International
Tables for
Crystallography
Volume D
Physical properties of crystals
Edited by A. Authier

International Tables for Crystallography (2006). Vol. D. ch. 1.3, pp. 88-89

Section 1.3.4.6.3. Pulse-echo techniques

A. Authiera* and A. Zarembowitchb

a Institut de Minéralogie et de la Physique des Milieux Condensés, Bâtiment 7, 140 rue de Lourmel, 75015 Paris, France, and bLaboratoire de Physique des Milieux Condensés, Université P. et M. Curie, 75252 Paris CEDEX 05, France
Correspondence e-mail:  aauthier@wanadoo.fr

1.3.4.6.3. Pulse-echo techniques

| top | pdf |

Pulse-echo techniques are valid for transparent and opaque materials. They are currently used for measuring ultrasonic velocities in solids and can be used in very simple as well as in sophisticated versions according to the required precision (McSkimmin, 1964[link]). In the simplest version (Fig. 1.3.4.2[link]), an electronic pulse generator excites the mechanical vibrations of a piezo-electric transducer glued to one of two plane-parallel faces of a specimen. An ultrasonic pulse whose duration is of the order of a microsecond is generated and transmitted through the specimen. After reflection at the opposite face, it returns and, when it arrives back at the transducer, it gives rise to an electronic signal, or echo. The whole sequence of such echos is displayed on the screen of an oscilloscope and it is possible to measure from them the time interval for transit. Usually, X-cut quartz crystals or ferroelectric ceramics are used to excite longitudinal waves and Y-cut quartz is used to excite transverse waves. In many cases, a circulator, or gate, is used to protect the receiver from saturation following the main `bang'. This method is rough because the beginning and the end of a pulse are not well characterized. Several improvements have therefore been made, mainly based on interferometric techniques (pulse-superposition method, `sing around' method etc.). Nevertheless, if the absolute value of the ultrasonic velocity is not determined with a high accuracy by using pulse-echo techniques, this approach has proved valuable when relative values of ultrasonic velocities are needed, e.g. temperature and pressure dependences of ultrasonic velocities.

  • (i) Pulse-superposition method. A piezoelectric transducer initiates ultrasonic pulses in the specimen. These pulses echo back and forth within the specimen. A continuous-wave oscillator is used to control the pulse repetition rate. When the repetition rate is adjusted so that the initiation of a pulse coincides with the return of the first echo from the preceding pulses, the change in the signal amplitude indicates superposition. The pulse rate is a measure of the travel time within the specimen.

    [Figure 1.3.4.2]

    Figure 1.3.4.2 | top | pdf |

    Block diagram of the pulse-echo technique.

  • (ii) `Sing around method'. The `sing around' method for measuring the velocity of ultrasonic waves involves the use of two piezoelectric transducers, one at each end of the specimen. One transducer receives an impulse from the electronic generator and converts it into an ultrasonic pulse in the specimen. This pulse, after passing through the specimen, is detected by the receiving transducer. The received pulse triggers the electronic generator to initiate a succeeding pulse. The pulse repetition rate is a very sensitive probe for measuring changes of the ultrasonic velocity in the specimen. Relative variations of [10^{-7}] can be measured, such as temperature or stress dependences of the velocity.

References

First citation McSkimmin, H. J. (1964). Ultrasonic methods for measuring the mechanical properties of solids and fluids. Physical acoustics, Vol. IA, edited by W. P. Mason, pp. 271–334. New York: Academic Press.Google Scholar








































to end of page
to top of page