International
Tables for Crystallography Volume C Mathematical, physical and chemical tables Edited by E. Prince © International Union of Crystallography 2006 |
International Tables for Crystallography (2006). Vol. C. ch. 9.8, pp. 938-939
|
Definition 1.
The Laue point group of the diffraction pattern is the point group in three dimensions that transforms every diffraction peak into a peak of the same intensity.2
Because all diffraction vectors are of the form (9.8.4.5), the action of an element R of the Laue group is given by
The (3 + d) × (3 + d) matrices
form a finite group of integral matrices
for K equal to
or to one of its subgroups. A well known theorem in algebra states that then there is a basis in 3 + d dimensions such that the matrices
on that basis are orthogonal and represent (3 + d)-dimensional orthogonal transformations
. The corresponding group is a (3 + d)-dimensional crystallographic group denoted by
. Because R is already an orthogonal transformation on V,
is reducible and can be expressed as a pair
of orthogonal transformations, in 3 and d dimensions, respectively. The basis on which
acts according to
is denoted by
. It spans a lattice
that is the reciprocal of the lattice
with basis elements
. The pairs
, sometimes also noted
, leave
invariant:
where Γ(R) is the transpose of
.
In many cases, one can distinguish a lattice of main reflections, the remaining reflections being called satellites. The main reflections are generally more intense. Therefore, main reflections are transformed into main reflections by elements of the Laue group. On a standard lattice basis (9.8.4.13), the matrices Γ(R) take the special form
The transformation of main reflections and satellites is then given by
as in (9.8.4.15)
, the relation with Γ(R) being (as already said)
where the tilde indicates transposition. Accordingly, on a standard basis one has
The set of matrices
for R elements of K forms a crystallographic point group in three dimensions, denoted
, having elements R of O(3), and the corresponding set of matrices
forms one in d dimensions denoted by
with elements
of O(d).
For a modulated crystal, one can choose the (i = 1, 2, 3) of a standard basis. These span the (reciprocal) lattice of the basic structure. One can then express the additional vectors
(which are modulation wavevectors) in terms of the basis of the lattice of main reflections:
The three components of the jth row of the (d × 3)-dimensional matrix σ are just the three components of the jth modulation wavevector
with respect to the basis
. It is easy to show that the internal components
(i = 1, 2, 3) of the corresponding dual standard basis can be expressed as
This follows directly from (9.8.4.19)
and the definition of the reciprocal standard basis (9.8.4.13)
. From (9.8.4.16)
and (9.8.4.17)
, a simple relation can be deduced between σ and the three constituents
,
, and
of the matrix Γ(R):
Notice that the elements of
are integers, whereas σ has, in general, irrational entries. This requires that the irrational part of σ gives zero when inserted in the left-hand side of equation (9.8.4.21)
. It is therefore possible to decompose formally σ into parts
and
as follows.
where the sum is over all elements of the Laue group of order N. It follows from this definition that
This implies
The matrix
has rational entries and is called the rational part of σ. The part
is called the irrational (or invariant) part.
The above equations simplify for the case d = 1. The elements are the three components of the wavevector q, the row matrix
has the components of
and
= ɛ = ±1 since, for d = 1, q can only be transformed into ±q. One has the corresponding relations
and
The reciprocal-lattice vector that gives the difference between
and
has as components the elements of the row matrix
.
According to the previous section, in the case of modulated structures a standard basis can be chosen (for M* and correspondingly for ). According to equation (9.8.4.15)
, for each three-dimensional point-group operation R that leaves the diffraction pattern invariant, there is a point-group transformation
in the external space (the physical one, so that
) and a point-group transformation
in the internal space, such that the pair
is a (3 + d)-dimensional orthogonal transformation
leaving a (3 + d)-dimensional lattice
invariant. For incommensurate crystals, this internal transformation is unique and follows from the transformation by R of the modulation wavevectors [see equations (9.8.4.15)
and (9.8.4.18)
for the
basis vectors]: there is exactly one
for each R. This is so because in the incommensurate case the correspondence between M* and
is uniquely fixed by the embedding rule (9.8.4.10)
(see Subsection 9.8.4.1
). Because the matrices Γ(R) and the corresponding transformations in the (3 + d)-dimensional space form a group, this implies that there is a mapping from the group
of elements
to the group
of elements
that transforms products into products, i.e. is a group homomorphism. A point group
of the (3 + d)-dimensional lattice constructed for an incommensurate crystal, therefore, consists of a three-dimensional crystallographic point group
, a d-dimensional crystallographic point group
, and a homomorphism from
to
.
Definition 2.
Two (3 + d)-dimensional point groups and
are geometrically equivalent if they are connected by a pair of orthogonal transformations
in
and
, respectively, such that for every
from the first group there is an element
of the second group such that
and
.
A point group determines a set of groups of matrices, one for each standard basis of each lattice left invariant.
Definition 3. Two groups of matrices are arithmetically equivalent if they are obtained from each other by a transformation from one standard basis to another standard basis.
The arithmetic equivalence class of a (3 + d)-dimensional point group is fully determined by a three-dimensional point group and a standard basis for the vector module M* because of relation (9.8.4.15).
In three dimensions, there are 32 geometrically non-equivalent point groups and 73 arithmetically non-equivalent point groups. In one dimension, these numbers are both equal to two. Therefore, one finds all (3 + 1)-dimensional point groups of incommensurately modulated structures by considering all triples of one of the 32 (or 73) point groups, for each one of the two one-dimensional point groups and all homomorphisms from the first to the second.
Analogously, in (3 + d) dimensions, one takes one of the 32 (73) groups, one of the d-dimensional groups, and all homomorphisms from the first to the second. If one takes all triples of a three-dimensional group, a d-dimensional group, and a homomorphism from the first to the second, one finds, in general, groups that are equivalent. The equivalent ones still have to be eliminated in order to arrive at a list of non-equivalent groups.