the
nonequivalent group with condition 4 = even for AOIm. This
difficulty may be avoided by sometimes using a non-standard
setting of the three-dimensional space group (see Yamamoto et
al., 1985). In this case, the setting I2ab instead of I2¢cb avoids
the problem.

9.8.4. Theoretical foundation
9.8.4.1. Lattices and metric

A periodic crystal structure is defined in a three-dimensional
Euclidean space V and is invariant with respect to translations n
which are integral linear combinations of three fundamental ones
a;, a,, a;:

3
n=> na, n; integers. (9.8.4.1)
i=1
These translations are linearly independent and span a lattice A.
The dimension of A is the dimension of the space spanned by
a,, a,, a; and the rank is the (smallest) number of free generators

of those integral linear combinations. In the present case, both
are equal to three. Accordingly,

{Ay=V and A=xZ. (9.8.4.2)

The elements of Z* are triples of integers that correspond to the
coordinates of the lattice points. The Bragg reflection peaks of
such a crystal structure are at the positions of a reciprocal lattice
A*, also of dimension and rank equal to three. Furthermore, the
Fourier wavevectors H belong to A* (after identification of
lattice vectors with lattice points):

3
H=> ha}, h integers (9.8.4.3)
=

where {a}} is the reciprocal basis
a; - a; = §y.
The two corresponding metric tensors g and g*,
(9.8.4.4)

* * *
gx=2a;-a and gy =a;-a,

are positive definite and dual:
3
kZI gingj = 5ij~

We now consider crystal structures defined in the same three-
dimensional Euclidean space V with Fourier wavevectors that are

integral linear combinations of n = (3 + d) fundamental ones
aj,...,a;:

n
H=> h;a’, h integers. (9.8.4.5)
i=1
The components (hy,...,h,) are the indices labelling the
corresponding Bragg reflection peaks.

A crystal is incommensurate when d > 0 and the vectors a
linearly independent over the rational numbers. In that case, the
crystal does not have lattice periodicity and is said to be
aperiodic. The above description can still be convenient, even in
the case that the vectors a’ are not independent over the
rationals: one or more of them is then expressed as rational linear
combinations of the others. A typical example is that of a
superstructure arising from the (commensurate) modulation of a
basic structure with lattice periodicity.

Let us denote by M* the set of all integral linear combinations
of the vectors aj, ..., a}. These are said to form a basis. It is a
set of free Abelian generators, therefore the rank of M* is n. The
dimension of M* is the dimension of the Euclidean space spanned
by M*

My=V and M ~2Z" (9.8.4.6)

The elements of Z" are precisely the set of indices introduced
above. Mathematically speaking, M* has the structure of a (free
Abelian) module. Its elements are vectors. So we call M* a
vector module. This nomenclature is intended as a generic
characterization. When a series of structures is considered with
different values of the components of the last d vectors with
respect to the first three, the generic values of these components
are irrational, but accidentally they may become rational as well.
This situation typically arises when considering crystal structures
under continuous variation of parameters like temperature,
pressure or chemical composition. In the case of an ordinary
crystal, rank and dimension are equal, the crystal structure is
periodic, and the vector module becomes a (reciprocal) lattice.

Lattices and vector modules are, mathematically speaking,
free Z modules. For such a module, there exists a dual one that is
also free and of the same rank. In the periodic crystal case, that
duality can be expressed by a scalar product, but for an aperiodic
crystal this is no longer possible. It is possible to keep the
metrical duality by enlarging the space and considering the
vector module M* as the projection of an n-dimensional
(reciprocal) lattice X™* in an n-dimensional Euclidean space V..

M — X, {(¥*}=V, and X*=Z", (9.8.4.7)
with the orthogonal projection 7z of V, onto V defined by
M =m 2. (9.8.4.8)

This corresponds to attaching to the diffraction peak with indices
(hy, ..., h,) the point of an n-dimensional reciprocal lattice
having the same set of coordinates. The orthocomplement of V in
V. is called internal space and denoted by V;. The embedding is
uniquely defined by the relations

a;=(aj,a;), i=1,... (9.8.4.9)

where {a’;} is a basis of X" and {a}} a basis of M*. The vectors aj;
span V,.

The crystal density p in V can also be embedded as p, in V, by
identifying the Fourier coefficients o at points of M* and of X~*
having correspondingly the same components.

phy, ... h)=plhy, ... h). (9.8.4.10)

Then p, is invariant with respect to translations of the lattice X
with basis

, 1,
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a, = (a, ay) (9.8.4.11)

dual to (9.8.4.9). In the commensurate case, this correspondence
requires that the given superstructure be considered as the limit
of an incommensurate crystal [for which the embedding
(9.8.4.10) is a one-to-one relation].

As discussed below, point-group symmetries R of the
diffraction pattern, when expressed in terms of transformation
of the set of indices, define n-dimensional integral matrices that
can be considered as being n-dimensional orthogonal transfor-
mations R; in V, leaving invariant the Euclidean metric tensors:

gk = a5 - Ay and gy =ay - dg. (9.8.4.12)

The crystal classes considered in the tables suppose the existence
of main reflections defining a three-dimensional reciprocal
lattice. For that case, the embedding can be specialized by
making the choice

a;‘l:(a;k70) i=172139

* - . (9.8.4.13)
as(3+j):(33+jvdj) j=12,...,d=n-3,
and, correspondingly,
a; = (a;, a i =1,2,3,
v = @) (9.8.4.14)
A3 = 0,d) j=12,...,d,

with d} -d, =5, and a’-a, = §,. These are called standard
lattice bases.

