
1.1. Introduction to the properties of tensors

By A. Authier

1.1.1. The matrix of physical properties

1.1.1.1. Notion of extensive and intensive quantities

Physical laws express in general the response of a medium to a
certain influence. Most physical properties may therefore be
defined by a relation coupling two or more measurable quantities.
For instance, the specific heat characterizes the relation between
a variation of temperature and a variation of entropy at a given
temperature in a given medium, the dielectric susceptibility the
relation between electric field and electric polarization, the
elastic constants the relation between an applied stress and the
resulting strain etc. These relations are between quantities of
the same nature: thermal, electrical and mechanical, respectively.
But there are also cross effects, for instance:

(a) thermal expansion and piezocalorific effect: mechanical
reaction to a thermal impetus or the reverse;

(b) pyroelectricity and electrocalorific effect: electrical response
to a thermal impetus or the reverse;

(c) piezoelectricity and electrostriction: electric response to a
mechanical impetus;

(d) piezomagnetism and magnetostriction: magnetic response
to a mechanical impetus;

(e) photoelasticity: birefringence produced by stress;
(f) acousto-optic effect: birefringence produced by an acoustic

wave;
(g) electro-optic effect: birefringence produced by an electric

field;
(h) magneto-optic effect: appearance of a rotatory polarization

under the influence of a magnetic field.
The physical quantities that are involved in these relations can

be divided into two categories:
(i) extensive quantities, which are proportional to the volume of

matter or to the mass, that is to the number of molecules in the
medium, for instance entropy, energy, quantity of electricity etc.
One uses frequently specific extensive parameters, which are
given per unit mass or per unit volume, such as the specific mass,
the electric polarization (dipole moment per unit volume) etc.

(ii) intensive parameters, quantities whose product with an
extensive quantity is homogeneous to an energy. For instance,
volume is an extensive quantity; the energy stored by a gas
undergoing a change of volume dV under pressure p is p dV.
Pressure is therefore the intensive parameter associated with
volume. Table 1.1.1.1 gives examples of extensive quantities and
of the related intensive parameters.

1.1.1.2. Notion of tensor in physics

Each of the quantities mentioned in the preceding section is
represented by a mathematical expression. Some are direction
independent and are represented by scalars: specific mass,
specific heat, volume, pressure, entropy, temperature, quantity of
electricity, electric potential. Others are direction dependent and
are represented by vectors: force, electric field, electric displa-
cement, the gradient of a scalar quantity. Still others cannot be
represented by scalars or vectors and are represented by more
complicated mathematical expressions. Magnetic quantities are
represented by axial vectors (or pseudovectors), which are a
particular kind of tensor (see Section 1.1.4.5.3). A few examples
will show the necessity of using tensors in physics and Section
1.1.3 will present elementary mathematical properties of tensors.

(i) Thermal expansion. In an isotropic medium, thermal
expansion is represented by a single number, a scalar, but this is

not the case in an anisotropic medium: a sphere cut in an
anisotropic medium becomes an ellipsoid when the temperature
is varied and thermal expansion can no longer be represented by
a single number. It is actually represented by a tensor of rank 2.

(ii) Dielectric constant. In an isotropic medium of a perfect
dielectric we can write, in SI units,

P ¼ "0�eE

D ¼ "0E þ P ¼ "0ð1 þ �eÞE ¼ "E;

where P is the electric polarization (= dipole moment per unit
volume), "0 the permittivity of vacuum, �e the dielectric
susceptibility, D the electric displacement and " the dielectric
constant, also called dielectric permittivity. These expressions
indicate that the electric field, on the one hand, and polarization
and displacement, on the other hand, are linearly related. In the
general case of an anisotropic medium, this is no longer true and
one must write expressions indicating that the components of the
displacement are linearly related to the components of the field:

D1 ¼ "1
1E1 þ "2

1E2 þ "3
1E

D2 ¼ "2
1E1 þ "2

2E2 þ "3
2E

D3 ¼ "3
1E1 þ "3

2E2 þ "3
3E:

