International
Tables for
Crystallography
Volume D
Physical properties of crystals
Edited by A. Authier

International Tables for Crystallography (2006). Vol. D. ch. 1.2, p. 54

Section 1.2.5.3. Transformation of tensors

T. Janssena*

a Institute for Theoretical Physics, University of Nijmegen, 6524 ED Nijmegen, The Netherlands
Correspondence e-mail: ted@sci.kun.nl

1.2.5.3. Transformation of tensors

| top | pdf |

Vectors and tensors transforming in the same way under Euclidean transformations may behave differently when time reversal is taken into account. As an example, both the electric field [{\bf E}] and magnetic field [{\bf B}] transform under a rotation as a position vector. Under time reversal, the former is invariant, but the latter changes sign. Therefore, the magnetic field is called a pseudovector field under time reversal. Under spatial inversion, the field [{\bf E}] changes sign, as does a position vector, but the field [{\bf B}] does not. Therefore, the magnetic field is also a pseudovector under central inversion. The electric polarization induced by an electric field is given by the electric susceptibility, a magnetic moment induced by a magnetic field is given by the magnetic susceptibility and in some crystals a magnetic moment is induced by an electric field via the magneto-electric susceptibility. Under the four elements of the group generated by [T=1'] and [I=\bar 1], the fields and susceptibility tensors transform according to[\matrix{\phantom{\chi_{mm}}& \hfill E & \hskip1pt\phantom{-}\bar{1} & \phantom{-}1' & \hskip -4pt\phantom{-}\bar{1}'\cr}\over\matrix{{\bf E} & \hfill1 &\hfill-1 &\hfill1 &\hfill-1 \cr {\bf B} & \hfill1 & \hfill1 & \hfill-1 & \hfill-1 \cr \chi_{ee} & \hfill1 & \hfill1 & \hfill1 & \hfill1 \cr \chi_{mm} & \hfill1 & \hfill1 & \hfill1 & \hfill1 \cr \chi_{me} & \hfill1 & \hfill-1 & \hfill-1 & \hfill1 }]Here [{\bar 1}'={\bar 1}1'].

In general, a vector transforms as the position vector [{\bf r}] under rotations and changes sign under [\bar{1}], but not under [1']. A pseudovector under [\bar{1}] or (respectively and) [1'] gets an additional minus sign. The generalization to tensors is straightforward. [gT_{i_{1}\ldots i_{n}} = \varepsilon_{P}\varepsilon_{T} \textstyle\sum\limits_{j_{1}\ldots j_{n}} \left(\textstyle\prod\limits_{k=1}^{n} R_{i_{k}j_{k}}\right) T_{j_{1}\ldots j_{n}}, \eqno (1.2.5.1)]where [\varepsilon_{P}] and [\varepsilon_{T}] are [\pm 1], depending on the pseudotensor character with respect to space and time reversal, respectively.

Under a rotation [[R\in SO(d)]], a vector transforms according to a representation characterized by the character [\chi (R)] of the representation. In two dimensions [\chi =2\cos \varphi] and in three dimensions [\chi =1+2\cos \varphi], if [\varphi] is the rotation angle. Under [IR] the character gets an additional minus sign, under [RT] it is the same, and under [RIT] there is again an additional minus sign. For pseudovectors, either under I or T or both, there are the extra factors [\varepsilon_{P}], [\varepsilon_{T}] and [\varepsilon_{P} \varepsilon_{T}], respectively. As an example, the character of the representations corresponding to the electric and magnetic fields in two orthorhombic point groups ([222], [2'2'2] and [2'mm']) are given in Table 1.2.5.1[link].

Table 1.2.5.1 | top | pdf |
Character of the representations corresponding to the electric and magnetic fields in point groups [222], [2'2'2] and [2'mm']

[n_{i}] is the number of invariants.

Point group [{\bf E}] [n_{i}] [{\bf B}] [n_{i}]
[222] 3 −1 −1 −1 0 3 −1 −1 −1 0
[2'2'2] 3 −1 −1 −1 0 3 1 1 −1 1
[2'mm'] 3 −1 1 1 1 3 1 −1 1 1

The number of invariant components is the multiplicity of the trivial representation in the representation to which the tensor belongs. The nonzero invariant field components are [B_{z}] for [2'2'2], [E_{x}] and [B_{y}] for [2'mm']. These components can be constructed by means of projection-operator techniques, or more simply by solving the linear equations representing the invariance of the tensor under the generators of the point group. For example, the magnetic field vector B transforms to ([-B_{x},B_{y},-B_{z}]) under [m_{y}] and to ([B_{x},B_{y},-B_{z}]) under [m_{z}], and this gives the result that all components are zero except [B_{y}].








































to end of page
to top of page