9.8.4.2. Point groups
9.8.4.2.1. Laue class

Definition 1. The Laue point group P, of the diffraction
pattern is the point group in three dimensions that transforms
every diffraction peak into a peak of the same intensity. f

Because all diffraction vectors are of the form (9.8.4.5), the
action of an element R of the Laue group is given by

3+d

Rai = I'"Rya, i=1,....3+d. (9.8.4.15)
j=1

The (3 +d) x (3 4+ d) matrices I'*(R) form a finite group of
integral matrices I™*(K) for K equal to P, or to one of its
subgroups. A well known theorem in algebra states that then
there is a basis in 3 + d dimensions such that the matrices I™*(R)
on that basis are orthogonal and represent (3 + d)-dimensional
orthogonal transformations R,. The corresponding group is a
(3 + d)-dimensional crystallographic group denoted by K.
Because R is already an orthogonal transformation on V, R, is
reducible and can be expressed as a pair (R, R;) of orthogonal
transformations, in 3 and d dimensions, respectively. The basis
on which (R, R)) acts according to I™*(R) is denoted by {(a}, a})}.
It spans a lattice X* that is the reciprocal of the lattice X' with
basis elements (a;, a;). The pairs (R, R;), sometimes also noted
(Rg, R)), leave X invariant:

3+d
(R, R,)(a;, a;) = (Ra,, Rja;) = 21 I(R);(a;, a;), (9.8.4.16)
=

where I'(R) is the transpose of I'™(R™1).

In many cases, one can distinguish a lattice of main
reflections, the remaining reflections being called satellites.
The main reflections are generally more intense. Therefore,
main reflections are transformed into main reflections by

+ See footnote on p. 913.

elements of the Laue group. On a standard lattice basis
(9.8.4.13), the matrices I'(R) take the special form

_(Iw® 0
r (R)‘(Fﬁ(R) r,(R>)‘

The transformation of main reflections and satellites is then given
by I'*(R) as in (9.8.4.15), the relation with I'(R) being (as
already said)

(9.8.4.17)

r"(R) = FR™),
where the tilde indicates transposition. Accordingly, on a
standard basis one has

*R) = (FZ(R) FL(R)). (9.8.4.18)

0 IR
The set of matrices I'g(R) for R elements of K forms a
crystallographic point group in three dimensions, denoted K,
having elements R of O(3), and the corresponding set of matrices
I';(R) forms one in d dimensions denoted by K, with elements R,
of O(d).
For a modulated crystal, one can choose the a; (i =1, 2, 3) of
a standard basis. These span the (reciprocal) lattice of the basic
structure. One can then express the additional vectors aj,;
(which are modulation wavevectors) in terms of the basis of the
lattice of main reflections:

3
a§‘+j:Zaﬁa§‘, j=1,2,....d. (9.8.4.19)
i=1

The three components of the jth row of the (d x 3)-dimensional
matrix o are just the three components of the jth modulation
wavevector ¢; = a3,; with respect to the basis aj, aj, a3. It is
easy to show that the internal components a; (i = 1, 2, 3) of the
corresponding dual standard basis can be expressed as

i=1,23. (9.8.4.20)

This follows directly from (9.8.4.19) and the definition of the
reciprocal standard basis (9.8.4.13). From (9.8.4.16) and
(9.8.4.17), a simple relation can be deduced between o and the
three constituents I'z(R), I';(R), and I"},(R) of the matrix I"(R):

—I',(R)o + 0T x(R) = I'y,(R). (9.8.4.21)

Notice that the elements of I",,(R) are integers, whereas o has, in
general, irrational entries. This requires that the irrational part of
o gives zero when inserted in the left-hand side of equation
(9.8.4.21). It is therefore possible to decompose formally o into
parts o' and o” as follows.

c=0 40, with o= ]lVZR: IR)oTR)™", (9.8.4.22)

where the sum is over all elements of the Laue group of order N.
It follows from this definition that

IR TR =0 (9.8.4.23)

This implies

I'y(R) = —T'(R)o" + " Tx(R). (9.8.4.24)

The matrix ¢” has rational entries and is called the rational part
of o. The part o' is called the irrational (or invariant) part.
The above equations simplify for the case d = 1. The elements
o,; = o; are the three components of the wavevector q, the row
matrix o I"z(R) has the components of R~'q and I'}(R) = ¢ = #1
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since, for d = 1, q can only be transformed into q. One has the
corresponding relations

i r : i 1
q=q +¢, WMI(1=N2;dm, (9.8.4.25)
and
Rq = q (modulo reciprocal lattice A*); Rq' = eq'.
(9.8.4.26)

The reciprocal-lattice vector that gives the difference between
Rq and eq has as components the elements of the row matrix
I'y(R).

9.8.4.2.2. Geometric and arithmetic crystal classes

According to the previous section, in the case of modulated
structures a standard basis can be chosen (for M* and
correspondingly for X*). According to equation (9.8.4.15),
for each three-dimensional point-group operation R that leaves
the diffraction pattern invariant, there is a point-group
transformation R in the external space (the physical one, so
that R; = R) and a point-group transformation R; in the internal
space, such that the pair (R,R;) is a (3 + d)-dimensional
orthogonal transformation R, leaving a (3 + d)-dimensional
lattice X invariant. For incommensurate crystals, this internal
transformation is unique and follows from the transformation
by R of the modulation wavevectors [see equations (9.8.4.15)
and (9.8.4.18) for the a} 4 basis vectors]: there is exactly one
R, for each R. This is so because in the incommensurate case
the correspondence between M* and X* is uniquely fixed by the
embedding rule (9.8.4.10) (see Subsection 9.8.4.1). Because
the matrices I'(R) and the corresponding transformations in the
(3 + d)-dimensional space form a group, this implies that there
is a mapping from the group K, of elements Ry to the group
K, of elements R, that transforms products into products, i.e.
is a group homomorphism. A point group K, of the (3 + d)-
dimensional lattice constructed for an incommensurate crystal,
therefore, consists of a three-dimensional crystallographic
point group K, a d-dimensional crystallographic point group
K,, and a homomorphism from K to X;.

Definition 2. Two (3 + d)-dimensional point groups K, and
K; are geometrically equivalent if they are connected by a pair
of orthogonal transformations (7, 7;) in V; and V,, respec-
tively, such that for every R, from the first group there is an
element R, of the second group such that R;T; = TzR; and
R T, = TiR;.

A point group determines a set of groups of matrices, one for
each standard basis of each lattice left invariant.

