
1. TENSORIAL ASPECTS OF PHYSICAL PROPERTIES

(c) point groups that have elements in common with
O(3)\SO(3) but do not contain �E; such groups are isomorphic
to a group of the first class, as one can see if one multiplies all
elements with determinant equal to �1 by �E.

The list of three-dimensional finite point groups is given in
Table 1.2.6.1. All isomorphism classes of two-dimensional point
groups occur in three dimensions as well. The isomorphism
classes occurring here for the first time are:

Cn � C2: A, B, with An ¼ B2 ¼ ABA�1B�1 ¼ E;

Dn � C2: A, B, C with An ¼ B2 ¼ ðABÞ
2
¼ C2 ¼ ACA�1C�1

¼ BCB�1C�1 ¼ E;

T: A, B, with A3 ¼ B2 ¼ ðABÞ
3
¼ E;

O: A, B, with A4 ¼ B3 ¼ ðABÞ
2
¼ E;

T � C2: A, B, C, with A3 ¼ B2 ¼ ðABÞ
3
¼ C2 ¼ ACA�1C�1

¼ BCB�1C�1 ¼ E;

O � C2: A, B, C, with A4 ¼ B3 ¼ ðABÞ
2
¼ C2 ¼ ACA�1C�1

¼ BCB�1C�1 ¼ E;

I: A, B, with A5 ¼ B3 ¼ ðABÞ
2
¼ E;

I � C2: A, B, C, with A5 ¼ B3 ¼ ðABÞ
2
¼ C2 ¼ ACA�1C�1

¼ BCB�1C�1 ¼ E:

The crystallographic groups among them are given in Table
1.2.6.2.

1.2.2.2. Representations of finite groups

As stated in Section 1.2.1, elements of point groups act on
physical properties (like tensorial properties) and on wave
functions as linear operators. These linear operators therefore
generally act in a different space than the three-dimensional
configuration space. We denote this new space by V and consider
a mapping D from the point group K to the group of nonsingular
linear operators in V that satisfies

DðRÞDðR0Þ ¼ DðRR0Þ 8 R;R0 2 K: ð1:2:2:3Þ

In other words D is a homomorphism from K to the group of
nonsingular linear transformations GLðVÞ on the vector space V.
Such a homomorphism is called a representation of K in V. Here
we only consider finite-dimensional representations.

With respect to a basis ei (i ¼ 1; 2; . . . n) the linear transfor-
mations are given by matrices �ðRÞ. The mapping � from K to the
group of nonsingular n � n matrices GL(n;R) (for a real vector
space V) or GL(n;C) (if V is complex) is called an n-dimensional
matrix representation of K.

If one chooses another basis for V connected to the former one
by a nonsingular matrix S, the same group of operators DðKÞ is
represented by another matrix group �0ðKÞ, which is related to
�ðKÞ by S according to �0ðRÞ ¼ S�1�ðRÞS (8 R 2 K). Two such
matrix representations are called equivalent. On the other hand,
two such equivalent matrix representations can be considered to
describe two different groups of linear operators [DðKÞ and
D0ðKÞ] on the same basis. Then there is a nonsingular linear
operator T such that DðRÞT ¼ TD0ðRÞ (8 R 2 K). In this case,
the representations DðKÞ and D0ðKÞ are also called equivalent.

It may happen that a representation DðKÞ in V leaves a
subspace W of V invariant. This means that for every vector
v 2 W and every element R 2 K one has DðRÞv 2 W. Suppose
that this subspace is of dimension m< n. Then one can choose m
basis vectors for V inside the invariant subspace. With respect to
this basis, the corresponding matrix representation has elements

�ðRÞ ¼
�1ðRÞ �3ðRÞ

0 �2ðRÞ

� �
; ð1:2:2:4Þ

where the matrices �1ðRÞ form an m-dimensional matrix repre-
sentation of K. In this situation, the representations DðKÞ and
�ðKÞ are called reducible. If there is no proper invariant subspace
the representation is irreducible. If the representation is a direct
sum of subspaces, each carrying an irreducible representation,
the representation is called fully reducible or decomposable. In
the latter case, a basis in V can be chosen such that the matrices
�ðRÞ are direct sums of matrices �iðRÞ such that the �iðRÞ form
an irreducible matrix representation. If �3ðRÞ in (1.2.2.4) is zero
and �1 and �2 form irreducible matrix representations, � is fully
reducible. For finite groups, each reducible representation is fully
reducible. That means that if �ðKÞ is reducible, there is a matrix S
such that

�ðRÞ ¼ S �1ðRÞ � . . .� �nðRÞ
� �

S�1

¼ S

�1ðRÞ 0 . . . 0

0 �2ðRÞ . . . 0

..

