International
Tables for
Crystallography
Volume D
Physical properties of crystals
Edited by A. Authier

International Tables for Crystallography (2006). Vol. D. ch. 1.2, pp. 50-51

Section 1.2.3.5.  Double space groups and their representations

T. Janssena*

a Institute for Theoretical Physics, University of Nijmegen, 6524 ED Nijmegen, The Netherlands
Correspondence e-mail: ted@sci.kun.nl

1.2.3.5. Double space groups and their representations

| top | pdf |

In Section 1.2.2.9[link], it was mentioned that the transformation properties of spin-[{{1}\over{2}}] particles under rotations are not given by the orthogonal group O(3), but by the covering group SU(2). Hence, the transformation of a spinor field under a Euclidean transformation g is given by [g\Psi ({\bf r}) = \pm U(R)\Psi (R^{-1}({\bf r}-{\bf a})) \quad \forall \,\, g = \{R|{\bf a}\} \in E(3), \eqno (1.2.3.27)]where the SU(2) operator [U(R)] is given by[U(R) = E\cos (\varphi /2) + ({\boldsigma}\cdot{\bf n})\sin (\varphi /2) \eqno (1.2.3.28)]when the rotation R has angle [\varphi] and axis [{\bf n}]. When R does not belong to SO(3) one has to take [U(-R]).

For an ordinary space group, one can construct the double space group by[\{R|{\bf a}\} \rightarrow \{\pm U(R)|{\bf a}\} \eqno (1.2.3.29)]with multiplication rule [\{U(R)|{\bf a}\}\{U(S)|{\bf b}\} = \{U(R)U(S)|{\bf a}+R{\bf b}\}. \eqno (1.2.3.30)]An invariant subgroup of the double space group is the translation group A. The factor group is the double point group [K^{d}] of the point group K.

The representations of the double space groups can be constructed in the same way as those of ordinary space groups. They are characterized by a vector [{\bf k}] in the Brillouin zone and a label for an irreducible, generally projective, representation of the (double) point group [K_{{\bf k}}^{d}] of [{\bf k}], which is the double group of [K_{{\bf k}}]. Again, for nonsymmorphic space groups or wavevectors [{\bf k}] inside the Brillouin zone, the relevant irreducible representations of [K_{{\bf k}}^{d}] are ordinary representations with a trivial factor system.

For an element g of the space group G, there are two elements of the double space group [G^{d}]. If one considers an irreducible representation [D(G^{d})] for the double space group and takes for each [g\in G] one of the two corresponding elements in [G^{d}], the resulting set of linear operators forms a projective representation of the space group. It is also characterized by a vector [{\bf k}] in the Brillouin zone and a projective representation of the point group (not its double) [K_{{\bf k}}]. This projective representation does not have the same factor system as discussed in Section 1.2.3.3[link], because the factor system now stems partly from the nonprimitive translations and partly from the fact that a double point group gives a projective representation of the ordinary point group [K_{{\bf k}}].

The projective representations of a space group corresponding to ordinary representations of the double space group again are characterized by the star of a vector [{\bf k}]. The projective representation of the group [G_{{\bf k}}] then is given by [P_{{\bf k}}(\{R|{\bf a}\}) = \exp (i{\bf k}\cdot{\bf a})\Gamma (R), \eqno (1.2.3.31)]where the projective representation [\Gamma (K_{{\bf k}})] has the factor system [\eqalignno{\Gamma (R)\Gamma (S) &= \omega_{s}(R,S) \exp [-i({\bf k}-R^{-1}{\bf k})\cdot{\bf a}(S) ] \Gamma (RS) &\cr&= \omega (R,S)\Gamma (RS), & (1.2.3.32)}]where [\omega_{s}] is the spin factor system for [K_{{\bf k}}] and [{\bf a}(S)] is the nonprimitive translation of the space-group element with orthogonal part S. The factor system [\omega] can be characterized by the defining relations of [K_{{\bf k}}]. If these are the words [W_{i}(A_{1},\ldots, A_{p}) = E,]then the factor system [\omega] is characterized by the factors [\lambda_{i}] in [W_{i}(\Gamma (A_{1}),\ldots, \Gamma (A_{p})) = \lambda_{i}E. \eqno (1.2.3.33)]The factors [\lambda_{i}] are the product of the values found from the spin factor system [\omega_{s}] and those corresponding to the factor system for an ordinary representation [equation (1.2.3.26)[link]].








































to end of page
to top of page