Definition 3. Two groups of matrices are arithmetically
equivalent if they are obtained from each other by a transforma-
tion from one standard basis to another standard basis.

The arithmetic equivalence class of a (3 + d)-dimensional
point group is fully determined by a three-dimensional point
group and a standard basis for the vector module M* because of
relation (9.8.4.15).

In three dimensions, there are 32 geometrically non-equivalent
point groups and 73 arithmetically non-equivalent point groups.
In one dimension, these numbers are both equal to two.
Therefore, one finds all (3 + 1)-dimensional point groups of
incommensurately modulated structures by considering all

triples of one of the 32 (or 73) point groups, for each one of
the two one-dimensional point groups and all homomorphisms
from the first to the second.

Analogously, in (3 + d) dimensions, one takes one of the 32
(73) groups, one of the d-dimensional groups, and all homo-
morphisms from the first to the second. If one takes all triples
of a three-dimensional group, a d-dimensional group, and a
homomorphism from the first to the second, one finds, in
general, groups that are equivalent. The equivalent ones still
have to be eliminated in order to arrive at a list of non-equivalent
groups.

9.8.4.3. Systems and Bravais classes
9.8.4.3.1. Holohedry

The Laue group of the diffraction pattern is a three-
dimensional point group that leaves the positions (and the
intensities)t of the diffraction spots as a set invariant, thus the
vector module M* also. As discussed in Subsection 9.8.4.2, each
of the elements of the Laue group can be combined with an
orthogonal transformation in the internal space. The resulting
point group in 3 + d dimensions leaves the lattice X* invariant
for which the vector module M* is the projection. Conversely, if
one has a point group that leaves the (3 + d)-dimensional lattice
invariant, its three-dimensional (external) part with elements
Ry = R leaves the vector module invariant.

Definition 4. The holohedry of the lattice X* is the subgroup of
the direct product O(3) x O(d), i.e. the group of all pairs of
orthogonal transformations R, = (R, R,) that leave the lattice
invariant.

This choice is possible because the point groups are reducible,
i.e. leave the subspaces V and V, of the direct sum space V,
invariant. In the case of an incommensurate crystal, the
projection of X* on M* is one-to-one as one can see as follows.
The vector

3 d
H, =3 hi(a;,0)+ > m(q;, d) (9.8.4.27)
i=1 j=1

of X" is projected on H=}_, ha; + > mq;. The vectors
projected on the null vector satisfy, therefore, the relation
> ha; + 3, mq; = 0. For an incommensurate phase, the basis
vectors are rationally independent, which means that #; = 0 and
m; = 0 for any i and j. Consequently, precisely one vector of X*
is projected on each given vector of M*.

Suppose now R = 1. This transformation leaves the compo-
nent of every vector belonging to X* in V invariant. If R, is the
corresponding orthogonal transformation in V; of an element R,
of the point group, a vector with component H; is transformed
into a vector with component H;. Since a given H is the
component of only one vector of X*, this implies H, = H;.
Consequently, R, is also the identity transformation. Therefore,
for incommensurate modulated phases, there are no point-group
elements with R=R; =1 and R, # 1. For commensurate
crystal structures embedded in the superspace, this is different:
point-group elements with internal component different from the
identity associated with an external component equal to unity can
occur.

For modulated crystal structures, the holohedral point group
can be expressed with respect to a lattice basis of standard form

+ See footnote on p. 913.
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(9.8.4.13). It is then faithfully represented by integral matrices
that are of the form indicated in (9.8.4.17) and (9.8.4.18).

9.8.4.3.2. Crystallographic systems

Definition 5. A crystallographic system is a set of lattices
having geometrically equivalent holohedral point groups.

In this way, a given holohedral point group (and even each
crystallographic point group) belongs to exactly one system.
Two lattices belong to the same system if there are orthonormal
bases in V and in V,, respectively, such that the holohedral point
groups of the two lattices are represented by the same set of
matrices.

9.8.4.3.3. Bravais classes

Definition 6. Two lattices belong to the same Bravais class if
their holohedral point groups are arithmetically equivalent.

This means that each of them admits a lattice basis of standard
form such that their holohedral point group is represented by the
same set of integral matrices.

9.8.4.4. Superspace groups
9.8.4.4.1. Symmetry elements

The elements of a (3 + d)-dimensional superspace group are
pairs of Euclidean transformations in 3 and d dimensions,
respectively:

g = ({RIV}, {R;lv;}) € E(3) x E(d), (9.8.4.28)

i.e. are elements of the direct product of the corresponding
Euclidean groups. The elements {R|v} form a three-dimensional
space group, but the same does not hold for the elements {R,|v,}
of E(d). This is because the internal translations v; also contain
the ‘compensating’ transformations associated with the corre-
sponding translation v in V [see (9.8.4.32)]. In other words, a
basis of the lattice X' does not simply split into one basis for V
and one for V.

As for elements of a three-dimensional space group, the
translational component v, = (v, v;) of the element g, can be
decomposed into an intrinsic part v¢ and an origin-dependent
part v4:

(v,07) = (v, v]) + (v*, ),
with

n

1
H’ o J— Rm ’Rm ,
(V¥ =D (R™V.R'v))

m=1

(9.8.4.29)

where n denotes the order of the element R. In particular, for
d =1 the intrinsic part v{ of v; is equal to v; if R, = ¢ = +1 and
vanishes if ¢ = —1. The latter means that for d =1 there is
always an origin in the internal space such that the internal shift
v, can be chosen to be zero for an element with ¢ = —1.

The internal part of the intrinsic translation can itself be
decomposed into two parts. One part stems from the presence of
a translation in the external space. The lattice of the (3 + d)-
dimensional space group has basis vectors

(a,ap),0,d), i=1,23, j=1,....d (9.8.4.30)
The internal part of the first three basis vectors is
d
a; = —Aa, =—) 0;d, (9.8.4.31)
j=1

according to equation (9.8.4.20). The three-dimensional transla-
tion v =), v;a, then entails a d-dimensional translation —Av in
V, given by

3 3
Av=A (Z viai> =Y v,Aa,.
i=1 i=1

These are the so-called compensating translations. Hence, the
internal translation v; can be decomposed as

v, = —AvV +9,

where 6 = Z}i:l vs,,d;.