. ..
. . .

. ..
.

0 0 . . . �nðRÞ

0
BBBB@

1
CCCCAS�1:

ð1:2:2:5Þ

In this way one may proceed until all matrix representations
�iðKÞ are irreducible, i.e. do not have invariant subspaces. Then
each representation �ðKÞ can be written as a direct sum

�ðRÞ ¼ S m1�1ðRÞ � . . .� ms�sðRÞ
� �

S�1; ð1:2:2:6Þ

where the representations �1 . . . �s are all nonequivalent and the
multiplicities mi are the numbers of times each irreducible
representation occurs. The nonequivalent irreducible repre-
sentations �i for which the multiplicity is not zero are the irre-
ducible components of �ðKÞ.

We first discuss two special representations. The simplest
representation in one-dimensional space is obtained by assigning
the number 1 to all elements of K. Obviously this is a repre-
sentation, called the identity or trivial representation. Another is
the regular representation. To obtain this, one numbers the
elements of K from 1 to the order N of the group (jKj ¼ N). For
a given R 2 K there is a one-to-one mapping from K to itself
defined by Ri ! Rj � RRi. Consider the N � N matrix �ðRÞ,
which has in the ith column zeros except on line j, where the entry
is unity. The matrix �ðRÞ then has as only entries 0 or 1 and
satisfies

RRi ¼ �ðRÞjiRj; ði ¼ 1; 2; . . . ;NÞ: ð1:2:2:7Þ

These matrices �ðRÞ form a representation, the regular repre-
sentation of K of dimension N, as one sees from

ðRiRjÞRk ¼ Ri

PN
l¼1

�ðRjÞlkRl ¼
PN
l¼1

PN
m¼1

�ðRjÞlk�ðRiÞmlRm

¼
PN
m¼1

�ðRiÞ�ðRjÞ
� �

mk
Rm ¼

PN
m¼1

�ðRiRjÞmkRm:

A representation in a real vector space that leaves a positive
definite metric invariant can be considered on an orthonormal
basis for that metric. Then the matrices satisfy

�ðRÞ�ðRÞT
¼ E

(T denotes transposition of the matrix) and the representation is
orthogonal. If V is a complex vector space with positive definite
metric invariant under the representation, the latter gives on an
orthonormal basis matrices satisfying

�ðRÞ�ðRÞy ¼ E
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1.2. REPRESENTATIONS OF CRYSTALLOGRAPHIC GROUPS

(y denotes Hermitian conjugation) and the representation is
unitary. A real representation of a finite group is always
equivalent with an orthogonal one, a complex representation of a
finite group is always equivalent with a unitary one. As a proof of
the latter statement, consider the standard Hermitian metric on
V: f ðx; yÞ ¼

P
i x�i yi. Then the positive definite form

Fðx; yÞ ¼ ð1=NÞ
P

R2K

f DðRÞx;DðRÞyð Þ ð1:2:2:8Þ

is invariant under the representation. To show this, take an
arbitrary element R0. Then

FðDðR0Þx;DðR0ÞyÞ ¼ ð1=NÞ
P

R2K

f ðDðR0RÞx;DðR0RÞyÞ

¼ Fðx; yÞ: ð1:2:2:9Þ

With respect to an orthonormal basis for this metric Fðx; yÞ, the
matrices corresponding to DðRÞ are unitary. The complex
representation can be put into this unitary form by a basis
transformation. For a real representation, the argument is fully
analogous, and one obtains an orthogonal transformation.

From two representations, D1ðKÞ in V1 and D2ðKÞ in V2, one
can construct the sum and product representations. The sum
representation acts in the direct sum space V1 � V2, which has
elements (a; b) with a 2 V1 and b 2 V2. The representation
D1 � D2 is defined by

D1 � D2ð ÞðRÞ
� �

ða; bÞ ¼ ðD1ðRÞa;D2ðRÞbÞ: ð1:2:2:10Þ

The matrices �1 � �2ðRÞ are of dimension n1 þ n2.
The product representation acts in the tensor space, which is the

space spanned by the vectors ei � ej (i ¼ 1; 2; . . . ; dimV1;
j ¼ 1; 2 . . . ; dimV2). The dimension of the tensor space is the
product of the dimensions of both spaces. The action is given by