8
<

:
ð1:1:1:1Þ

The dielectric constant is now characterized by a set of nine
components " j

i; they are the components of a tensor of rank 2. It
will be seen in Section 1.1.4.5.2.1 that this tensor is symmetric
(" j

i ¼ "i
j) and that the number of independent components is

equal to six.
(iii) Stressed rod (Hooke’s law). If one pulls a rod of length ‘

and cross section A with a force F, its length is increased by a
quantity �‘ given by �‘=‘ ¼ ð1=EÞF=A; where E is Young’s
modulus, or elastic stiffness (see Section 1.3.3.1). But, at the same
time, the radius, r, decreases by �r given by �r=r ¼ �ð�=EÞF=A,
where � is Poisson’s ratio (Section 1.3.3.4.3). It can be seen that a
scalar is not sufficient to describe the elastic deformation of a
material, even if it is isotropic. The number of independent
components depends on the symmetry of the medium and it will
be seen that they are the components of a tensor of rank 4. It was
precisely to describe the properties of elasticity by a mathema-
tical expression that the notion of a tensor was introduced in
physics by W. Voigt in the 19th century (Voigt, 1910) and by L.
Brillouin in the first half of the 20th century (Brillouin, 1949).
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Table 1.1.1.1. Extensive quantities and associated intensive parameters

The last four lines of the table refer to properties that are time dependent.

Extensive quantities Intensive parameters

Volume Pressure
Strain Stress
Displacement Force
Entropy Temperature
Quantity of electricity Electric potential
Electric polarization Electric field
Electric displacement Electric field
Magnetization Magnetic field
Magnetic induction Magnetic field
Reaction rate Chemical potential
Heat flow Temperature gradient
Diffusion of matter Concentration gradient
Electric current Potential gradient

International Tables for Crystallography (2006). Vol. D, Section 1.1.1, pp. 3–5.
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1. TENSORIAL ASPECTS OF PHYSICAL PROPERTIES

(iv) Expansion in Taylor series of a field of vectors. Let us
consider a field of vectors uðrÞ where r is a position vector. The
Taylor expansion of its components is given by

uiðr þ drÞ ¼ uiðrÞ þ
@ui

@u j

� �

dx j þ 1
2

@2ui

@u j@uk

� �

dx j dxk þ . . .

ð1:1:1:2Þ

using the so-called Einstein convention, which implies that there
is automatically a summation each time the same index appears
twice, once as a superscript and once as a subscript. This index is
called a dummy index. It will be shown in Section 1.1.3.8 that the
nine partial differentials @ui=@x j and the 27 partial differentials
@2ui=ð@x j@xkÞ are the components of tensors of rank 2 and 3,
respectively.

Remark. Of the four examples given above, the first three
(thermal expansion, dielectric constant, stressed rod) are related
to physical property tensors (also called material tensors), which
are characteristic of the medium and whose components have the
same value everywhere in the medium if the latter is homo-
geneous, while the fourth one (expansion in Taylor series of a
field of vectors) is related to a field tensor whose components vary
at every point of the medium. This is the case, for instance, for the
strain and for the stress tensors (see Sections 1.3.1 and 1.3.2).

1.1.1.3. The matrix of physical properties

Each extensive parameter is in principle a function of all the
intensive parameters. For a variation diq of a particular intensive
parameter, there will be a variation dep of every extensive
parameter. One may therefore write

dep ¼ Cq
p diq: ð1:1:1:3Þ

The summation is over all the intensive parameters that have
varied.

One may use a matrix notation to write the equations relating
the variations of each extensive parameter to the variations of all
the intensive parameters:

ðdeÞ ¼ ðCÞðdiÞ; ð1:1:1:4Þ

where the intensive and extensive parameters are arranged in
column matrices, (di) and (de), respectively. In a similar way, one
could write the relations between intensive and extensive para-
meters as

dip ¼ Rq
p deq

ðdiÞ ¼ ðRÞðdeÞ:

)

ð1:1:1:5Þ

Matrices (C) and (R) are inverse matrices. Their leading diagonal
terms relate an extensive parameter and the associated intensive
parameter (their product has the dimensions of energy), e.g. the
elastic constants, the dielectric constant, the specific heat etc. The
corresponding physical properties are called principal properties.
If one only of the intensive parameters, iq, varies, a variation diq

of this parameter is the cause of which the effect is a variation,

dep ¼ Cq
p diq

(without summation), of each of the extensive parameters. The
matrix coefficients Cq

p may therefore be considered as partial
differentials:

Cq
p ¼ @ep=@iq:

The parameters Cq
p that relate causes diq and effects dep

represent physical properties and matrix (C) is called the matrix
of physical properties. Let us consider the following intensive
parameters: T stress, E electric field, H magnetic field, �

temperature and the associated extensive parameters: S strain, P
electric polarization, B magnetic induction, � entropy, respec-
tively. Matrix equation (1.1.1.4) may then be written:

S

P

B

��

0

B
B
B
@

1

C
C
C
A

¼

CT
S CE

S CH
S C�

S

CT
P CE

P CH
P C�

P
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B CH
B C�

B
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�
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@
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B
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@

1

C
C
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A
: ð1:1:1:6Þ

The various intensive and extensive parameters are repre-
sented by scalars, vectors or tensors of higher rank, and each has
several components. The terms of matrix (C) are therefore
actually submatrices containing all the coefficients Cq

p relating all
the components of a given extensive parameter to the compo-
nents of an intensive parameter. The leading diagonal terms, CT

S ,
CE

P , CH
B , C�

� , correspond to the principal physical properties,
which are elasticity, dielectric susceptibility, magnetic suscept-
ibility and specific heat, respectively. The non-diagonal terms are
also associated with physical properties, but they relate intensive
and extensive parameters whose products do not have the
dimension of energy. They may be coupled in pairs symmetrically
with respect to the main diagonal:

CE
S and CT

P represent the piezoelectric effect and the converse
piezoelectric effect, respectively;

CH
S and CT

B the piezomagnetic effect and the converse piezo-
magnetic effect;

C�
S and CT

� thermal expansion and the piezocalorific effect;
CT

P and CE
� the pyroelectric and the electrocalorific effects;

CH
P and CE

B the magnetoelectric effect and the converse
magnetoelectric effect;

CH
� and C�

B the pyromagnetic effect and the magnetocalorific
effect.

It is important to note that equation (1.1.1.6) is of a thermo-
dynamic nature and simply provides a general framework. It
indicates the possibility for a given physical property to exist, but
in no way states that a given material will exhibit it. Curie laws,
which will be described in Section 1.1.4.2, show for instance that
certain properties such as pyroelectricity or piezoelectricity may
only appear in crystals that belong to certain point groups.

1.1.1.4. Symmetry of the matrix of physical properties

If parameter ep varies by dep, the specific energy varies by du,
which is equal to

du ¼ ip dep:

We have, therefore

ip ¼
@u

@ep

and, using (1.1.1.5),

Rq
p ¼

@ip

@eq

¼
@2u

@ep@eq

:

Since the energy is a state variable with a perfect differential, one
can interchange the order of the differentiations:

Rq
p ¼

@2u

@eq@ep

¼
@iq

@ep

:

Since p and q are dummy indices, they may be exchanged and the
last term of this equation is equal to Rp

q. It follows that

Rq
p ¼ Rp

q:

Matrices Rq
p and Cq

p are therefore symmetric. We may draw two
important conclusions from this result:
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1.1. INTRODUCTION TO THE PROPERTIES OF TENSORS

(i) The submatrices associated with the principal properties are
symmetric with respect to interchange of the indices related to the
causes and to the effects: these properties are represented by
symmetric tensors. For instance, the dielectric constant and the
elastic constants are represented by symmetric tensors of rank 2
and 4, respectively (see Section 1.1.3.4).

(ii) The submatrices associated with terms that are symmetric
with respect to the main diagonal of matrices (C) and (R) and that
represent cross effects are transpose to one another. For instance,
matrix (CE

S ) representing the converse piezoelectric effect is the
transpose of matrix (CT

P ) representing the piezoelectric effect. It
will be shown in Section 1.1.3.4 that they are the components of
tensors of rank 3.

1.1.1.5. Onsager relations

Let us now consider systems that are in steady state and not in
thermodynamic equilibrium. The intensive and extensive para-
meters are time dependent and relation (1.1.1.3) can be written

Jm ¼ LmnXn;

where the intensive parameters Xn are, for instance, a tempera-
ture gradient, a concentration gradient, a gradient of electric
potential. The corresponding extensive parameters Jm are the
heat flow, the diffusion of matter and the current density. The
diagonal terms of matrix Lmn correspond to thermal conductivity
(Fourier’s law), diffusion coefficients (Fick’s law) and electric
conductivity (Ohm’s law), respectively. Non-diagonal terms
correspond to cross effects such as the thermoelectric effect,
thermal diffusion etc. All the properties corresponding to these
examples are represented by tensors of rank 2. The case of
second-rank axial tensors where the symmetrical part of the
tensors changes sign on time reversal was discussed by Zheludev
(1986).