This decomposition, however, does still depend on the origin.
Consider the case d = 1. Then an origin shift s in the three-
dimensional space changes the translation v to v 4 (1 — R)s and
its internal part —Av=—q-v to —q-v—q- (1 —R)s. This
implies that for the case that ¢ =1 the part § changes to
8+q-(1-R)s=68+q" - (1 —R)s, because ¢ is invariant under
R. Therefore, § changes, in general. The internal translation

(9.8.4.34)

(9.8.4.32)

(9.8.4.33)

T=86—q v,

however, is invariant under an origin shift in V.

Definition 1. Equivalent superspace groups. Two superspace
groups are equivalent if they are isomorphic and have point
groups that are arithmetically equivalent.

Another definition leading to the same partition of equivalent
superspace groups considers equivalency with respect to affine
transformations among bases of standard form.

This means that two equivalent superspace groups admit
standard bases such that the two space groups are represented
by the same set of (4 + d)-dimensional affine transformation
matrices. We recall that an n-dimensional Euclidean transforma-
tion g, = {R,|v,} if referred to a basis of the space can be
represented isomorphically by an (n + 1)-dimensional matrix, of

the form
R. v,
A(gj) = ( (:)‘S 13)

with R, an n X n matrix and v, an n-dimensional column matrix,
all with real entries.

(9.8.4.35)

9.8.4.4.2. Equivalent positions and modulation relations

A (3 4+ d)-dimensional space group that leaves a function
invariant maps points in (3 + d)-space to points where the
function has the same value. The atomic positions of a modulated
crystal represent such a pattern, and the superspace group
leaving the crystal invariant leads to a partition into equivalent
atomic positions. These relations can be formulated either in
(3 + d)-dimensional space or, equally well, in three-dimensional
space. As a simple case, we first consider a crystal with a one-
dimensional occupation modulation: this implies d = 1. Again,
as in §9.8.1.3.2, we omit to indicate the basis vectors d, and dj
and give only the corresponding components.

An element of the (3 + 1)-dimensional superspace group is a
pair

& = ({RIv}, {elur}) (9.8.4.36)

of Euclidean transformations in V and V;, respectively. This
element maps a point located at r, = (r, ) to one at (Rr +V,
&t + vy). Suppose the probability for the position n+r; to be
occupied by an atom of species A is given by

P,n,j, 1) =pjlq-m+r)+1], (9.8.4.37)
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where p;(x) = p;(x + 1). By g,, the position n + r; is transformed
to the equivalent position n’ +r;, = Rn + Rr; +v. As the crystal
is left invariant by the superspace group, the occupation
probability on equivalent points has to be the same:

P, j' ) = P,n,j, &(t — v))]. (9.8.4.38)

This implies that for the structure in the three-dimensional space
one has the relation

P,',j’,0) = P,n,j, —cv,). (9.8.4.39)
In terms of the modulation function p; this means
pilg- (' +1;)] =plq- (m+1)) — eyl (9.8.4.40)

In the same way, one derives the following property of the
modulation function:

pj/(x) = p;le(x —8) + K- (r;, —v)], where Rq =¢q+K.

(9.8.4.41)

Analogously, for a displacive modulation, the position n+r;
with displacement u,(z,), where 7, = q - (n +1;), is transformed

to n’ + r;, with displacement

u; (1) = Ruy(1, — evy). (9.8.4.42)

To be invariant, the displacement function has to satisfy the
relation

u;(x) = Rujlex — &5 + K- (r;; —v)], where Rq = eq + K.

(9.8.4.43)

The expressions for d > 1 are straightforward generalizations of
these.

9.8.4.4.3. Structure factor

The scattering from a set of atoms at positions r, is described
in the kinematic approximation by the structure factor:

Su=> f,(H)expriH - r,), (9.8.4.44)

where f,(H) is the atomic scattering factor. For an incommensu-
rate crystal phase, this structure factor Sy is equal to the
structure factor Sy of the crystal structure embedded in 3 +d
dimensions, where H is the projection of H, on V. This
structure factor is expressed by a sum of the products of atomic
scattering factors f, and phase factors exp(2nwiH, - r,,) over all
particles in the unit cell of the higher-dimensional lattice. For an
incommensurate phase, the number of particles in such a unit cell
is infinite: for a given atom in space, the embedded positions
form a dense set on lines or hypersurfaces of the higher-
dimensional space. Disregarding pathological cases, the sum
may be replaced by an integral. Including the possibility of an
occupation modulation, the structure factor becomes (up to a
normalization factor)

Sp = ZA: Zg dth(H)PAj(t)

x exp{2ni(H, H)) - [r; + u(t), t]}, (9.8.4.45)

where the first sum is over the different species, the second over
the positions in the unit cell of the basic structure, the integral
over a unit cell of the lattice spanned by d, ..., d; in V,; f, is the
atomic scattering factor of species A, P(t) is the probability of
atom j being of species A when the internal position is t.

In particular, for a given atomic species, without occupational
modulation and a sinusoidal one-dimensional displacive modula-
tion

P()=1; w@) =U;sin2n(q-r; + 1+ ¢)]. (9.8.4.46)
According to (9.8.4.45), the structure factor is
1
Sy = [ dtf,(H) exp(2niH - r;) exp(2mimt)
i o
x exp[27iH - U; sin 27(q - r; + 1 + ¢;)]. (9.8.4.47)

For a diffraction vector H = K + mq, this reduces to

Sq = Z f(H) exp(2miK - 1;)J_,,(27H - U;)

X exp(—2mimg;). (9.8.4.48)

For a general one-dimensional modulation with occupation
modulation function p;(r) and displacement function w;(?), the
structure factor becomes

Su = Zfl’ dr f,(H)p,(q - 1; + 1 + ;) exp[27i(H - x; + mr)]
Jj o

x exp[2mwiH - w(q - r; + 1 + ¢)]. (9.8.4.49)

Because of the periodicity of p;(r) and w;(#), one can expand the
Fourier series:

pi(q -1+t + ;) exp2miH - wi(q - 1; + 1 + ¢)]

=3 C,,(H) exp[27ik(q - ¥; + 1)), (9.8.4.50)
k

and consequently the structure factor becomes
Sp = > (M) exp27iK - 1))C; _,(H), where H= K+ mq.
J

(9.8.4.51)

The diffraction from incommensurate crystal structures has been
treated by de Wolff (1974), Yamamoto (1982a,b), Paciorek &
Kucharczyk (1985), Petricek, Coppens & Becker (1985),
Petricek & Coppens (1988), Perez-Mato et al. (1986, 1987),
and Steurer (1987).