D1 � D2ð ÞðRÞ
� �

a � b ¼ D1ðRÞa � D2ðRÞb: ð1:2:2:11Þ

For bases ei (i ¼ 1; 2; . . . ; d1) for V1 and e0
j (j ¼ 1; 2; . . . ; d2) for

V2, a basis for the tensor product of spaces is given by

ei � e0j; i ¼ 1; . . . ; d1; j ¼ 1; 2; . . . ; d2; ð1:2:2:12Þ

and with respect to this basis the representation of K is given by
matrices

�1 � �2ð ÞðRÞik;jl ¼ �1ðRÞij�2ðRÞkl: ð1:2:2:13Þ

As an example of these operations, consider

1 0

0 �1

� �
�

0 1

1 0

� �
¼

1 0 0 0

0 �1 0 0

0 0 0 1

0 0 1 0

0
BBB@

1
CCCA;

1 0

0 �1

� �
�

0 1

1 0

� �
¼

0 1 0 0

1 0 0 0

0 0 0 �1

0 0 �1 0

0
BBB@

1
CCCA:

If two representations D1ðKÞ and D2ðKÞ are equivalent, there
is an operator S such that

SD1ðRÞ ¼ D2ðRÞS 8 R 2 K:

This relation may also hold between sets of operators that are not
necessarily representations. Such an operator S is called an
intertwining operator. With this concept we can formulate a
theorem that strictly speaking does not deal with representations
but with intertwining operators: Schur’s lemma.

Proposition. Let M and N be two sets of nonsingular linear
transformations in spaces V (dimension n) and W (dimension m),
respectively. Suppose that both sets are irreducible (the only
invariant subspaces are the full space and the origin). Let S be a
linear transformation from V to W such that SM ¼ NS. Then
either S is the null operator or S is nonsingular and SMS�1 ¼ N.

Proof: Consider the image of V under S: ImSV � W. That means
that Sr 2 ImSV for all r 2 V. This implies that NSr ¼

SMr 2 ImSV. Therefore, ImSV is an invariant subspace of W
under N. Because N is irreducible, either ImSV ¼ 0 or
ImSV ¼ W. In the first case, S is the null operator. In the second
case, notice that the kernel of S, the subspace of V mapped on the
null vector of W, is an invariant subspace of V under M: if Sr ¼ 0
then NSr ¼ 0. Again, because of the irreducibility, either KerS is
the whole of V, and then S is again the null operator, or KerS ¼ 0.
In the latter case, S is a one-to-one mapping and therefore
nonsingular. Therefore, either S is the null operator or it is an
isomorphism between the vector spaces V and W, which are then
both of dimension n. With respect to bases in the two spaces, the
operator S corresponds to a nonsingular matrix and M ¼ S�1NS.

This is a very fundamental theorem. Consequences of the
theorem are:

(1) If N and M are nonequivalent irreducible representations
and SM ¼ NS, then S ¼ 0.

(2) If a matrix S is singular and links two irreducible repre-
sentations of the same dimension, then S ¼ 0.

(3) A matrix S that commutes with all matrices of an irre-
ducible complex representation is a multiple of the identity.
Suppose that an n � n matrix S commutes with all matrices of a
complex irreducible representation. S can be singular and is then
the null matrix, or it is nonsingular. In the latter case it has an
eigenvalue � 6¼ 0 and S � �E commutes with all the matrices.
However, S � �E is singular and therefore the null matrix:
S ¼ �E. This reasoning is only valid in a complex space, because,
generally, the eigenvalues � are complex.

1.2.2.3. General tensors

Suppose a group K acts linearly on a d-dimensional space V:
for any v 2 V one has

Rv 2 V 8 R 2 K; v 2 V:

For a basis ai in V this gives a matrix group �ðKÞ via

Rai ¼
Pd

j¼1

�ðRÞjiaj; R 2 K: ð1:2:2:14Þ

The matrix group �ðKÞ is a matrix representation of the group K.
Consider now a linear function f on V. Because

f
Pd

i¼1

�iai

� �
¼

Pd

i¼1

�if ðaiÞ;

the function is completely determined by its value on the basis
vectors ai. A second point is that these linear functions form a
vector space because for two functions f1 and f2 the function
�1f1 þ �2f2 is a well defined linear function. The vector space is
called the dual space and is denoted by V�. A basis for this space
is given by functions f1; . . . ; fd such that

fiðajÞ ¼ �ij;

because any linear function f can be written as a linear combi-
nation of these vectors with as coefficients the value of f on the
basis vectors ai:

f ¼
Pd

i¼1

f ðaiÞfi , f ð
Pd

k¼1

�kakÞ ¼
Pd

k¼1

�k

Pd

i¼1

f ðaiÞfiðakÞ ¼
Pd

k¼1

�kf ðakÞ:
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