International
Tables for
Crystallography
Volume D
Physical properties of crystals
Edited by A. Authier

International Tables for Crystallography (2006). Vol. D. ch. 1.3, p. 86

Section 1.3.4.1. Introduction

A. Authiera* and A. Zarembowitchb

a Institut de Minéralogie et de la Physique des Milieux Condensés, Bâtiment 7, 140 rue de Lourmel, 75015 Paris, France, and bLaboratoire de Physique des Milieux Condensés, Université P. et M. Curie, 75252 Paris CEDEX 05, France
Correspondence e-mail:  aauthier@wanadoo.fr

1.3.4.1. Introduction

| top | pdf |

The elastic properties of materials have been considered in the preceding section in the static state and the elastic constants have been defined in terms of the response of the material to particular static forces. It is effectively the way the elastic constants have been measured in the past, although the measurements could not be very precise. A way of proceeding frequently used now is to excite a mechanical wave in the crystal and measure its propagation velocity or the wavelength associated with a particular frequency. One method consists in sending a train of ultrasonic waves through the crystal; one uses a pulse generator and a piezoelectric transducer glued to the crystal. The elapsed time between the emission of the train of waves and its reception after reflection from the rear face of the sample is then measured. Another method involves producing a system of standing waves after reflection at the inner surface of the crystal and determining the set of resonance frequencies. The experimental techniques will be described in Section 1.3.4.6[link].

The purpose of the next sections is to establish relations between the wavelength – or the velocity of propagation – and the elastic constants.








































to end of page
to top of page