9.8.5. Generalizations
9.8.5.1. Incommensurate composite crystal structures

The basic structure of a modulated crystal does not always
have space-group symmetry. Consider, for example, composite
crystals (also called intergrowth crystals). Disregarding modula-
tions, one can describe these crystals as composed of a finite
number of subsystems, each with its own space-group symmetry.
The lattices of these subsystems can be mutually incommensu-
rate. In that case, the overall symmetry is not a space group, the
composite crystal is incommensurate and so also is its basic
structure. The superspace approach can also be applied to such
crystals. Let the subsystems be labelled by an index v. For the
subsystem v, we denote the lattice by A, with basis vectors a,;
(i=1,2,3), its reciprocal lattice by A; with basis vectors aZ;
(i=1,2,3), and the space group by G,. The atomic positions of
the basic structure are given by

n,+r,, 9.8.5.1
v vj (

where n,, is a lattice vector belonging to A, . In the special case
that the subsystems are mutually commensurate, there are three
basis vectors a*, b*, ¢* such that all vectors a; are integral linear
combinations of them. In general, however, more than three
basis vectors are needed, but never more than three times the
number of subsystems. Suppose that the vectors aj (i =1, ..., n)
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form a basis set such that every a’

*. can be expressed as an
integral linear combination of them:

*
Vi

a), => Zja;, Z integers, (9.8.5.2)
k=1

with n =344, and d, > 0. Then the vectors of the diffraction

pattern of the unmodulated system are again of the form

(9.8.4.5) and generate a vector module M} of dimension three

and rank (3 +d,), which can be considered as projection of a

(3 + d,)-dimensional lattice X7.

We now assume that one can choose aj; =0 fori = 1,2, 3 and
we denote ap,; by d;. This corresponds to assuming the
existence of a subset of Bragg reflections at the positions of a
three-dimensional reciprocal lattice A*. Then there is a standard
basis for the lattice X',, which is the reciprocal of X7, given by

(a,a;), (0,d), i=123 j=1,....d. (9.8523)

-
In order to find the (3 + d,)-dimensional periodic structure for
which this composite crystal is the three-dimensional intersec-
tion, one associates with a translation t in the internal space V;
three-dimensional independent shifts, one for each subsystem.
These shifts of the subsystems replace the phase shifts adopted
for the modulated structures: V, is now the space of the variable
relative positions of the subsystems. Again, a translation in the
superspace can give rise to a non-Euclidean transformation in the
three-dimensional space of the crystal, because of the variation
in the relative positions among subsystems. Each subsystem,
however, is rigidly translated. For the basis vectors dj, the shift
of the subsystem v is defined in terms of projection operators 7,
3
m,d; = Z: Zhga,, j=1,....d, (9.8.5.4)
=
Then an arbitrary translation t = ZJ- t;d; in V, displaces the
subsystem v over a vector ZJ. ti(m,d;). A translation (a, a; + d)
belonging to the (3 + d,)-dimensional lattice X', induces for the
subsystem v in ordinary space a relative translation over vector
a+ m,(a; + d). The statement is that this translation is a vector
of the lattice A, and leaves therefore the subsystem v invariant.
So the lattice translations belonging to X, form a group of
symmetry operations for the composite crystal as a whole.
The proof is as follows. If k belongs to A%, the vector (k, k,)
belongs to X7. In particular, for k = a};, one has, because of
(9.8.5.2) and (9.8.5.4),

ay, -md =25, j=1,....4d, (9.8.5.5)

and

dO
k, =) 74 d° and therefore k;-d; =Z};,;.
j=1
Note that one has k; -t =k -« t, for any t from V, as 7, is a
linear operator. Because of the linearity, this holds for every k
from A} as well. Since (k, k;) belongs to X% and (a, a, + d) to
X ,, one has for their inner product:

k-a+k;-a,+k,-d=k-(a+m,a,+7,d) =0 (modulo 1),

which implies that a + m,a; 4+ m,d is an element of A,,.

In conclusion, one may state that the composite structure is the
intersection with the ordinary space (t = 0) of a pattern having
atomic position vectors given by

(m, +r,; —mt t) foranytof V, (9.8.5.6)

Such a pattern is invariant under the (3 + d,)-dimensional lattice
X . Again, orthogonal transformations R of O(3) leaving the
vector module M invariant can be extended to orthogonal

transformation R, of O(3) x O(d,) allowing a Euclidean structure
to be given to the superspace. One can then consider the
superspace-group symmetry of the basic structure defined by
atomic positions as in (9.8.5.6). A superspace-group element g,
as in (9.8.4.28) induces (in three-dimensional space) for the
subsystem v the transformation

g :m,+r,; — Rn, +Rr, +v+ Rm R 'v,, (9.8.5.7)

vj
changing the position n, +r,; into an equivalent one of the
composite structure, not necessarily, however, within the same
subsystem v.