The Onsager reciprocity relations (Onsager, 1931a,b)

Lmn ¼ Lnm

express the symmetry of matrix Lmn. They are justified by
considerations of statistical thermodynamics and are not as
obvious as those expressing the symmetry of matrix (Cq

p). For
instance, the symmetry of the tensor of rank 2 representing
thermal conductivity is associated with the fact that a circulating
flow is undetectable.

Transport properties are described in Chapter 1.8 of this
volume.

1.1.2. Basic properties of vector spaces

[The reader may also refer to Section 1.1.4 of Volume B of
International Tables for Crystallography (2000).]

1.1.2.1. Change of basis

Let us consider a vector space spanned by the set of n basis
vectors e1, e2, e3; . . . ; en. The decomposition of a vector using this
basis is written

x ¼ xiei ð1:1:2:1Þ

using the Einstein convention. The interpretation of the position
of the indices is given below. For the present, we shall use the
simple rules:

(i) the index is a subscript when attached to basis vectors;
(ii) the index is a superscript when attached to the components.

The components are numerical coordinates and are therefore
dimensionless numbers.

Let us now consider a second basis, e0
j. The vector x is inde-

pendent of the choice of basis and it can be decomposed also in
the second basis:

x ¼ x0ie0
i: ð1:1:2:2Þ

If A
j
i and Bi

j are the transformation matrices between the bases
ei and e0

j, the following relations hold between the two bases:

ei ¼ A
j
ie

0
j; e0

j ¼ Bi
jei

xi ¼ Bi
jx

0j; x0j ¼ A
j
ix

i

)

ð1:1:2:3Þ

(summations over j and i, respectively). The matrices A
j
i and Bi

j

are inverse matrices:

A
j
iB

k
j ¼ �k

i ð1:1:2:4Þ

(Kronecker symbol: �k
i ¼ 0 if i 6¼ k;¼ 1 if i ¼ k).

Important Remark. The behaviour of the basis vectors and of the
components of the vectors in a transformation are different. The
roles of the matrices A

j
i and Bi

j are opposite in each case. The
components are said to be contravariant. Everything that trans-
forms like a basis vector is covariant and is characterized by an
inferior index. Everything that transforms like a component is
contravariant and is characterized by a superior index. The
property describing the way a mathematical body transforms
under a change of basis is called variance.

1.1.2.2. Metric tensor

We shall limit ourselves to a Euclidean space for which we have
defined the scalar product. The analytical expression of the scalar
product of two vectors x ¼ xiei and y ¼ y jej is

x � y ¼ xiei � y jej:

Let us put

ei � ej ¼ gij: ð1:1:2:5Þ

The nine components gij are called the components of the metric
tensor. Its tensor nature will be shown in Section 1.1.3.6.1. Owing
to the commutativity of the scalar product, we have

gij ¼ ei � ej ¼ ej � ei ¼ gji:

The table of the components gij is therefore symmetrical. One
of the definition properties of the scalar product is that if x � y ¼ 0
for all x, then y ¼ 0. This is translated as

xiy jgij ¼ 0 8xi ¼) y jgij ¼ 0:

In order that only the trivial solution ðy j ¼ 0Þ exists, it is
necessary that the determinant constructed from the gij’s is
different from zero:

�ðgijÞ 6¼ 0:

This important property will be used in Section 1.1.2.4.1.

1.1.2.3. Orthonormal frames of coordinates – rotation matrix

An orthonormal coordinate frame is characterized by the fact
that

gij ¼ �ij ð¼ 0 if i 6¼ j and ¼ 1 if i ¼ jÞ: ð1:1:2:6Þ

One deduces from this that the scalar product is written simply as

x � y ¼ xiy jgij ¼ xiyi:

Let us consider a change of basis between two orthonormal
systems of coordinates:

ei ¼ A
j
ie

0
j:

Multiplying the two sides of this relation by e0j, it follows that
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