Finally, the composite structure can also be modulated. For
the case of a one-dimensional modulation of each subsystem v,
the positions are

n, + rl/j + uuj[qu : (ny + r;/j')]~ (9858)

Possibly the modulation vectors can also be expressed as integral
linear combinations of the af (i=1,...,3+d,). Then, the
dimension of V, is again d,. In general, however, one has to
consider (d —d,) additional vectors, in order to ensure the
validity of (9.8.4.5), now for n = 3 + d. We can then write

3+4d
q, =, O/a;, QO integers. (9.8.5.9)
j=1

The peaks of the diffraction pattern are at positions defined by a
vector module M*, which can be considered as the projection of
a (3 + d)-dimensional lattice X*, the reciprocal of which leaves
invariant the pattern of the modulated atomic positions in the
superspace given by

{nu + rl/j - T[l/t + uz/j[qu : (nu + rz/j - T[yt) + 4 - t]v t}’

for any t of V, (9.8.5.10)

with 7,d; = 0 for j > d,, where q,, is the internal part of the
(3 + d)-dimensional vector that projects on q,. Their symmetry
is a (3 4 d)-dimensional superspace group G,. The transforma-
tion induced in the modulated composite crystal by an element
under g, of G, is now readily written down. For the case
d=d,=1 and g, = ({R|v}, {¢]A}), the position n,+r,; is
transformed into

R(n, +r,)+ v+ eRm, Ad,, (9.8.5.11)

and the modulation u,[q, - (n, +r,)] into
Ruyj[qy ! (nV + ruj + 87[1/Ad1) —é&qy, - Adl]

This shows how the superspace-group approach can be applied
to a composite (modulated) structure. Note that composite
systems do not necessarily have an invariant set of (main)
reflections at lattice positions.

9.8.5.2. The incommensurate versus the commensurate case

As said earlier, it sometimes makes sense also to use the
description as developed for incommensurate crystal phases for a
(commensurate) superstructure. In fact, very often the modula-
tion wavevector also shows, in addition to continuously varying
(incommensurate) values, several rational values at various
phase transitions of a given crystal or in different compounds of a
given structural family. In these cases, there is three-dimensional
space-group symmetry. Generally, the space groups of the
various phases are different. The description as used for
incommensurate phases then gives the possibility of a more
unified characterization for the symmetry of related modulated
crystal phases. In fact, the theory of higher-dimensional space
groups for modulated structures is largely independent of the
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assumption of irrationality. Only some of the statements need to
be adapted. The most important change is that there is no longer
a one-to-one correspondence between the points of the reciprocal
lattice X* and its projection on V defining the positions of the
Bragg peaks. Furthermore, the projection of the lattice X on the
space V, forms a discrete set. The latter means the following. For
an incommensurate modulation, the incommensurate structure,
which is the intersection of a periodic structure with the
hyperplane r; = 0, is also the intersection of the same periodic
structure with a hyperplane r, = constant, where this constant is
of the form
3
(9.8.5.12)

1

d
ha; + > mays ;.
1 j=1

Because for an incommensurate structure these vectors form a
dense set in V,, the phase of the modulation function with respect
to the basic structure is not determined. For a commensurate
modulation, however, the points (9.8.5.12) form a discrete set,
even belong to a lattice, and the phase (or the phases) of the
modulation are determined within vectors of this lattice. Notice
that the grid of this lattice becomes finer as the denominators in
the rational components become larger.

When G, is a (3 + d)-dimensional superspace group, its
elements, in general, do not leave the ordinary space V
invariant. The subgroup of all elements that do leave V
invariant, when restricted to V, is a group of distance-preserving
transformations in three dimensions and thus a subgroup of E(3),
the three-dimensional Euclidean group. In general, this subgroup
is not a three-dimensional space group. It is so when the
modulation wavevectors all have rational components only, i.e.
when o is a matrix with rational entries. Because the phase of the
modulation function is now determined (within a given rational
number smaller than 1), the space group depends in general on
this phase.

As an example, consider a one-dimensional modulation of a
basic structure with orthorhombic space group Pcmn. Suppose
that the modulation wavevector is yc*. Then the mirror R = m,
perpendicular to the ¢ axis is combined with R, =¢ = —1.
Suppose, furthermore, that the glide reflection perpendicular to
the a axis and the b mirror are both combined with a phase shift
%. In terms of the coordinates x, y, z with respect to the a, b and ¢
axes, and internal coordinate ¢, the generators of the (3 + 1)-
dimensional superspace group Pcmn(00y)ssO act as

x,y,2,t) > (x+k,y+ 1L, z+mt —ym+n),

k,l, m, n integers, (9.8.5.13a)

(x,.2.1)
— (—x+k+3,y+lLz+i+mt—y/2—ym+3i+n),
(9.8.5.13b)

xy.z,0) > (x+k —y+Il+i z4+mt—ym+1i+n),

(9.8.5.13¢)
(x,y,2, 1)
- x+i+ky+i+L —z4+5+m —t—y/2—ym+n).
(9.8.5.13d)

Note that these positions are referred to a split basis (i.e. of basis
vectors lying either in V or in V;) and not to a basis of the lattice
Y. When the superstructure is the intersection of a periodic
structure with the plane at ¢t = ¢, its three-dimensional space
group follows from equation (9.8.5.13) by the requirement

¢ =t,. When y has the rational value r/s with r and s relatively
prime, the conditions for each of the generators to give an
element of the three-dimensional space group are, respectively:

—rm+sn=0 (9.8.5.14a)
—2rm+2sn=r—s (9.8.5.14b)
—2rm+2sn = —s (9.8.5.14¢)
—2rm + 2sn = 4st, (9.8.5.14d)

for m,n, r,s integers and ¢ real. These conditions are never
satisfied simultaneously. It depends on the parity of both r and s
which element occurs, and for the elements with ¢ = —1 it also
depends on the value of the ‘phase’ ¢, or more precisely on the
product T = 4st. The translation group is determined by the first
condition as in (9.8.5.14a). Its generators are

a, b, and sc,

where the last vector is the external part of the lattice vector
s(c, —r/s) + r(0,1). The other space-group elements can be
derived in the same way. The possible space groups are:

y=r/s T even integer t odd integer otherwise
21
r even, s odd 11 " 2,2,2, 112,
2,
r odd, s even 1?1 2,cn 1cl
2
r odd, s odd ?11 c2\n cll

In general, the three-dimensional space groups compatible with a
given (3 + d)-dimensional superspace group can be determined
using analogous equations.

As one can see from the table above, the orthorhombic
(3 + d)-dimensional superspace group leads in several cases to
monoclinic three-dimensional space groups. The lattice of main
reflections, however, still has orthorhombic point-group sym-
metry. Description in the conventional way by means of three-
dimensional groups then neglects some of the structural features
present. Even if the orthorhombic symmetry is slightly broken,
the orthorhombic basic structure is a better characterization than
a monoclinic one. Note that in that case the superspace-group
symmetry is also only an approximation.

When the denominators of the wavevector components
become small, additional symmetry operations become possible.
Because the one-to-one correspondence between X* and M* is no
longer present, there may occur symmetry elements with trivial
action in V but with nontrivial transformation in V;. For d =1,
these possibilities have been enumerated. The corresponding
Bravais classes are given in Table 9.8.3.2(b).

APPENDIX A
Glossary of symbols
M* Vector module in m-dimensional reciprocal space
(m=1,2,3; normally m = 3), isomorphic to Z" with

n > m. The dimension of M* is m, its rank n.

a’ (i=1,...,n.) Basis of a vector module M* of rank n;
if n =4 and q is modulation wavevector (the n =4
case is restricted in what follows to modulated
crystals), the basis of M* is chosen as a*, b*, ¢*, q,
with a*, b*, ¢* a basis of the lattice of main reflections.
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A*

a*, b*, ¢*

q;

r,(n,j)

r(n, j)

u;(x)

Pj(x)

9. BASIC STRUCTURAL FEATURES

Lattice of main reflections, m-dimensional reciprocal

lattice.

(Conventional) basis of A* for m = 3.

Direct m-dimensional lattice, dual to A*.

Superspace; Euclidean space of dimension n = m + d;

V,=VeaeV,.

Physical (or external) space of dimension m (m =1, 2

or 3), also indicated by Vj.

Internal (or additional) space of dimension d.

Reciprocal lattice in n-dimensional space, whose

orthogonal projection on V is M*.

Lattice in n-dimensional superspace for which X* is

the reciprocal one.

Lattice basis of X* in V, (i =1, ..., n);

if n =4, this basis can be chosen as {(a*, 0), (b*, 0),

(c*,0), (q, 1)} and is called standard. An equivalent

notation is (q, 1) = (q, d*);

for n = 3 + d, the general form of a standard basis is

(a*’0)7 (b*,O), (C*’O)’ (ql’ T)v ""(qjvdj)’“-a

(4. dy).-

(i=1,...,n.) Lattice basis of X in V, dual to {a}};

if n = 4, the standard basis is (a, —q - a), (b, —q - b),

(C, —-q- C), (Os 1) = (07 d)’

for n = 3 4+ d, a standard basis is dual to the standard

one given above.

Modulation wavevector(s) q; = Z?:l o,al;

ifn=4,q=3" 0a =aa*+ b +yc;

0= (Ol, :B ’ )/), ) )

ifn=4,q=q +q, with ¢’ = (1/N) 3 i x £(R)RQ,

where &(R) = R,;, and N is the order of K.

Bragg reflections: H = >_"  hal = (h, h,, ..., h,);

if n=4, H=Y}, ha = ha* +kb* + Ic* + mq =

(h,k, 1, m).

Embedding of H in V;: for H=(hy,...,

S, hal, one has correspondingly H, = (H,
i1 it

Laue point group.

Orthogonal group in m dimensions.

Orthogonal point-group transformation, element of

O(m).

Point group, crystallographic subgroup of O(m).

Superspace point-group element: R, = (Rg, R;) =

(R, R)) element of O(m) x O(d) with R; = R external,

and R, internal part of R, respectively;

if n =4, superspace point-group element: [R, &(R)]

with e(R) = %1, also written (R, ¢).

Point  group, crystallographic

O(m) x O(d).

External part of K, crystallographic point group,

subgroup of O(m) with as elements the external part

transformations of K.

Internal part of K, crystallographic point group,

subgroup of O(d) with as elements the internal part

transformations of K.

Atomic positions in the basic structure: r,(n,j) =

n+r; withn e A.

Atomic positions

structure;

(d = 1): r(n,j) = r,(0.j) + uq - r(n.j) + ¢. In gen-

eral, however, different phases ¢, may occur for dif-

ferent components u;, along the crystallographic axes.

Modulation function for displacive modulation with

uw(x + 1) = u(x).

Modulation function for occupation modulation with

P+ 1) = px).

h,)
H))

subgroup  of

in the displacively modulated

g Euclidean transformation in m dimensions; g = {R|v}
element of the space group G with rotational part R
and translational part v.

v° Intrinsic translation part (origin independent).

g5 Superspace group transformation (d = 1):

g = (R &)I(v. A)}) = ({RIv}. {¢]4)) = {R,Iv,}
element of the superspace group G,.

In the (3 + d)-dimensional case:

g = (R R)I(V.V))} = ((RIV}, {R,Iv,)).

vy Internal shift (d =1): vy, =A=8§—q-V.

T Intrinsic internal shift (d =1): =8 —q" - V.

I'*(R) Point-group transformation R with respect to a basis of
M* and at the same time superspace point-group
transformation R; with respect to a corresponding
basis of X*.

I'(R) Superspace point-group transformation with respect to

a lattice basis of X' dual to that of X* leading to I™*(R).
The mutual relation is then I™(R) = I'(R™!) with the
tilde denoting transposition.

I't(R), I'/(R), I'y,(R): external, internal, and mixed blocks of

I’(R), respectively.

I';(R), I'J(R), I'y/(R): external, internal, and mixed blocks of

Su

Ji(H)

I'*(R), respectively.
Structure factor:

Su =22 fi)exp2miH - r(n, j)].

Atomic scattering factor for atom j.

APPENDIX B
Basic definitions

In the following, we give a short definition of the most important
notions appearing in the theory and of the equivalence relations
used in the tables. The latter are especially adapted to the case of
modulated crystal phases.

(]

[ii]

[iii]
[iv]
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Vector module. A set of all integral linear combinations of
a finite number of vectors. The dimension of the vector
module is the dimension (m) of the space V (also indicated
as V; and called external) generated by it over the real
numbers. Its rank (n) is the minimal number of rationally
independent vectors that generate the vector module. If
this rank is equal to the dimension, the vector module is
also a lattice. In general, a vector module of rank n and
dimension m is the orthogonal projection on the
m-dimensional space V of an n-dimensional lattice. We
shall restrict ourselves mainly to the case m =3 and
n=4, but the following definitions are valid for
modulated phases of arbitrary dimension and rank. The
dimension of the modulation (d) is n — m. The modulation
phases span a d-dimensional space V; (called internal or
additional).

Superspace. V is an n-dimensional Euclidean space that is
the direct sum of an m-dimensional external space V (of the
crystal) and a d-dimensional internal space V, (for the
additional degrees of freedom). V is sometimes denoted by
Ve.

Split basis. For the space V, = V @ V,, this is a basis with
m basis vectors in V and d = n — m basis vectors in V;.
Standard basis. For the (m + d)-dimensional space
V. =V @ V,, a standard basis in direct space is one having
the last d basis vectors lying in V; (d = dimension of V, =
dimension of the modulation). A standard basis in



[v]

[vi]

[vii]
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reciprocal space (V* identified with V') is one with the first
m basis vectors lying in V (m = dimension of V).
Conventional basis. For a lattice A in three dimensions, it
is a basis such that (i) the lattice generated by it is contained
in A as a sublattice and (ii) there is the standard
relationship between the basis vectors (e.g. for a cubic
lattice a conventional basis consists of three mutually
perpendicular vectors of equal length).

The lattice A is obtained from the lattice spanned by the
conventional basis by adding (a small number of) centring
vectors. [For example, the b.c.c. lattice is obtained from
the conventional cubic lattice by centring the unit cell with
(411).]1 The reciprocal basis for the conventional basis is a
conventional basis for the reciprocal lattice A*.

In the (m + d)-dimensional superspace, a conventional
basis for the lattice X satisfies the same conditions (i) and
(ii) as formulated above for the three-dimensional case.
In addition, however, one requires that the basis is
standard and such that the non-vanishing external
components satisfy the relations of an (m = 3) conven-
tional basis and that the corresponding internal compo-
nents only involve the irrational components of the
modulation vector(s) (for d =1 the basis is such that
q =0, thus q' = q). Again a conventional basis for X*
is dual to the same for X.

Holohedry. The holohedry of a vector module is the group
of orthogonal transformations of the same dimension that
leaves the vector module invariant. The holohedry of an
(m + d)-dimensional lattice is the subgroup of O(m) x O(d)
that leaves the lattice invariant.

Point group. An (m + d)-dimensional crystallograhic point
group K, = (K, K;) is a subgroup of O(m) x O(d). With
respect to a standard lattice basis its elements R, = (R, R))
are of the form

_(Ty® 0
I'® = <F§(R) FI(R))’

where all the entries are integers and R is an element of an
m-dimensional point group K, which is actually the same as
K. For an incommensurate modulated crystal, K; and K
are isomorphic groups. If d = 1, I';}(R) = ¢ = £1.

[viii] Geometric crystal class. Two point groups K, = (Kg, K;)

and K] = (K, K;) of pairs (Rg, R,) of orthogonal trans-
formations [Ry belongs to O(m) and R; to O(d)] are
geometrically equivalent if and only if there are orthogonal
transformations 7 and 7; of O(m) and O(d), respectively,
such that Ry =Ty -R;-T;' and R, =T,-R,-T; ' for
some group isomorphism (Rg, R;) — (Rg, R;). For
d =1, that condition takes a simpler form because
R, =e¢=+%1.

[ix] Arithmetic crystal class. A group of integral matrices

[x]

[xi]

I'*(R) [for Re K of O(m)] is determined on a basis
{ar;i=1,...,n} =a*,b*,¢*, q,...,q, of a vector mod-
ule in reciprocal space by an m-dimensional point group K
(here m = 3). For modulated crystals, the transformations
in direct space are given by matrices I"(R) = transpose of
I(R~') which are of the form (9.8.4.17). Two groups
I''(K’) and I'(K) are arithmetically equivalent if and only if
there is an (m 4 d)-dimensional matrix S of the form

(S 0
s=(5 )

with integral entries and determinant +1 such that
I'(K')=S8I'(K)-S~!. Here Sy is m x m and S, is d x d
dimensional. An alternative formulation is: the matrix
groups I'(K) and [I'(K’') determined as in equation
(9.8.1.16) or in equation (9.8.1.21) are arithmetically
equivalent if

(a) the groups K and K’ are geometrically equivalent
m-dimensional point groups [the corresponding (m + d)-
dimensional point groups K, and K, are then also
geometrically equivalent];

(b) there are vector module bases a*, ...,q, and
a*, ..., q, such that K on the first basis gives the same
group of matrices as K’ on the second basis.

Bravais class. Two vector modules are in the same Bravais
class if the groups of matrices determined by their
holohedries are arithmetically equivalent. Two (m + d)-
dimensional lattices are in the same Bravais class if their
holohedries are arithmetically equivalent. In both cases,
one can find bases for the two structures such that the
holohedries take the same matrix form. In the (m 4+ d)-
dimensional case, the lattice bases both have to be
standard.

Superspace group. An (m -+ d)-dimensional superspace
group is an n-dimensional space group (n = m + d) such
that it has a d-dimensional lattice of internal translations.
(This latter property reflects the periodicity of the
modulation.) It is determined on a standard lattice basis
by the matrices I'(R) of the point-group transformations
and by the components v;(R) (i=1,...,m+d) of the
translation parts of its elements. The matrices I'(R)
represent at the same time the elements R of the
m-dimensional point group K and the corresponding
elements R; of the (n 4 d)-dimensional point groups K.
Two (m + d)-dimensional superspace groups are equivalent
if there is an origin and a standard lattice basis for each
group such that the collection {I"(K), vy(K)} is the same for
both groups. [In previous formulae, v (R) is often simply
indicated as v,.]
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